Apigenidin (BioDeep_00000004008)
Secondary id: BioDeep_00001869753
human metabolite PANOMIX_OTCML-2023 PANOMIX-Anthocyanidin natural product
代谢物信息卡片
化学式: C15H11O4+ (255.0657)
中文名称: 芹菜素
谱图信息:
最多检出来源 Viridiplantae(plant) 90.09%
Last reviewed on 2024-09-18.
Cite this Page
Apigenidin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/apigenidin (retrieved
2024-12-24) (BioDeep RN: BioDeep_00000004008). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1=CC(=CC=C1C2=[O+]C3=CC(=CC(=C3C=C2)O)O)O
InChI: InChI=1S/C15H10O4/c16-10-3-1-9(2-4-10)14-6-5-12-13(18)7-11(17)8-15(12)19-14/h1-8H,(H2-,16,17,18)/p+1
描述信息
Apigenidin is a member of the class of compounds known as 7-hydroxyflavonoids. 7-hydroxyflavonoids are flavonoids that bear one hydroxyl group at the C-7 position of the flavonoid skeleton. Apigenidin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Apigenidin can be found in corn, which makes apigenidin a potential biomarker for the consumption of this food product.
Apigeninidin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1151-98-0 (retrieved 2024-09-18) (CAS RN: 1151-98-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
同义名列表
数据库引用编号
14 个数据库交叉引用编号
- ChEBI: CHEBI:2772
- KEGG: C08574
- PubChem: 441647
- HMDB: HMDB0303074
- ChEMBL: CHEMBL1197890
- KNApSAcK: C00006610
- foodb: FDB007650
- chemspider: 390277
- CAS: 1151-98-0
- 3DMET: B02232
- NIKKAJI: J244.825D
- PubChem: 10767
- KNApSAcK: 2772
- LOTUS: LTS0223333
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
78 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(78)
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
29 个相关的物种来源信息
- 3387 - Ephedra: LTS0223333
- 173281 - Ephedra andina: 10.1016/0305-1978(84)90056-5
- 173281 - Ephedra andina: LTS0223333
- 288832 - Ephedra breana: 10.1016/0305-1978(84)90056-5
- 288832 - Ephedra breana: LTS0223333
- 224737 - Ephedra chilensis: 10.1016/0305-1978(84)90056-5
- 224737 - Ephedra chilensis: LTS0223333
- 173277 - Ephedra frustillata: 10.1016/0305-1978(84)90056-5
- 173277 - Ephedra frustillata: LTS0223333
- 3386 - Ephedraceae: LTS0223333
- 2759 - Eukaryota: LTS0223333
- 3803 - Fabaceae: LTS0223333
- 26122 - Gesneriaceae: LTS0223333
- 3846 - Glycine: LTS0223333
- 3847 - Glycine max: 10.1016/S0031-9422(01)00378-8
- 3847 - Glycine max: LTS0223333
- 3372 - Gnetopsida: LTS0223333
- 47605 - Hibiscus: LTS0223333
- 183298 - Hibiscus rosa-sinensis: 10.1201/9780849382192
- 183298 - Hibiscus rosa-sinensis: LTS0223333
- 9606 - Homo sapiens: -
- 3398 - Magnoliopsida: LTS0223333
- 3629 - Malvaceae: LTS0223333
- 48789 - Sinningia: LTS0223333
- 189007 - Sinningia cardinalis: 10.1016/0031-9422(88)84093-7
- 189007 - Sinningia cardinalis: LTS0223333
- 35493 - Streptophyta: LTS0223333
- 58023 - Tracheophyta: LTS0223333
- 33090 - Viridiplantae: LTS0223333
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Solomon E Owumi, Moses T Otunla, Uche O Arunsi, Adegboyega K Oyelere. Apigeninidin-enriched Sorghum bicolor (L. Moench) extracts alleviate Aflatoxin B1-induced dysregulation of male rat hypothalamic-reproductive axis.
Experimental biology and medicine (Maywood, N.J.).
2022 08; 247(15):1301-1316. doi:
10.1177/15353702221098060
. [PMID: 35658587] - Solomon E Owumi, Abisola I Kazeem, Bocheng Wu, Lucia O Ishokare, Uche O Arunsi, Adegboyega K Oyelere. Apigeninidin-rich Sorghum bicolor (L. Moench) extracts suppress A549 cells proliferation and ameliorate toxicity of aflatoxin B1-mediated liver and kidney derangement in rats.
Scientific reports.
2022 05; 12(1):7438. doi:
10.1038/s41598-022-10926-1
. [PMID: 35523904] - Folachodé Ug Akogou, Tessa S Canoy, Adéchola Pp Kayodé, Heidy Mw den Besten, Anita R Linnemann, Vincenzo Fogliano. Application of apigeninidin-rich red sorghum biocolorant in a fermented food improves product quality.
Journal of the science of food and agriculture.
2019 Mar; 99(4):2014-2020. doi:
10.1002/jsfa.9427
. [PMID: 30324616] - Samira B L Makanjuola, Abiodun O Ogundaini, Louis C Ajonuma, Adedoyin Dosunmu. Apigenin and apigeninidin isolates from the Sorghum bicolor leaf targets inflammation via cyclo-oxygenase-2 and prostaglandin-E2 blockade.
International journal of rheumatic diseases.
2018 Aug; 21(8):1487-1495. doi:
10.1111/1756-185x.13355
. [PMID: 30146750] - Folachodé Ug Akogou, Ap Polycarpe Kayodé, Heidy Mw den Besten, Anita R Linnemann. Extraction methods and food uses of a natural red colorant from dye sorghum.
Journal of the science of food and agriculture.
2018 Jan; 98(1):361-368. doi:
10.1002/jsfa.8479
. [PMID: 28600852] - Yuki Yagishita, Mai Mihara, Yoshiumi Kohno, Masashi Shibata. Photochromic Properties of 3-Deoxyanthocyanidin Pigments in Nontoxic Solvents.
Journal of food science.
2016 Dec; 81(12):E2950-E2955. doi:
10.1111/1750-3841.13548
. [PMID: 27925261] - Daniel A Abugri, William H Witola, Jesse M Jaynes, Nashar Toufic. In vitro activity of Sorghum bicolor extracts, 3-deoxyanthocyanidins, against Toxoplasma gondii.
Experimental parasitology.
2016 May; 164(?):12-9. doi:
10.1016/j.exppara.2016.02.001
. [PMID: 26855040] - Hiroshi Mizuno, Takayuki Yazawa, Shigemitsu Kasuga, Yuji Sawada, Jun Ogata, Tsuyu Ando, Hiroyuki Kanamori, Jun-ichi Yonemaru, Jianzhong Wu, Masami Yokota Hirai, Takashi Matsumoto, Hiroyuki Kawahigashi. Expression level of a flavonoid 3'-hydroxylase gene determines pathogen-induced color variation in sorghum.
BMC research notes.
2014 Oct; 7(?):761. doi:
10.1186/1756-0500-7-761
. [PMID: 25346182] - Marie-Annette Carbonneau, Moctar Cisse, Nathalie Mora-Soumille, Sofiane Dairi, Maxence Rosa, Françoise Michel, Céline Lauret, Jean-Paul Cristol, Olivier Dangles. Antioxidant properties of 3-deoxyanthocyanidins and polyphenolic extracts from Côte d'Ivoire's red and white sorghums assessed by ORAC and in vitro LDL oxidisability tests.
Food chemistry.
2014 Feb; 145(?):701-9. doi:
10.1016/j.foodchem.2013.07.025
. [PMID: 24128534] - Carloalberto Petti, Rekha Kushwaha, Mizuki Tateno, Anne Elizabeth Harman-Ware, Mark Crocker, Joseph Awika, Seth Debolt. Mutagenesis breeding for increased 3-deoxyanthocyanidin accumulation in leaves of Sorghum bicolor (L.) Moench: a source of natural food pigment.
Journal of agricultural and food chemistry.
2014 Feb; 62(6):1227-32. doi:
10.1021/jf405324j
. [PMID: 24460064] - Katja Zuther, Jörg Kahnt, Jan Utermark, Julia Imkampe, Simon Uhse, Jan Schirawski. Host specificity of Sporisorium reilianum is tightly linked to generation of the phytoalexin luteolinidin by Sorghum bicolor.
Molecular plant-microbe interactions : MPMI.
2012 Sep; 25(9):1230-7. doi:
10.1094/mpmi-12-11-0314
. [PMID: 22670753] - Bhimalingeswarappa Geera, Leonnard O Ojwang, Joseph M Awika. New highly stable dimeric 3-deoxyanthocyanidin pigments from sorghum bicolor leaf sheath.
Journal of food science.
2012 May; 77(5):C566-72. doi:
10.1111/j.1750-3841.2012.02668.x
. [PMID: 22489620] - Alexandre Fournier-Level, Philippe Hugueney, Clotilde Verriès, Patrice This, Agnès Ageorges. Genetic mechanisms underlying the methylation level of anthocyanins in grape (Vitis vinifera L.).
BMC plant biology.
2011 Dec; 11(?):179. doi:
10.1186/1471-2229-11-179
. [PMID: 22171701] - A P Polycarpe Kayodé, M J Rob Nout, Anita R Linnemann, Joseph D Hounhouigan, Emmerich Berghofer, Susanne Siebenhandl-Ehn. Uncommonly high levels of 3-deoxyanthocyanidins and antioxidant capacity in the leaf sheaths of dye sorghum.
Journal of agricultural and food chemistry.
2011 Feb; 59(4):1178-84. doi:
10.1021/jf103963t
. [PMID: 21322653] - Yegang Du, Hung Chu, Mingfu Wang, Ivan K Chu, Clive Lo. Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum.
Journal of experimental botany.
2010 Feb; 61(4):983-94. doi:
10.1093/jxb/erp364
. [PMID: 20007684] - O G Avwioro, C P Aloamaka, O B Olabampe, T Oduola. Collagen and muscle stain obtained from Sorghum bicolor.
Scandinavian journal of clinical and laboratory investigation.
2006; 66(2):161-7. doi:
10.1080/00365510600548769
. [PMID: 16537249] - Mamoudou H Dicko, Harry Gruppen, Alfred S Traore, Willem J H van Berkel, Alphons G J Voragen. Evaluation of the effect of germination on phenolic compounds and antioxidant activities in sorghum varieties.
Journal of agricultural and food chemistry.
2005 Apr; 53(7):2581-8. doi:
10.1021/jf0501847
. [PMID: 15796598] - Michael F Cohen, Yasuko Sakihama, Yojiro C Takagi, Toshio Ichiba, Hideo Yamasaki. Synergistic effect of deoxyanthocyanins from symbiotic fern Azolla spp. on hrmA gene induction in the cyanobacterium Nostoc punctiforme.
Molecular plant-microbe interactions : MPMI.
2002 Sep; 15(9):875-82. doi:
10.1094/mpmi.2002.15.9.875
. [PMID: 12236594] - A D Boveris, A Galatro, L Sambrotta, R Ricco, A A Gurni, S Puntarulo. Antioxidant capacity of a 3-deoxyanthocyanidin from soybean.
Phytochemistry.
2001 Dec; 58(7):1097-105. doi:
10.1016/s0031-9422(01)00378-8
. [PMID: 11730874] - . .
.
. doi:
. [PMID: 8987602]