Reaction Process: PlantCyc:SETARIA_PWY-5486

pyruvate fermentation to ethanol II related metabolites

find 7 related metabolites which is associated with chemical reaction(pathway) pyruvate fermentation to ethanol II

NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde

Carbon dioxide

Carbonic acid anhydride

CO2 (43.98983)


Carbon dioxide is a colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbon dioxide is produced during respiration by all animals, fungi and microorganisms that depend on living and decaying plants for food, either directly or indirectly. It is, therefore, a major component of the carbon cycle. Additionally, carbon dioxide is used by plants during photosynthesis to make sugars which may either be consumed again in respiration or used as the raw material to produce polysaccharides such as starch and cellulose, proteins and the wide variety of other organic compounds required for plant growth and development. When inhaled at concentrations much higher than usual atmospheric levels, it can produce a sour taste in the mouth and a stinging sensation in the nose and throat. These effects result from the gas dissolving in the mucous membranes and saliva, forming a weak solution of carbonic acid. Carbon dioxide is used by the food industry, the oil industry, and the chemical industry. Carbon dioxide is used to produce carbonated soft drinks and soda water. Traditionally, the carbonation in beer and sparkling wine comes about through natural fermentation, but some manufacturers carbonate these drinks artificially. Leavening agent, propellant, aerating agent, preservative. Solvent for supercritical extraction e.g. of caffeine in manufacture of caffeine-free instant coffee. It is used in carbonation of beverages, in the frozen food industry and as a component of controlled atmosphere packaging (CAD) to inhibit bacterial growth. Especies effective against Gram-negative spoilage bacteria, e.g. Pseudomonas V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Acetaldehyde

Acetic aldehyde

C2H4O (44.0262134)


Acetaldehyde, also known as ethanal, belongs to the class of organic compounds known as short-chain aldehydes. These are an aldehyde with a chain length containing between 2 and 5 carbon atoms. Acetaldehyde exists in all living species, ranging from bacteria to humans. Within humans, acetaldehyde participates in a number of enzymatic reactions. In particular, acetaldehyde can be biosynthesized from ethanol which is mediated by the enzyme alcohol dehydrogenase 1B. Acetaldehyde can also be converted to acetic acid by the enzyme aldehyde dehydrogenase (mitochondrial) and aldehyde dehydrogenase X (mitochondrial). The main method of production is the oxidation of ethylene by the Wacker process, which involves oxidation of ethylene using a homogeneous palladium/copper system: 2 CH2CH2 + O2 → 2 CH3CHO. In the 1970s, the world capacity of the Wacker-Hoechst direct oxidation process exceeded 2 million tonnes annually. In humans, acetaldehyde is involved in disulfiram action pathway. Acetaldehyde is an aldehydic, ethereal, and fruity tasting compound. Outside of the human body, acetaldehyde is found, on average, in the highest concentration in a few different foods, such as sweet oranges, pineapples, and mandarin orange (clementine, tangerine) and in a lower concentration in . acetaldehyde has also been detected, but not quantified in several different foods, such as malabar plums, malus (crab apple), rose hips, natal plums, and medlars. This could make acetaldehyde a potential biomarker for the consumption of these foods. In condensation reactions, acetaldehyde is prochiral. Acetaldehyde is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Acetaldehyde has been found to be associated with several diseases such as alcoholism, ulcerative colitis, nonalcoholic fatty liver disease, and crohns disease; also acetaldehyde has been linked to the inborn metabolic disorders including aldehyde dehydrogenase deficiency (III) sulfate is used to reoxidize the mercury back to the mercury. Acetaldehyde was first observed by the Swedish pharmacist/chemist Carl Wilhelm Scheele (1774); it was then investigated by the French chemists Antoine François, comte de Fourcroy and Louis Nicolas Vauquelin (1800), and the German chemists Johann Wolfgang Döbereiner (1821, 1822, 1832) and Justus von Liebig (1835). At room temperature, acetaldehyde (CH3CHO) is more stable than vinyl alcohol (CH2CHOH) by 42.7 kJ/mol: Overall the keto-enol tautomerization occurs slowly but is catalyzed by acids. The level at which an average consumer could detect acetaldehyde is still considerably lower than any toxicity. Pathways of exposure include air, water, land, or groundwater, as well as drink and smoke. Acetaldehyde is also created by thermal degradation or ultraviolet photo-degradation of some thermoplastic polymers during or after manufacture. The water industry generally recognizes 20–40 ppb as the taste/odor threshold for acetaldehyde. The level at which an average consumer could detect acetaldehyde is still considerably lower than any toxicity. Flavouring agent and adjuvant used to impart orange, apple and butter flavours; component of food flavourings added to milk products, baked goods, fruit juices, candy, desserts and soft drinks [DFC]

   

Ethanol

Ethyl alcohol in alcoholic beverages

C2H6O (46.0418626)


Ethanol is a clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in alcoholic beverages. Indeed, ethanol has widespread use as a solvent of substances intended for human contact or consumption, including scents, flavorings, colorings, and medicines. Ethanol has a depressive effect on the central nervous system and because of its psychoactive effects, it is considered a drug. Ethanol has a complex mode of action and affects multiple systems in the brain, most notably it acts as an agonist to the GABA receptors. Death from ethanol consumption is possible when blood alcohol level reaches 0.4\\%. A blood level of 0.5\\% or more is commonly fatal. Levels of even less than 0.1\\% can cause intoxication, with unconsciousness often occurring at 0.3-0.4 \\%. Ethanol is metabolized by the body as an energy-providing carbohydrate nutrient, as it metabolizes into acetyl CoA, an intermediate common with glucose metabolism, that can be used for energy in the citric acid cycle or for biosynthesis. Ethanol within the human body is converted into acetaldehyde by alcohol dehydrogenase and then into acetic acid by acetaldehyde dehydrogenase. The product of the first step of this breakdown, acetaldehyde, is more toxic than ethanol. Acetaldehyde is linked to most of the clinical effects of alcohol. It has been shown to increase the risk of developing cirrhosis of the liver,[77] multiple forms of cancer, and alcoholism. Industrially, ethanol is produced both as a petrochemical, through the hydration of ethylene, and biologically, by fermenting sugars with yeast. Small amounts of ethanol are endogenously produced by gut microflora through anaerobic fermentation. However most ethanol detected in biofluids and tissues likely comes from consumption of alcoholic beverages. Absolute ethanol or anhydrous alcohol generally refers to purified ethanol, containing no more than one percent water. Absolute alcohol is not intended for human consumption. It often contains trace amounts of toxic benzene (used to remove water by azeotropic distillation). Consumption of this form of ethanol can be fatal over a short time period. Generally absolute or pure ethanol is used as a solvent for lab and industrial settings where water will disrupt a desired reaction. Pure ethanol is classed as 200 proof in the USA and Canada, equivalent to 175 degrees proof in the UK system. Ethanol is a general biomarker for the consumption of alcohol. Ethanol is also a metabolite of Hansenula and Saccharomyces (PMID: 14613880) (https://ac.els-cdn.com/S0079635206800470/1-s2.0-S0079635206800470-main.pdf?_tid=4d340044-3230-4141-88dd-deec4d2e35bd&acdnat=1550288012_0c4a20fe963843426147979d376cf624). Intoxicating constituent of all alcoholic beverages. It is used as a solvent and vehicle for food dressings and flavourings. Antimicrobial agent, e.g for pizza crusts prior to baking. extraction solvent for foodstuffs. Widely distributed in fruits and other foods V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AZ - Nerve depressants V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D000890 - Anti-Infective Agents D012997 - Solvents

   

Hydrogen Ion

Hydrogen cation

H+ (1.0078246)


Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])

   

Nicotinamide adenine dinucleotide

Nicotinamide adenine dinucleotide

C21H26N7O14P2- (662.1012936000001)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Pyruvate

Pyruvate

C3H3O3- (87.00821880000001)


A 2-oxo monocarboxylic acid anion that is the conjugate base of pyruvic acid, arising from deprotonation of the carboxy group.

   

beta-NADH

beta-NADH

C21H27N7O14P2-2 (663.1091182000001)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS