fumarate (BioDeep_00000840379)
代谢物信息卡片
化学式: C4H2O4-2 (113.99530920000001)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(blood) 6.67%
分子结构信息
SMILES: C(=CC(=O)[O-])C(=O)[O-]
InChI: InChI=1S/C4H4O4/c5-3(6)1-2-4(7)8/h1-2H,(H,5,6)(H,7,8)/p-2/b2-1+
描述信息
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
同义名列表
1 个代谢物同义名
数据库引用编号
分类词条
相关代谢途径
Reactome(9)
BioCyc(50)
- L-glutamate degradation II
- anaerobic energy metabolism (invertebrates, mitochondrial)
- superpathway of anaerobic energy metabolism (invertebrates)
- superpathway of L-aspartate and L-asparagine biosynthesis
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle
- urea cycle
- superpathway of arginine and polyamine biosynthesis
- superpathway of L-citrulline metabolism
- superpathway of citrulline metabolism
- superpathway of aromatic compound degradation
- purine nucleotide metabolism (phosphotransfer and nucleotide modification)
- purine nucleotides de novo biosynthesis I
- superpathway of histidine, purine, and pyrimidine biosynthesis
- purine nucleotides de novo biosynthesis II
- salvage pathways of purine nucleosides I
- respiration (anaerobic)-- electron acceptors reaction list
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass
- TCA cycle I (prokaryotic)
- mixed acid fermentation
- nicotine degradation II (pyrrolidine pathway)
- nicotinate degradation I
- superpathway of glyoxylate bypass and TCA
- superpathway of central carbon metabolism
- gluconeogenesis I
- L-arginine biosynthesis II (acetyl cycle)
- arginine biosynthesis IV
- TCA cycle VI (obligate autotrophs)
- glutamate degradation II
- superpathway of aspartate and asparagine biosynthesis; interconversion of aspartate and asparagine
- Methanobacterium thermoautotrophicum biosynthetic metabolism
- methylaspartate cycle
- TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)
- superpathway of adenosine nucleotides de novo biosynthesis I
- superpathway of purine nucleotides de novo biosynthesis I
- reductive TCA cycle I
- L-arginine biosynthesis I (via L-ornithine)
- 5-nitroanthranilate degradation
- adenosine nucleotides de novo biosynthesis
- superpathway of glycolysis, pyruvate dehydrogenase and TCA cycle
- superpathway of glyoxylate cycle
- arginine biosynthesis I
- NADH to fumarate electron transfer
- succinate to cytochrome bo oxidase electron transfer
- hydrogen to fumarate electron transfer
- glycerol-3-phosphate to fumarate electron transfer
- citrulline-nitric oxide cycle
- succinate to cytochrome bd oxidase electron transfer
- nitric oxide biosynthesis II (mammals)
- L-citrulline-nitric oxide cycle
- respiration (anaerobic)
PlantCyc(9)
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle
- superpathway of L-citrulline metabolism
- urea cycle
- superpathway of adenosine nucleotides de novo biosynthesis I
- superpathway of purine nucleotides de novo biosynthesis I
- inosine-5'-phosphate biosynthesis II
- adenosine ribonucleotides de novo biosynthesis
- superpathway of glyoxylate cycle and fatty acid degradation
- canavanine biosynthesis
代谢反应
447 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(177)
- aerobic respiration (cytochrome c):
succinate + ubiquinone-6 ⟶ fumarate + ubiquinol
- aerobic respiration (linear view):
succinate + ubiquinone-6 ⟶ fumarate + ubiquinol
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- pyruvate fermentation to propionate I:
(S)-methylmalonyl-CoA + pyruvate ⟶ oxaloacetate + propanoyl-CoA
- superpathway of glyoxylate bypass and TCA:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- TCA cycle variation I:
2-oxoglutarate + H+ ⟶ CO2 + succinate semialdehyde
- aerobic respiration -- electron donors reaction list:
UQ + succinate ⟶ UQH2 + fumarate
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- TCA cycle:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- aerobic respiration -- electron donor III:
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle variation II:
2-oxoglutarate + an oxidized ferredoxin [iron-sulfur] cluster + coenzyme A ⟶ CO2 + a reduced ferredoxin [iron-sulfur] cluster + succinyl-CoA
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- reductive TCA cycle I:
2-oxoglutarate + an oxidized ferredoxin [iron-sulfur] cluster + coenzyme A ⟶ CO2 + a reduced ferredoxin [iron-sulfur] cluster + succinyl-CoA
- aerobic respiration -- electron donor II:
UQ + succinate ⟶ UQH2 + fumarate
- superpathway of glyoxylate cycle:
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a trans-2-enoyl-CoA + hydrogen peroxide
- aerobic respiration -- electron donor II:
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration -- electron donors reaction list:
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle variation III (eukaryotic):
H2O + acetyl-CoA + oxaloacetate ⟶ H+ + citrate + coenzyme A
- mixed acid fermentation:
citrate ⟶ cis-aconitate + H2O
- respiration (anaerobic):
citrate ⟶ cis-aconitate + H2O
- aerobic respiration -- electron donor II:
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle variation III (eukaryotic):
citrate ⟶ cis-aconitate + H2O
- aerobic respiration -- electron donor III:
UQ + succinate ⟶ UQH2 + fumarate
- purine nucleotide metabolism (phosphotransfer and nucleotide modification):
AMP + ATP ⟶ ADP + H+
- purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- superpathway of histidine, purine, and pyrimidine biosynthesis:
glt + imidazole acetol-phosphate ⟶ 2-oxoglutarate + L-histidinol-phosphate
- adenosine nucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides de novo biosynthesis II:
adenylo-succinate ⟶ AMP + fumarate
- salvage pathways of purine nucleosides I:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- superpathway of conversion of glucose to acetyl CoA and entry into the TCA cycle:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- TCA cycle:
D-threo-isocitrate + NAD+ ⟶ 2-oxoglutarate + CO2 + NADH
- succinate to cytochrome bo oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle III (animals):
UQ + succinate ⟶ UQH2 + fumarate
- succinate to cytochrome bd oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration II (cytochrome c) (yeast):
UQH2 + an oxidized c-type cytochrome ⟶ H+ + UQ + a reduced c-type cytochrome
- aerobic respiration III (alternative oxidase pathway):
O2 + UQH2 ⟶ H2O + UQ
- aerobic respiration I (cytochrome c):
UQH2 + an oxidized c-type cytochrome ⟶ H+ + UQ + a reduced c-type cytochrome
- TCA cycle I (prokaryotic):
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- superpathway of glyoxylate bypass and TCA:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- succinate to cytochrome bd oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- succinate to cytochrome bo oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle variation V (plant):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- succinate to cytochrome bd oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle I (prokaryotic):
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- superpathway of glyoxylate bypass and TCA:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- succinate to cytochrome bd oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- succinate to cytochrome bo oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- succinate to cytochrome bd oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- superpathway of glyoxylate bypass and TCA:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- aerobic respiration (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- succinate to cytochrome bd oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle I (prokaryotic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- aerobic respiration (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle I (prokaryotic):
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- aerobic respiration (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- succinate to cytochrome bd oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- succinate to cytochrome bo oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- superpathway of glyoxylate bypass and TCA:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- aerobic respiration (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle I (prokaryotic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- superpathway of glyoxylate bypass and TCA:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- succinate to cytochrome bd oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- succinate to cytochrome bo oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle I (prokaryotic):
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- superpathway of glyoxylate bypass and TCA:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- aerobic respiration (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- succinate to cytochrome bd oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- succinate to cytochrome bo oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- succinate to cytochrome bd oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- succinate to cytochrome bo oxidase electron transfer:
H+ + O2 + UQH2 ⟶ H+ + H2O + UQ
- aerobic respiration (cytochrome c):
UQH2 + an oxidized c-type cytochrome ⟶ H+ + UQ + a reduced c-type cytochrome
- succinate to cytochrome bd oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration -- electron donors reaction list:
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle variation III (eukaryotic):
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- aerobic respiration -- electron donor II:
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- superpathway of glyoxylate cycle and fatty acid degradation:
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a trans-2-enoyl-CoA + hydrogen peroxide
- aerobic respiration -- electron donors reaction list:
UQ + succinate ⟶ UQH2 + fumarate
- superpathway of glyoxylate cycle and fatty acid degradation:
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a trans-2-enoyl-CoA + hydrogen peroxide
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle III (animals):
D-threo-isocitrate + NAD+ ⟶ 2-oxoglutarate + CO2 + NADH
- TCA cycle I (prokaryotic):
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- succinate to cytochrome bd oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- succinate to cytochrome bo oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- superpathway of glyoxylate bypass and TCA:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- TCA cycle I (prokaryotic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- superpathway of glyoxylate bypass and TCA:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- succinate to cytochrome bd oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- succinate to cytochrome bo oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- succinate to cytochrome bd oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- aerobic respiration (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- succinate to cytochrome bo oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle I (prokaryotic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- TCA cycle VI (obligate autotrophs):
H2O + NADP+ + glt ⟶ 2-oxoglutarate + H+ + NADPH + ammonia
- succinate to cytochrome bd oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- succinate to cytochrome bd oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle I (prokaryotic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- succinate to cytochrome bo oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle I (prokaryotic):
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- succinate to cytochrome bd oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle I (prokaryotic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- superpathway of glyoxylate bypass and TCA:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- succinate to cytochrome bd oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle I (prokaryotic):
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- succinate to cytochrome bd oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- urea cycle:
ATP + L-citrulline + asp ⟶ AMP + H+ + L-arginino-succinate + diphosphate
- arginine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- superpathway of arginine and polyamine biosynthesis:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- superpathway of central carbon metabolism:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- TCA cycle:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- superpathway of glycolysis, pyruvate dehydrogenase and TCA cycle:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- superpathway of glyoxylate cycle:
ATP + a fatty acid + coenzyme A ⟶ AMP + H+ + a 2,3,4-saturated fatty acyl CoA + diphosphate
- aerobic respiration -- electron donor II:
UQ + succinate ⟶ UQH2 + fumarate
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- TCA cycle:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- superpathway of glyoxylate bypass and TCA:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- inosine-5'-phosphate biosynthesis I:
5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole ⟶ aminoimidazole carboxamide ribonucleotide + fumarate
- inosine-5'-phosphate biosynthesis II:
5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole ⟶ aminoimidazole carboxamide ribonucleotide + fumarate
- m-xylene degradation (anaerobic):
1,3-dimethylbenzene + fumarate ⟶ (3-methylbenzyl)succinate
- toluene degradation VI (anaerobic):
6-hydroxycyclohex-1-ene-1-carbonyl-CoA + NAD+ ⟶ 6-oxocyclohex-1-ene-1-carbonyl-CoA + H+ + NADH
- toluene degradation to benzoyl-CoA (anaerobic):
(R)-2-benzylsuccinate ⟶ fumarate + toluene
- toluene degradation to benzoyl-CoA (anaerobic):
fumarate + toluene ⟶ (R)-2-benzylsuccinate
- L-glutamate degradation II:
asp ⟶ ammonium + fumarate
- superpathway of L-aspartate and L-asparagine biosynthesis:
asp ⟶ ammonium + fumarate
- L-glutamate degradation II:
2-oxoglutarate + asp ⟶ glu + oxaloacetate
- superpathway of L-aspartate and L-asparagine biosynthesis:
2-oxoglutarate + asp ⟶ glu + oxaloacetate
- superpathway of L-aspartate and L-asparagine biosynthesis:
2-oxoglutarate + asp ⟶ Glu + oxaloacetate
- L-glutamate degradation II:
2-oxoglutarate + asp ⟶ Glu + oxaloacetate
- superpathway of aspartate and asparagine biosynthesis; interconversion of aspartate and asparagine:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- glutamate degradation II:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- superpathway of aspartate and asparagine biosynthesis; interconversion of aspartate and asparagine:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- glutamate degradation II:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- superpathway of aspartate and asparagine biosynthesis; interconversion of aspartate and asparagine:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- glutamate degradation II:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- superpathway of L-aspartate and L-asparagine biosynthesis:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- L-glutamate degradation II:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- L-glutamate degradation II:
asp ⟶ ammonium + fumarate
- glutamine degradation II:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- aspartate degradation:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- L-glutamate degradation II:
2-oxoglutarate + asp ⟶ glu + oxaloacetate
- superpathway of L-aspartate and L-asparagine biosynthesis:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- L-glutamate degradation II:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- glutamate degradation II:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- superpathway of aspartate and asparagine biosynthesis; interconversion of aspartate and asparagine:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- superpathway of aspartate and asparagine biosynthesis; interconversion of aspartate and asparagine:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- glutamate degradation II:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- glutamate degradation II:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- superpathway of aspartate and asparagine biosynthesis; interconversion of aspartate and asparagine:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- superpathway of L-aspartate and L-asparagine biosynthesis:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- L-glutamate degradation II:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- L-glutamate degradation II:
2-oxoglutarate + asp ⟶ Glu + oxaloacetate
- superpathway of L-aspartate and L-asparagine biosynthesis:
2-oxoglutarate + asp ⟶ Glu + oxaloacetate
- succinic fermentation pathway:
(S)-malate ⟶ H2O + fumarate
Plant Reactome(4)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid biosynthesis:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Canavanine biosynthesis:
ATP + L-Asp + O-ureidohomoserine ⟶ AMP + PPi + canavaninosuccinate
INOH(0)
PlantCyc(264)
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle variation V (plant):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle III (animals):
2-oxoglutarate + H+ + a [2-oxoglutarate dehydrogenase E2 protein] N6-lipoyl-L-lysine ⟶ CO2 + a [2-oxoglutarate dehydrogenase E2 protein] N6-S-succinyldihydrolipoyl-L-lysine
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle III (animals):
citrate ⟶ cis-aconitate + H2O
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle variation V (plant):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
UQH2 + an oxidized c-type cytochrome ⟶ H+ + UQ + a reduced c-type cytochrome
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration II (cytochrome c) (yeast):
H+ + NADH + UQ ⟶ NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- reductive TCA cycle I:
ATP + hydrogencarbonate + pyruvate ⟶ ADP + H+ + oxaloacetate + phosphate
- superpathway of glyoxylate cycle and fatty acid degradation:
an electron-transfer quinone + succinate ⟶ an electron-transfer quinol + fumarate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQH2 + an oxidized c-type cytochrome ⟶ H+ + UQ + a reduced c-type cytochrome
- canavanine biosynthesis:
L-canaline + carbamoyl phosphate ⟶ O-ureido-L-homoserine + phosphate
- aerobic respiration I (cytochrome c):
UQH2 + an oxidized c-type cytochrome ⟶ H+ + UQ + a reduced c-type cytochrome
- aerobic respiration III (alternative oxidase pathway):
O2 + UQH2 ⟶ H2O + UQ
- superpathway of glyoxylate cycle and fatty acid degradation:
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a (2E)-2-enoyl-CoA + hydrogen peroxide
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- superpathway of glyoxylate cycle and fatty acid degradation:
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a trans-2-enoyl-CoA + hydrogen peroxide
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
Adenosine + Pi ⟶ Adenine + _alpha_-D-Ribose 1-phosphate
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ji Huang, Cong Cheng, Kangxin Li, Chunping Zhu, Youshun Liu. Effectiveness and Safety of Tenofovir Alafenamide Fumarate in the Prevention of Perinatal Hepatitis B Transmission: A Meta-Analysis.
Digestive diseases and sciences.
2024 Mar; 69(3):978-988. doi:
10.1007/s10620-023-08258-9
. [PMID: 38341392] - Antika Boondaeng, Jureeporn Keabpimai, Chanaporn Trakunjae, Nanthavut Niyomvong. Fumaric acid production from fermented oil palm empty fruit bunches using fungal isolate K20: a comparison between free and immobilized cells.
PeerJ.
2024; 12(?):e17282. doi:
10.7717/peerj.17282
. [PMID: 38666083] - Sandra Rotea-Salvo, Víctor Giménez-Arufe, Alejandro Martínez-Pradeda, Carla Fernández-Oliveira, Álvaro Mena-de-Cea, Luis Margusino-Framiñán, Isabel Martín-Herranz, Purificación Cid-Silva. Lipid profile changes associated with antiretroviral therapies in a real-world cohort.
Farmacia hospitalaria : organo oficial de expresion cientifica de la Sociedad Espanola de Farmacia Hospitalaria.
2023 Sep; 47(5):T210-T217. doi:
10.1016/j.farma.2023.07.005
. [PMID: 37673703] - Natalia Oleinik, Onder Albayram, Mohamed Faisal Kassir, F Cansu Atilgan, Chase Walton, Eda Karakaya, John Kurtz, Alexander Alekseyenko, Habeeb Alsudani, Megan Sheridan, Zdzislaw M Szulc, Besim Ogretmen. Alterations of lipid-mediated mitophagy result in aging-dependent sensorimotor defects.
Aging cell.
2023 Aug; ?(?):e13954. doi:
10.1111/acel.13954
. [PMID: 37614052] - Jie Lin, Qian Ren, Fanjie Zhang, Jing Gui, Xin Xiang, Qin Wan. D-β-Hydroxybutyrate Dehydrogenase Mitigates Diabetes-Induced Atherosclerosis through the Activation of Nrf2.
Thrombosis and haemostasis.
2023 Jul; ?(?):. doi:
10.1055/s-0043-1770985
. [PMID: 37399841] - Meijuan Meng, Xuerui Li, Ran Huo, Guangjun Chang, Xiangzhen Shen. Effects of dietary disodium fumarate supplementation on muscle quality, chemical composition, oxidative stress and lipid metabolism of Hu sheep induced by high concentrate diet.
Meat science.
2023 Jul; 201(?):109176. doi:
10.1016/j.meatsci.2023.109176
. [PMID: 37023594] - Sandra Rotea-Salvo, Víctor Giménez-Arufe, Alejandro Martínez-Pradeda, Carla Fernández-Oliveira, Álvaro Mena-de-Cea, Luis Margusino-Framiñán, Isabel Martín-Herranz, Purificación Cid-Silva. Lipid profile changes associated with antiretroviral therapies in a real-world cohort.
Farmacia hospitalaria : organo oficial de expresion cientifica de la Sociedad Espanola de Farmacia Hospitalaria.
2023 Jun; ?(?):. doi:
10.1016/j.farma.2023.04.007
. [PMID: 37349200] - Xinhua Hou, Run Zhang, Man Yang, Naiqi Niu, Junchao Wu, Ze Shu, Pengfei Zhang, Lijun Shi, Fuping Zhao, Ligang Wang, Lixian Wang, Longchao Zhang. Metabolomics and lipidomics profiles related to intramuscular fat content and flavor precursors between Laiwu and Yorkshire pigs.
Food chemistry.
2023 Mar; 404(Pt A):134699. doi:
10.1016/j.foodchem.2022.134699
. [PMID: 36444028] - Charalampos D Moschopoulos, Konstantinos Protopapas, Konstantinos Thomas, Dimitra Kavatha, Antonios Papadopoulos, Anastasia Antoniadou. Switching from Tenofovir Disoproxil to Tenofovir Alafenamide Fumarate: Impact on Cardiovascular Risk and Lipid Profile in People Living with HIV, an Observational Study.
AIDS research and human retroviruses.
2023 02; 39(2):68-75. doi:
10.1089/aid.2022.0086
. [PMID: 36401506] - Katie B Hillmann, Madeline E Goethel, Natalie A Erickson, Thomas D Niehaus. Identification of a S-(2-succino)cysteine breakdown pathway that uses a novel S-(2-succino) lyase.
The Journal of biological chemistry.
2022 12; 298(12):102639. doi:
10.1016/j.jbc.2022.102639
. [PMID: 36309089] - Danxia He, Sunil K Singh, Li Peng, Richa Kaushal, Juan I Vílchez, Chuyang Shao, Xiaoxuan Wu, Shuai Zheng, Rafael J L Morcillo, Paul W Paré, Huiming Zhang. Flavonoid-attracted Aeromonas sp. from the Arabidopsis root microbiome enhances plant dehydration resistance.
The ISME journal.
2022 Nov; 16(11):2622-2632. doi:
10.1038/s41396-022-01288-7
. [PMID: 35842464] - Nijia Ke, Joseph E Kumka, Mingxu Fang, Brian Weaver, Judith N Burstyn, Carl E Bauer. Redox Brake Regulator RedB and FnrL Function as Yin-Yang Regulators of Anaerobic-Aerobic Metabolism in Rhodobacter capsulatus.
Microbiology spectrum.
2022 10; 10(5):e0235422. doi:
10.1128/spectrum.02354-22
. [PMID: 36106752] - William Liu, Sarah Yu, Bingfang Yan. Effect of alcohol exposure on the efficacy and safety of tenofovir alafenamide fumarate, a major medicine against human immunodeficiency virus.
Biochemical pharmacology.
2022 10; 204(?):115224. doi:
10.1016/j.bcp.2022.115224
. [PMID: 36007574] - Jan Felix, Ladislav Bumba, Clarissa Liesche, Angélique Fraudeau, Fabrice Rébeillé, Jessica Y El Khoury, Karine Huard, Benoit Gallet, Christine Moriscot, Jean-Philippe Kleman, Yoan Duhoo, Matthew Jessop, Eaazhisai Kandiah, Frédéric Barras, Juliette Jouhet, Irina Gutsche. The AAA+ ATPase RavA and its binding partner ViaA modulate E. coli aminoglycoside sensitivity through interaction with the inner membrane.
Nature communications.
2022 09; 13(1):5502. doi:
10.1038/s41467-022-32992-9
. [PMID: 36127320] - Takayuki Sasaki, Michiyo Ariyoshi, Yoko Yamamoto, Izumi C Mori. Functional roles of ALMT-type anion channels in malate-induced stomatal closure in tomato and Arabidopsis.
Plant, cell & environment.
2022 08; 45(8):2337-2350. doi:
10.1111/pce.14373
. [PMID: 35672880] - Sophie Bailleux, Joan Somja, Marie Martin, Bernard De Prijck, Arjen F Nikkels. Hereditary leiomyomatosis and acute lymphoblastic leukemia: A link through fumarate dyshydratase mutation?.
Acta clinica Belgica.
2022 Aug; 77(4):778-781. doi:
10.1080/17843286.2021.1980669
. [PMID: 34515613] - Sammita Satyanarayan, Neha Safi, Tali Sorets, Susan Filomena, Yinan Zhang, Sylvia Klineova, Michelle Fabian, Sam Horng, Stephanie Tankou, Aaron Miller, Stephen Krieger, Fred Lublin, James Sumowski, Ilana Katz Sand. Differential antibody response to COVID-19 vaccines across immunomodulatory therapies for multiple sclerosis.
Multiple sclerosis and related disorders.
2022 Jun; 62(?):103737. doi:
10.1016/j.msard.2022.103737
. [PMID: 35533419] - Fabien Chardon, Federica De Marco, Anne Marmagne, Rozenn Le Hir, Françoise Vilaine, Catherine Bellini, Sylvie Dinant. Natural variation in the long-distance transport of nutrients and photoassimilates in response to N availability.
Journal of plant physiology.
2022 Jun; 273(?):153707. doi:
10.1016/j.jplph.2022.153707
. [PMID: 35550522] - S V Popov, R G Guseynov, O N Skryabin, K V Sivak, V V Perepelitsa, A V Davydov, R S Barhitdinov, A S Katunin, M M Mirzabekov. [Evaluation of the results of sodium fumarate, furosemide, and mannitol on the initiation and outcome of renal warm ischemia in an experimental study].
Urologiia (Moscow, Russia : 1999).
2022 May; ?(2):18-26. doi:
. [PMID: 35485810]
- Collin Jakubecz, Xiaochun Susan Zhang, Sophia Woodson, Alessandro Serra, Hesham Abboud. The humoral response to SARS-COV-2 vaccines in MS patients: A case series exploring the impact of DMT, lymphocyte count, immunoglobulins, and vaccine type.
Multiple sclerosis and related disorders.
2022 May; 61(?):103785. doi:
10.1016/j.msard.2022.103785
. [PMID: 35381535] - Xin Ge, Mengdie Li, Jianxing Yin, Zhumei Shi, Yao Fu, Ningwei Zhao, Hongshan Chen, Longxiyu Meng, Xinjian Li, Zhibin Hu, Xiaozhi Zhao, Hongqian Guo, Xu Qian. Fumarate inhibits PTEN to promote tumorigenesis and therapeutic resistance of type2 papillary renal cell carcinoma.
Molecular cell.
2022 04; 82(7):1249-1260.e7. doi:
10.1016/j.molcel.2022.01.029
. [PMID: 35216667] - Nana Katsuta, Himeno Takahashi, Mime Nagai, Hikari Sugawa, Ryoji Nagai. Changes in S-(2-succinyl)cysteine and advanced glycation end-products levels in mouse tissues associated with aging.
Amino acids.
2022 Apr; 54(4):653-661. doi:
10.1007/s00726-022-03130-y
. [PMID: 35166937] - Jinhee H Hwang, John C Kube, Stephen B Smith. Lubabegron fumarate acts as a β-adrenergic receptor antagonist in cultured bovine intramuscular and subcutaneous adipocytes.
Journal of animal science.
2022 Mar; 100(3):. doi:
10.1093/jas/skac052
. [PMID: 35262701] - K Chinnadurai, P Prema, V Veeramanikandan, K Ramesh Kumar, Van-Huy Nguyen, Najat Marraiki, Nouf S S Zaghloul, P Balaji. Toxicity evaluation and oxidative stress response of fumaronitrile, a persistent organic pollutant (POP) of industrial waste water on tilapia fish (Oreochromis mossambicus).
Environmental research.
2022 03; 204(Pt A):112030. doi:
10.1016/j.envres.2021.112030
. [PMID: 34508771] - Yoshihito Uchida, Masamitsu Nakao, Shunsuke Yamada, Shohei Tsuji, Hayato Uemura, Jun-Ichi Kouyama, Kayoko Naiki, Kayoko Sugawara, Nobuaki Nakayama, Yukinori Imai, Tomoaki Tomiya, Satoshi Mochida. Superiority of tenofovir alafenamide fumarate over entecavir for serum HBsAg level reduction in patients with chronic HBV infection: A 144-week outcome study after switching of the nucleos(t)ide analog.
PloS one.
2022; 17(2):e0262764. doi:
10.1371/journal.pone.0262764
. [PMID: 35180213] - Yu Liu, Pengjun Jiang, Xuqing Chen, Wen Zhang, Jun Shi. Efficacy and Safety of Rupatadine Fumarate Combined with Acupoint Application in Allergic Rhinitis Complicated with Diabetes.
Computational intelligence and neuroscience.
2022; 2022(?):6935758. doi:
10.1155/2022/6935758
. [PMID: 35747720] - Keisuke Wada, Azusa Saika, Kazunori Ushimaru, Shun Sato, Tokuma Fukuoka, Tomotake Morita. Metabolomic Evaluation of the Central Metabolic Pathways of Mannosylerythritol Lipid Biosynthesis in Moesziomyces antarcticus T-34.
Journal of oleo science.
2022; 71(1):119-125. doi:
10.5650/jos.ess21229
. [PMID: 35013034] - Meihui Ying, Guizeng Yang, Yuanjie Xu, Huiling Ye, Xing Lin, Yi Lu, Haibo Pan, Yang Bai, Min Du. Copper fumarate with high-bifunctional nanozyme activities at different pH values for glucose and epinephrine colorimetric detection in human serum.
The Analyst.
2021 Dec; 147(1):40-47. doi:
10.1039/d1an01817e
. [PMID: 34816839] - Gha-Hyun J Kim, Adam Melgoza, Fei Jiang, Su Guo. The effect of renin-angiotensin-aldosterone system inhibitors on organ-specific ace2 expression in zebrafish and its implications for COVID-19.
Scientific reports.
2021 12; 11(1):23670. doi:
10.1038/s41598-021-03244-5
. [PMID: 34880395] - Kensuke Abe, Taku Obara, Satomi Kamio, Asahi Kondo, Junji Imamura, Tatsuya Goto, Toshihiro Ito, Hiroshi Sato, Nobuyuki Takahashi. Renal function in Japanese HIV-1-positive patients who switch to tenofovir alafenamide fumarate after long-term tenofovir disoproxil fumarate: a single-center observational study.
AIDS research and therapy.
2021 12; 18(1):94. doi:
10.1186/s12981-021-00420-5
. [PMID: 34876151] - Fayiz M Reda, Ismail E Ismail, Adel I Attia, Ahmed M Fikry, Eman Khalifa, Mahmoud Alagawany. Use of fumaric acid as a feed additive in quail's nutrition: its effect on growth rate, carcass, nutrient digestibility, digestive enzymes, blood metabolites, and intestinal microbiota.
Poultry science.
2021 Dec; 100(12):101493. doi:
10.1016/j.psj.2021.101493
. [PMID: 34715545] - Lena Schleicher, Andrej Trautmann, Dennis P Stegmann, Günter Fritz, Jochem Gätgens, Michael Bott, Sascha Hein, Jörg Simon, Jana Seifert, Julia Steuber. A Sodium-Translocating Module Linking Succinate Production to Formation of Membrane Potential in Prevotella bryantii.
Applied and environmental microbiology.
2021 10; 87(21):e0121121. doi:
10.1128/aem.01211-21
. [PMID: 34469197] - Baijun Li, Zhaozhe Liu, Xing Liu, Dongchun Liu, Mingyu Duan, Ye Gu, Qiong Liu, Qiang Ma, Yushi Wei, Yan Wang. Efficacy and safety of tenofovir disoproxil fumarate and tenofovir alafenamide fumarate in preventing HBV vertical transmission of high maternal viral load.
Hepatology international.
2021 Oct; 15(5):1103-1108. doi:
10.1007/s12072-021-10235-1
. [PMID: 34312798] - Daniel A Hussar. New Drugs 2021, Part 2.
Nursing.
2021 Oct; 51(10):18-29. doi:
10.1097/01.nurse.0000791756.56705.dd
. [PMID: 34580258] - Zilong Li, Qinhua Chen, Jin Wang, Xiaoyan Pan, Wen Lu. Research Progress and Application of Bioorthogonal Reactions in Biomolecular Analysis and Disease Diagnosis.
Topics in current chemistry (Cham).
2021 Sep; 379(6):39. doi:
10.1007/s41061-021-00352-8
. [PMID: 34590223] - Niloufar Salehi, Gislaine Kuminek, Jozef Al-Gousous, David C Sperry, Dale E Greenwood, Nicholas M Waltz, Gordon L Amidon, Robert M Ziff, Gregory E Amidon. Improving Dissolution Behavior and Oral Absorption of Drugs with pH-Dependent Solubility Using pH Modifiers: A Physiologically Realistic Mass Transport Analysis.
Molecular pharmaceutics.
2021 09; 18(9):3326-3341. doi:
10.1021/acs.molpharmaceut.1c00262
. [PMID: 34428047] - Akitoshi Sano, Eiji Kakazu, Shin Hamada, Jun Inoue, Masashi Ninomiya, Tomoaki Iwata, Mio Tsuruoka, Kosuke Sato, Atsushi Masamune. Steatotic Hepatocytes Release Mature VLDL Through Methionine and Tyrosine Metabolism in a Keap1-Nrf2-Dependent Manner.
Hepatology (Baltimore, Md.).
2021 09; 74(3):1271-1286. doi:
10.1002/hep.31808
. [PMID: 33724516] - Dorin-Bogdan Borza. Fumarate in membranous nephropathy: more questions than answers.
Kidney international.
2021 09; 100(3):707. doi:
10.1016/j.kint.2021.03.035
. [PMID: 34420662] - Osaze Edosuyi, Myung Choi, Ighodaro Igbe, Adebayo Oyekan. Fumarate exerted an antihypertensive effect and reduced kidney injury molecule (KIM)-1 expression in deoxycorticosterone acetate-salt hypertension.
Clinical and experimental hypertension (New York, N.Y. : 1993).
2021 Aug; 43(6):555-564. doi:
10.1080/10641963.2021.1916943
. [PMID: 33879002] - Lu Wang, Lina Wu, Xuejun Li, Ying Zhang, Jing Lai, Xiang Zhu, Chan Xie, Liang Peng. Tenofovir alafenamide fumarate therapy in subjects with positive HBV-DNA and normal levels of alanine transaminase: a study protocol for a randomised controlled trial.
BMJ open.
2021 08; 11(8):e048410. doi:
10.1136/bmjopen-2020-048410
. [PMID: 34408049] - Thibault Mesplède. Evaluating the combination of emtricitabine/ tenofovir alafenamide fumarate to reduce the risk of sexually acquired HIV-1-infection in at-risk adults.
Expert opinion on pharmacotherapy.
2021 Jul; 22(10):1245-1251. doi:
10.1080/14656566.2021.1902504
. [PMID: 33691554] - Naoki Kanda, Koh Okamoto, Hisatoshi Okumura, Makiko Mieno, Kentaro Sakashita, Teppei Sasahara, Shuji Hatakeyama. Outcomes associated with treatment change from tenofovir disoproxil fumarate to tenofovir alafenamide in HIV-1-infected patients: a real-world study in Japan.
HIV medicine.
2021 07; 22(6):457-466. doi:
10.1111/hiv.13061
. [PMID: 33720508] - Mina S Farag, Scott Fung, Edward Tam, Karen Doucette, Alexander Wong, Alnoor Ramji, Brian Conway, Curtis Cooper, Keith Tsoi, Philip Wong, Giada Sebastiani, Mayur Brahmania, Sarah Haylock-Jacobs, Carla S Coffin, Bettina E Hansen, Harry L A Janssen. Effectiveness and Renal Safety of Tenofovir Alafenamide Fumarate among Chronic Hepatitis B Patients: Real-World Study.
Journal of viral hepatitis.
2021 06; 28(6):942-950. doi:
10.1111/jvh.13500
. [PMID: 33749086] - Mahoko Ikeda, Yoshitaka Wakabayashi, Koh Okamoto, Shintaro Yanagimoto, Shu Okugawa, Kyoji Moriya. Changing trends in lipid profile and biomarkers of renal function and bone metabolism before and after switching from tenofovir disoproxil fumarate to tenofovir alafenamide: a prospective observational study.
AIDS research and therapy.
2021 05; 18(1):30. doi:
10.1186/s12981-021-00354-y
. [PMID: 34044856] - Thomas W Lategan, Laurene Wang, Tiffany N Sprague, Franck S Rousseau. Pharmacokinetics and Bioavailability of Monomethyl Fumarate Following a Single Oral Dose of Bafiertam™ (Monomethyl Fumarate) or Tecfidera® (Dimethyl Fumarate).
CNS drugs.
2021 05; 35(5):567-574. doi:
10.1007/s40263-021-00799-9
. [PMID: 33797063] - Chhanda Biswas, Niansheng Chu, Thomas N Burn, Portia A Kreiger, Edward M Behrens. Amelioration of Murine Macrophage Activation Syndrome by Monomethyl Fumarate in Both a Heme Oxygenase 1-Dependent and Heme Oxygenase 1-Independent Manner.
Arthritis & rheumatology (Hoboken, N.J.).
2021 05; 73(5):885-895. doi:
10.1002/art.41591
. [PMID: 33191652] - Antoni Garcia-Molina, Martin Lehmann, Katja Schneider, Andreas Klingl, Dario Leister. Inactivation of cytosolic FUMARASE2 enhances growth and photosynthesis under simultaneous copper and iron deprivation in Arabidopsis.
The Plant journal : for cell and molecular biology.
2021 05; 106(3):766-784. doi:
10.1111/tpj.15199
. [PMID: 33583065] - Shouq Alkhudhayri, Rania Sajini, Bashayer Alharbi, Jumana Qabbani, Yosra Al-Hindi, Arwa Fairaq, Amal Yousef. Investigating the beneficial effect of aliskiren in attenuating neuropathic pain in diabetic Sprague-Dawley rats.
Endocrinology, diabetes & metabolism.
2021 04; 4(2):e00209. doi:
10.1002/edm2.209
. [PMID: 33855212] - Sengnolotha Marak, Elena Shumilina, Nutan Kaushik, Eva Falch, Alexander Dikiy. Effect of Different Drying Methods on the Nutritional Value of Hibiscus sabdariffa Calyces as Revealed by NMR Metabolomics.
Molecules (Basel, Switzerland).
2021 Mar; 26(6):. doi:
10.3390/molecules26061675
. [PMID: 33802805] - Brian T Wipke, Robert Hoepner, Katrin Strassburger-Krogias, Ankur M Thomas, Davide Gianni, Suzanne Szak, Melanie S Brennan, Maximilian Pistor, Ralf Gold, Andrew Chan, Robert H Scannevin. Different Fumaric Acid Esters Elicit Distinct Pharmacologic Responses.
Neurology(R) neuroimmunology & neuroinflammation.
2021 03; 8(2):. doi:
10.1212/nxi.0000000000000950
. [PMID: 33468560] - A Deiva, V Jayaprakash, Nisha Jose, K N Chandan Kumar, M Jayakumar. Acute kidney injury in a patient treated with tenofovir alafenamide fumarate for Hepatitis B virus infection.
Saudi journal of kidney diseases and transplantation : an official publication of the Saudi Center for Organ Transplantation, Saudi Arabia.
2021 Mar; 32(2):592-594. doi:
10.4103/1319-2442.335480
. [PMID: 35017362] - Shoki Ito, Takumi Hakamada, Tatsumi Ogino, Takashi Osanai. Reconstitution of oxaloacetate metabolism in the tricarboxylic acid cycle in Synechocystis sp. PCC 6803: discovery of important factors that directly affect the conversion of oxaloacetate.
The Plant journal : for cell and molecular biology.
2021 03; 105(6):1449-1458. doi:
10.1111/tpj.15120
. [PMID: 33280178] - G A Nagana Gowda, Natalie N Hong, Daniel Raftery. Evaluation of Fumaric Acid and Maleic Acid as Internal Standards for NMR Analysis of Protein Precipitated Plasma, Serum, and Whole Blood.
Analytical chemistry.
2021 02; 93(6):3233-3240. doi:
10.1021/acs.analchem.0c04766
. [PMID: 33538164] - Alokkumar S Pathak, Mauricio Rojas, George A Stouffer. Expression of Cyr61 in ApoE-/- mice with chronic unilateral renal artery ligation.
Scientific reports.
2021 02; 11(1):3606. doi:
10.1038/s41598-021-81646-1
. [PMID: 33574403] - Hyung Ah Jo, Jin Seong Hyeon, Seung Hee Yang, Youngae Jung, Hunjoo Ha, Chang Wook Jeong, Cheol Kwak, Yaerim Kim, Hajeong Lee, Jung Pyo Lee, Kwon Wook Joo, Chun Soo Lim, Yon Su Kim, Geum-Sook Hwang, Dong Ki Kim. Fumarate modulates phospholipase A2 receptor autoimmunity-induced podocyte injury in membranous nephropathy.
Kidney international.
2021 02; 99(2):443-455. doi:
10.1016/j.kint.2020.06.031
. [PMID: 32712166] - G Holzer, M Hoke, S Sabeti-Sandor, T Perkmann, A Rauscher, B Strassegger, S Radakovic, A Tanew. Disparate effects of adalimumab and fumaric acid esters on cardiovascular risk factors in psoriasis patients: results from a prospective, randomized, observer-blinded head-to-head trial.
Journal of the European Academy of Dermatology and Venereology : JEADV.
2021 Feb; 35(2):441-449. doi:
10.1111/jdv.16635
. [PMID: 32426884] - Kerri M Smith, Ian D Wilson, Paul D Rainville. Sensitive and Reproducible Mass Spectrometry-Compatible RP-UHPLC Analysis of Tricarboxylic Acid Cycle and Related Metabolites in Biological Fluids: Application to Human Urine.
Analytical chemistry.
2021 01; 93(2):1009-1015. doi:
10.1021/acs.analchem.0c03863
. [PMID: 33290053] - Mohamed Essam, Nashwa Barakat, Ahmed Elkashef, Amira Awadalla, A E Behery, Mahmoud Abdel-Maboud. Functional and molecular evaluation of using aliskiren during acute and chronic partial ureteral obstruction in rat solitary kidney.
Life sciences.
2021 Jan; 265(?):118811. doi:
10.1016/j.lfs.2020.118811
. [PMID: 33259867] - Bassam A Elgamoudi, Ekaterina P Andrianova, Lucy K Shewell, Christopher J Day, Rebecca M King, Taha, Hossinur Rahman, Lauren E Hartley-Tassell, Igor B Zhulin, Victoria Korolik. The Campylobacter jejuni chemoreceptor Tlp10 has a bimodal ligand-binding domain and specificity for multiple classes of chemoeffectors.
Science signaling.
2021 01; 14(664):. doi:
10.1126/scisignal.abc8521
. [PMID: 33402336] - Wioletta Siemiradzka, Barbara Dolińska, Florian Ryszka. Preparation of Sterile Raw Material - Chicken Eggshells in the Process of their Transformation into Selected Calcium Salts.
Current pharmaceutical biotechnology.
2021; 22(2):299-304. doi:
10.2174/1389201021666200903120835
. [PMID: 32881665] - Krzysztof Łukawski, Grzegorz Raszewski, Stanisław J Czuczwar. Effect of aliskiren on the anticonvulsant activity of antiepileptic drugs against 6 Hz-induced psychomotor seizures in mice.
Epilepsy research.
2020 11; 167(?):106435. doi:
10.1016/j.eplepsyres.2020.106435
. [PMID: 32784064] - Gan Mi Wang, Liang Jin Li, Wen Lu Tang, James M Wright. Renin inhibitors versus angiotensin converting enzyme (ACE) inhibitors for primary hypertension.
The Cochrane database of systematic reviews.
2020 10; 10(?):CD012569. doi:
10.1002/14651858.cd012569.pub2
. [PMID: 33089502] - Marcus V B Malachias, Pardeep S Jhund, Brian L Claggett, Magnus O Wijkman, Rhonda Bentley-Lewis, Nishi Chaturvedi, Akshay S Desai, Steven M Haffner, Hans-Henrik Parving, Margaret F Prescott, Scott D Solomon, Dick De Zeeuw, John J V McMurray, Marc A Pfeffer. NT-proBNP by Itself Predicts Death and Cardiovascular Events in High-Risk Patients With Type 2 Diabetes Mellitus.
Journal of the American Heart Association.
2020 10; 9(19):e017462. doi:
10.1161/jaha.120.017462
. [PMID: 32964800] - Atsushi Hashimoto, Yoshimichi Takeda, Shigehiro Karashima, Mitsuhiro Kometani, Daisuke Aono, Masashi Demura, Takuya Higashitani, Seigo Konishi, Takashi Yoneda, Yoshiyu Takeda. Impact of mineralocorticoid receptor blockade with direct renin inhibition in angiotensin II-dependent hypertensive mice.
Hypertension research : official journal of the Japanese Society of Hypertension.
2020 10; 43(10):1099-1104. doi:
10.1038/s41440-020-0458-5
. [PMID: 32398797] - Gurpreet Kaur, Thippeswamy Boreddy Shivanandappa, Manish Kumar, Ajay Singh Kushwah. Fumaric acid protect the cadmium-induced hepatotoxicity in rats: owing to its antioxidant, anti-inflammatory action and aid in recast the liver function.
Naunyn-Schmiedeberg's archives of pharmacology.
2020 10; 393(10):1911-1920. doi:
10.1007/s00210-020-01900-7
. [PMID: 32440768] - Selçuk Şen, Ali Yağız Üresin. COVID-19 and RAAS blockers: Could Aliskiren be an appropriate option?.
Turk Kardiyoloji Dernegi arsivi : Turk Kardiyoloji Derneginin yayin organidir.
2020 10; 48(7):631-634. doi:
10.5543/tkda.2020.64072
. [PMID: 33034579] - Ying Huang, Pryseley Nkouibert Assam, Cong Feng, Rong Su, Paul Dorinsky, Michael Gillen. Ethnic pharmacokinetic comparison of budesonide/glycopyrrolate/formoterol fumarate metered dose inhaler (BGF MDI) between Asian and Western healthy subjects.
Pulmonary pharmacology & therapeutics.
2020 10; 64(?):101976. doi:
10.1016/j.pupt.2020.101976
. [PMID: 33152467] - Minervo Perez, Daniel W Bak, Sarah E Bergholtz, Daniel R Crooks, Bhargav Srinivas Arimilli, Youfeng Yang, Eranthie Weerapana, W Marston Linehan, Jordan L Meier. Heterogeneous adaptation of cysteine reactivity to a covalent oncometabolite.
The Journal of biological chemistry.
2020 09; 295(39):13410-13418. doi:
10.1074/jbc.ac120.014993
. [PMID: 32820045] - Mohammad AlQudah, Taben M Hale, Michael P Czubryt. Targeting the renin-angiotensin-aldosterone system in fibrosis.
Matrix biology : journal of the International Society for Matrix Biology.
2020 09; 91-92(?):92-108. doi:
10.1016/j.matbio.2020.04.005
. [PMID: 32422329] - Vasilis Petrakis, Periklis Panagopoulos, Stella Papachristou, Nikolaos Papanas, Irene Terzi, Grigorios Trypsianis, Dimitrios Papazoglou. Tenofovir Alafenamide Fumarate Therapy for HIV Treatment: Cardiometabolic and Renal Safety.
AIDS research and human retroviruses.
2020 09; 36(9):697-702. doi:
10.1089/aid.2019.0280
. [PMID: 32527142] - David Toubiana, Rodrigo Cabrera, Elisa Salas, Chiara Maccera, Gabriel Franco Dos Santos, Danny Cevallos, Hannele Lindqvist-Kreuze, Juan M Lopez, Helena Maruenda. Morphological and metabolic profiling of a tropical-adapted potato association panel subjected to water recovery treatment reveals new insights into plant vigor.
The Plant journal : for cell and molecular biology.
2020 09; 103(6):2193-2210. doi:
10.1111/tpj.14892
. [PMID: 32579242] - Teresa L Parsons, Kevin N Gwenden, Mark A Marzinke. Interspecies Differences in Tenofovir Alafenamide Fumarate Stability in Plasma.
Antimicrobial agents and chemotherapy.
2020 08; 64(9):. doi:
10.1128/aac.00930-20
. [PMID: 32540983] - Keisuke Okamura, Yosuke Takamiya, Ken Mori, Kazuyuki Shirai, Hidenori Urata. Add-on aliskiren treatment can decrease blood pressure but requires attention to risks of renal impairment and hyperkalemia Chikushi Anti-Hypertension Trial-Rasilez® (CHAT-Ras).
Clinical and experimental hypertension (New York, N.Y. : 1993).
2020 Aug; 42(6):545-552. doi:
10.1080/10641963.2020.1723618
. [PMID: 32037898] - Y Guo, J Zeng, Q Li, P Li, F M Luo, W Z Zhang, Y X Lu, Q Wang, W Zhang, Z P Zeng, L S Liu. [Preliminary clinical analysis of direct renin inhibitor aliskiren in the treatment of severe coronavirus disease 2019 patients with hypertension].
Zhonghua nei ke za zhi.
2020 Aug; 59(8):610-617. doi:
10.3760/cma.j.cn112138-20200328-00310
. [PMID: 32340096] - Beattie Rh Sturrock, Kate M Milne, Timothy Jt Chevassut. The renin-angiotensin system - a therapeutic target in COVID-19?.
Clinical medicine (London, England).
2020 07; 20(4):e72-e75. doi:
10.7861/clinmed.2020-0146
. [PMID: 32414711] - Christoffer Laustsen, Per Mose Nielsen, Haiyun Qi, Mette Hadberg Løbner, Johan Palmfeldt, Lotte Bonde Bertelsen. Hyperpolarized [1,4-13C]fumarate imaging detects microvascular complications and hypoxia mediated cell death in diabetic nephropathy.
Scientific reports.
2020 06; 10(1):9650. doi:
10.1038/s41598-020-66265-6
. [PMID: 32541797] - Bidong D Nguyen, Miguelangel Cuenca V, Johannes Hartl, Ersin Gül, Rebekka Bauer, Susanne Meile, Joel Rüthi, Céline Margot, Laura Heeb, Franziska Besser, Pau Pérez Escriva, Céline Fetz, Markus Furter, Leanid Laganenka, Philipp Keller, Lea Fuchs, Matthias Christen, Steffen Porwollik, Michael McClelland, Julia A Vorholt, Uwe Sauer, Shinichi Sunagawa, Beat Christen, Wolf-Dietrich Hardt. Import of Aspartate and Malate by DcuABC Drives H2/Fumarate Respiration to Promote Initial Salmonella Gut-Lumen Colonization in Mice.
Cell host & microbe.
2020 06; 27(6):922-936.e6. doi:
10.1016/j.chom.2020.04.013
. [PMID: 32416061] - Priscila G Pereira, Kíssila Rabelo, Jemima F R da Silva, Bianca T Ciambarella, Juliana G C Argento, Ana L R Nascimento, Aline B Vieira, Jorge J de Carvalho. Aliskiren improves renal morphophysiology and inflammation in Wistar rats with 2K1C renovascular hypertension.
Histology and histopathology.
2020 Jun; 35(6):609-621. doi:
10.14670/hh-18-173
. [PMID: 31625581] - Syed Ilias Basha, Somnath Ghosh, K Vinothkumar, B Ramesh, P Hema Praksh Kumari, K V Murali Mohan, E Sukumar. Fumaric acid incorporated Ag/agar-agar hybrid hydrogel: A multifunctional avenue to tackle wound healing.
Materials science & engineering. C, Materials for biological applications.
2020 Jun; 111(?):110743. doi:
10.1016/j.msec.2020.110743
. [PMID: 32279739] - Danielle S Brito, Gennaro Agrimi, Lennart Charton, Dominik Brilhaus, Maria Gabriella Bitetto, Jaciara Lana-Costa, Eugenia Messina, Carolina P Nascimento, Elias Feitosa-Araújo, Marcel Viana Pires, Jorge Luis Pérez-Díaz, Toshihiro Obata, Vito Porcelli, Luigi Palmieri, Wagner L Araújo, Andreas P M Weber, Nicole Linka, Alisdair R Fernie, Ferdinando Palmieri, Adriano Nunes-Nesi. Biochemical and functional characterization of a mitochondrial citrate carrier in Arabidopsis thaliana.
The Biochemical journal.
2020 05; 477(9):1759-1777. doi:
10.1042/bcj20190785
. [PMID: 32329787] - Yuan Sun, Alexandre Goes Martini, Manoe J Janssen, Ingrid M Garrelds, Rosalinde Masereeuw, Xifeng Lu, A H Jan Danser. Megalin: A Novel Endocytic Receptor for Prorenin and Renin.
Hypertension (Dallas, Tex. : 1979).
2020 05; 75(5):1242-1250. doi:
10.1161/hypertensionaha.120.14845
. [PMID: 32200675] - Rikke Illum Høgh, Alec Droujinine, Sofie Hedlund Møller, Stine Dam Jepsen, Maiken Mellergaard, Lars Andresen, Søren Skov. Fumarate Upregulates Surface Expression of ULBP2/ULBP5 by Scavenging Glutathione Antioxidant Capacity.
Journal of immunology (Baltimore, Md. : 1950).
2020 04; 204(7):1746-1759. doi:
10.4049/jimmunol.1900740
. [PMID: 32144161] - Yoshihito Uchida, Masamitsu Nakao, Shohei Tsuji, Hayato Uemura, Jun-Ichi Kouyama, Kayoko Naiki, Daisuke Motoya, Kayoko Sugawara, Nobuaki Nakayama, Yukinori Imai, Tomoaki Tomiya, Satoshi Mochida. Significance of switching of the nucleos(t)ide analog used to treat Japanese patients with chronic hepatitis B virus infection from entecavir to tenofovir alafenamide fumarate.
Journal of medical virology.
2020 03; 92(3):329-338. doi:
10.1002/jmv.25644
. [PMID: 31777965] - Jonathan T Su, Solange M Simpson, Samuel Sung, Ewa Bryndza Tfaily, Ronald Veazey, Mark Marzinke, Jiang Qiu, David Watrous, Lakmini Widanapathirana, Elizabeth Pearson, M Melissa Peet, Dipu Karunakaran, Brooke Grasperge, Georgina Dobek, Charlette M Cain, Thomas Hope, Patrick F Kiser. A Subcutaneous Implant of Tenofovir Alafenamide Fumarate Causes Local Inflammation and Tissue Necrosis in Rabbits and Macaques.
Antimicrobial agents and chemotherapy.
2020 02; 64(3):. doi:
10.1128/aac.01893-19
. [PMID: 31871073] - Gulsah Gundogdu, Onur Senol, Fatma Demirkaya Miloglu, Yavuzer Koza, Fuat Gundogdu, Ahmet Hacımüftüoğlu, A M Abd El-Aty. Serum metabolite profiling of ST-segment elevation myocardial infarction using liquid chromatography quadrupole time-of-flight mass spectrometry.
Biomedical chromatography : BMC.
2020 Feb; 34(2):e4738. doi:
10.1002/bmc.4738
. [PMID: 31677392] - Ruth T Casey, Mary A McLean, Benjamin G Challis, Terri P McVeigh, Anne Y Warren, Lee Mendil, Richard Houghton, Stefano De Sanctis, Vasilis Kosmoliaptsis, Richard N Sandford, Ferdia A Gallagher, Eamonn R Maher. Fumarate Metabolic Signature for the Detection of Reed Syndrome in Humans.
Clinical cancer research : an official journal of the American Association for Cancer Research.
2020 01; 26(2):391-396. doi:
10.1158/1078-0432.ccr-19-1729
. [PMID: 31636096] - Tavga Ahmed Aziz, Ahmed Azad Kareem, Hemn Hassan Othman, Zheen Aorahman Ahmed. The Anti-Inflammatory Effect of Different Doses of Aliskiren in Rat Models of Inflammation.
Drug design, development and therapy.
2020; 14(?):2841-2851. doi:
10.2147/dddt.s255607
. [PMID: 32764883] - Yuri Miura, Atsuko Hayakawa, Shohei Kikuchi, Hiroki Tsumoto, Keitaro Umezawa, Yuko Chiba, Yurie Soejima, Motoji Sawabe, Koji Fukui, Yoshihiro Akimoto, Tamao Endo. Fumarate accumulation involved in renal diabetic fibrosis in Goto-Kakizaki rats.
Archives of biochemistry and biophysics.
2019 12; 678(?):108167. doi:
10.1016/j.abb.2019.108167
. [PMID: 31704098] - Lenka Rucká, Martin Chmátal, Natalia Kulik, Lucie Petrásková, Helena Pelantová, Petr Novotný, Romana Příhodová, Miroslav Pátek, Ludmila Martínková. Genetic and Functional Diversity of Nitrilases in Agaricomycotina.
International journal of molecular sciences.
2019 Nov; 20(23):. doi:
10.3390/ijms20235990
. [PMID: 31795104] - Ewout J Hoorn, Anela Blazevic, Jorie Versmissen, Noortje M Rabelink. The Case A 59-year-old woman with pressing thirst.
Kidney international.
2019 11; 96(5):1245-1246. doi:
10.1016/j.kint.2019.03.027
. [PMID: 31648704] - Randa Sghaier, Thomas Nury, Valerio Leoni, Claudio Caccia, Jean-Paul Pais De Barros, Ameur Cherif, Anne Vejux, Thibault Moreau, Khalifa Limem, Mohammad Samadi, John J Mackrill, Ahmed Slaheddine Masmoudi, Gérard Lizard, Amira Zarrouk. Dimethyl fumarate and monomethyl fumarate attenuate oxidative stress and mitochondrial alterations leading to oxiapoptophagy in 158N murine oligodendrocytes treated with 7β-hydroxycholesterol.
The Journal of steroid biochemistry and molecular biology.
2019 11; 194(?):105432. doi:
10.1016/j.jsbmb.2019.105432
. [PMID: 31344443] - Masumeh Doosti, Mir Saeed Seyed Dorraji, Seyedeh Neda Mousavi, Mohammad Hossein Rasoulifard, Seyed Hojjat Hosseini. Enhancing quercetin bioavailability by super paramagnetic starch-based hydrogel grafted with fumaric acid: An in vitro and in vivo study.
Colloids and surfaces. B, Biointerfaces.
2019 Nov; 183(?):110487. doi:
10.1016/j.colsurfb.2019.110487
. [PMID: 31518957] - Bruno E Rojas, Matías D Hartman, Carlos M Figueroa, Laura Leaden, Florencio E Podestá, Alberto A Iglesias. Biochemical characterization of phosphoenolpyruvate carboxykinases from Arabidopsis thaliana.
The Biochemical journal.
2019 10; 476(20):2939-2952. doi:
10.1042/bcj20190523
. [PMID: 31548269] - Eric D Kees, Augustus R Pendleton, Catarina M Paquete, Matthew B Arriola, Aunica L Kane, Nicholas J Kotloski, Peter J Intile, Jeffrey A Gralnick. Secreted Flavin Cofactors for Anaerobic Respiration of Fumarate and Urocanate by Shewanella oneidensis: Cost and Role.
Applied and environmental microbiology.
2019 08; 85(16):. doi:
10.1128/aem.00852-19
. [PMID: 31175188] - Ryan D Sullivan, Radhika M Mehta, Ranjana Tripathi, Inna P Gladysheva, Guy L Reed. Normalizing Plasma Renin Activity in Experimental Dilated Cardiomyopathy: Effects on Edema, Cachexia, and Survival.
International journal of molecular sciences.
2019 Aug; 20(16):. doi:
10.3390/ijms20163886
. [PMID: 31404946] - Zong Xian Zhu, Dan Li Jiang, Bi Jun Li, Hui Qin, Zi Ning Meng, Hao Ran Lin, Jun Hong Xia. Differential Transcriptomic and Metabolomic Responses in the Liver of Nile Tilapia (Oreochromis niloticus) Exposed to Acute Ammonia.
Marine biotechnology (New York, N.Y.).
2019 Aug; 21(4):488-502. doi:
10.1007/s10126-019-09897-8
. [PMID: 31076921] - Y Luo, Q Chen. Efficacy of aliskiren supplementation for heart failure : A meta-analysis of randomized controlled trials.
Herz.
2019 Aug; 44(5):398-404. doi:
10.1007/s00059-018-4679-1
. [PMID: 29470612] - Forouzan Heidari, Abbas Bahari, Ali Amarlou, Barat Ali Fakheri. Fumaric acids as a novel antagonist of TLR-4 pathway mitigates arsenic-exposed inflammation in human monocyte-derived dendritic cells.
Immunopharmacology and immunotoxicology.
2019 Aug; 41(4):513-520. doi:
10.1080/08923973.2019.1645166
. [PMID: 31397191] - Kawa Dizaye, Rojgar H Ali. Effects of neprilysin-renin inhibition in comparison with neprilysin-angiotensin inhibition on the neurohumoral changes in rats with heart failure.
BMC pharmacology & toxicology.
2019 05; 20(1):23. doi:
10.1186/s40360-019-0304-z
. [PMID: 31053170]