Reaction Process: WikiPathways:WP5050

TCA cycle in senescence related metabolites

find 5 related metabolites which is associated with chemical reaction(pathway) TCA cycle in senescence

Malate ⟶ Pyruvate

DL-Malic acid

2-Hydroxyethane-1,2-dicarboxylic acid

C4H6O5 (134.0215226)


Malic acid (CAS: 6915-15-7) is a tart-tasting organic dicarboxylic acid that plays a role in many sour or tart foods. Apples contain malic acid, which contributes to the sourness of a green apple. Malic acid can make a wine taste tart, although the amount decreases with increasing fruit ripeness (Wikipedia). In its ionized form, malic acid is called malate. Malate is an intermediate of the TCA cycle along with fumarate. It can also be formed from pyruvate as one of the anaplerotic reactions. In humans, malic acid is both derived from food sources and synthesized in the body through the citric acid cycle or Krebs cycle which takes place in the mitochondria. Malates importance to the production of energy in the body during both aerobic and anaerobic conditions is well established. Under aerobic conditions, the oxidation of malate to oxaloacetate provides reducing equivalents to the mitochondria through the malate-aspartate redox shuttle. During anaerobic conditions, where a buildup of excess reducing equivalents inhibits glycolysis, malic acids simultaneous reduction to succinate and oxidation to oxaloacetate is capable of removing the accumulating reducing equivalents. This allows malic acid to reverse hypoxias inhibition of glycolysis and energy production. In studies on rats, it has been found that only tissue malate is depleted following exhaustive physical activity. Other key metabolites from the citric acid cycle needed for energy production were found to be unchanged. Because of this, a deficiency of malic acid has been hypothesized to be a major cause of physical exhaustion. Notably, the administration of malic acid to rats has been shown to elevate mitochondrial malate and increase mitochondrial respiration and energy production. Malic acid has been found to be a metabolite in Aspergillus (Hugo Vanden Bossche, D.W.R. Mackenzie and G. Cauwenbergh. Aspergillus and Aspergillosis, 1987). Acidulant, antioxidant, flavouring agent, flavour enhancer. Not for use in baby foods (GRAS) Malic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=617-48-1 (retrieved 2024-07-01) (CAS RN: 6915-15-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive. (S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive. Malic acid (Hydroxybutanedioic acid) is a dicarboxylic acid that is naturally found in fruits such as apples and pears. It plays a role in many sour or tart foods. Malic acid (Hydroxybutanedioic acid) is a dicarboxylic acid that is naturally found in fruits such as apples and pears. It plays a role in many sour or tart foods.

   

Oxaloacetate

2-oxobutanedioic acid

C4H4O5 (132.0058734)


Oxalacetic acid, also known as oxaloacetic acid, keto-oxaloacetate or 2-oxobutanedioate, belongs to the class of organic compounds known as short-chain keto acids and derivatives. These are keto acids with an alkyl chain the contains less than 6 carbon atoms. Oxalacetic acid is a metabolic intermediate in many processes that occur in animals and plants. It takes part in gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, fatty acid synthesis and the citric acid cycle. Oxalacetic acid exists in all living species, ranging from bacteria to plants to humans. Within humans, oxalacetic acid participates in a number of enzymatic reactions. In particular, oxalacetic acid is an intermediate of the citric acid cycle, where it reacts with acetyl-CoA to form citrate, catalyzed by citrate synthase. It is also involved in gluconeogenesis and the urea cycle. In gluconeogenesis oxaloacetate is decarboxylated and phosphorylated by phosphoenolpyruvate carboxykinase and becomes 2-phosphoenolpyruvate using guanosine triphosphate (GTP) as phosphate source. In the urea cycle, malate is acted on by malate dehydrogenase to become oxaloacetate, producing a molecule of NADH. After that, oxaloacetate can be recycled to aspartate, as this recycling maintains the flow of nitrogen into the cell. In mice, injections of oxalacetic acid have been shown to promote brain mitochondrial biogenesis, activate the insulin signaling pathway, reduce neuroinflammation and activate hippocampal neurogenesis (PMID: 25027327). Oxalacetic acid has also been reported to reduce hyperglycemia in type II diabetes and to extend longevity in C. elegans (PMID: 25027327). Outside of the human body, oxalacetic acid has been detected, but not quantified in, several different foods, such as Persian limes, lemon balms, wild rice, canola, and peanuts. This could make oxalacetic acid a potential biomarker for the consumption of these foods. Oxalacetic acid, also known as ketosuccinic acid or oxaloacetate, belongs to short-chain keto acids and derivatives class of compounds. Those are keto acids with an alkyl chain the contains less than 6 carbon atoms. Thus, oxalacetic acid is considered to be a fatty acid lipid molecule. Oxalacetic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Oxalacetic acid can be synthesized from succinic acid. Oxalacetic acid can also be synthesized into oxaloacetic acid 4-methyl ester. Oxalacetic acid can be found in a number of food items such as daikon radish, sacred lotus, cucurbita (gourd), and tarragon, which makes oxalacetic acid a potential biomarker for the consumption of these food products. Oxalacetic acid can be found primarily in cellular cytoplasm, cerebrospinal fluid (CSF), and urine, as well as in human liver tissue. Oxalacetic acid exists in all living species, ranging from bacteria to humans. In humans, oxalacetic acid is involved in several metabolic pathways, some of which include the oncogenic action of succinate, the oncogenic action of 2-hydroxyglutarate, glycogenosis, type IB, and the oncogenic action of fumarate. Oxalacetic acid is also involved in several metabolic disorders, some of which include the oncogenic action of l-2-hydroxyglutarate in hydroxygluaricaciduria, transfer of acetyl groups into mitochondria, argininemia, and 2-ketoglutarate dehydrogenase complex deficiency. Moreover, oxalacetic acid is found to be associated with anoxia. C274 - Antineoplastic Agent > C177430 - Agent Targeting Cancer Metabolism C26170 - Protective Agent > C1509 - Neuroprotective Agent Oxaloacetic acid (2-Oxosuccinic acid) is a metabolic intermediate involved in several ways, such as citric acid cycle, gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, and fatty acid synthesis[1][2]. Oxaloacetic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=328-42-7 (retrieved 2024-10-17) (CAS RN: 328-42-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Acetyl-CoA

{[(2R,3S,4R,5R)-2-({[({[(3R)-3-[(2-{[2-(acetylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-5-(6-amino-9H-purin-9-yl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C23H38N7O17P3S (809.1257688000001)


The main function of coenzyme A is to carry acyl groups (such as the acetyl group) or thioesters. Acetyl-CoA is an important molecule itself. It is the precursor to HMG CoA, which is a vital component in cholesterol and ketone synthesis. (wikipedia). acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent. The main function of coenzyme A is to carry acyl groups (such as the acetyl group) or thioesters. Acetyl-CoA is an important molecule itself. It is the precursor to HMG CoA, which is a vital component in cholesterol and ketone synthesis. (wikipedia)

   

Pyruvate

Pyruvate

C3H3O3- (87.00821880000001)


A 2-oxo monocarboxylic acid anion that is the conjugate base of pyruvic acid, arising from deprotonation of the carboxy group.

   

fumarate

fumarate

C4H2O4-2 (113.99530920000001)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS