Reaction Process: Plant Reactome:R-CCR-9626305

Regulatory network of nutrient accumulation related metabolites

find 5 related metabolites which is associated with chemical reaction(pathway) Regulatory network of nutrient accumulation

Fru(6)P ⟶ beta-D-glucose-6-phosphate

α-D-Glucose-1-phosphate

[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] dihydrogen phosphate

C6H13O9P (260.0297178)


Glucose 1-phosphate (also called cori ester) is a glucose molecule with a phosphate group on the 1-carbon. It can exist in either the α- or β-anomeric form. Glucose 1-phosphate belongs to the class of organic compounds known as monosaccharide phosphates. These are monosaccharides comprising a phosphated group linked to the carbohydrate unit. Glucose 1-phosphate is the direct product of the reaction in which glycogen phosphorylase cleaves off a molecule of glucose from a greater glycogen structure. It cannot travel down many metabolic pathways and must be interconverted by the enzyme phosphoglucomutase in order to become glucose 6-phosphate. Free glucose 1-phosphate can also react with UTP to form UDP-glucose. It can then return to the greater glycogen structure via glycogen synthase. *Found widely in both plants and animals. A precursor of starch in plants and of glycogen in animals. [CCD] Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map KEIO_ID G020 Corona-virus KEIO_ID G115 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

β-D-Fructose 6-phosphate

[(2R,3R,4S)-2,3,4,6-tetrahydroxy-5-oxohexyl] dihydrogen phosphate

C6H13O9P (260.0297178)


Fructose 6-phosphate (F6P) belongs to the class of organic compounds known as hexose phosphates. These are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. F6P is a derivative of fructose, which has been phosphorylated at the 6-hydroxy group. Fructose 6-phosphate is a fundamental metabolite and exists in all living species, ranging from bacteria to plants to humans. The great majority of glucose is converted to fructose 6-phosphate as part of the glycolytic metabolic pathway (glycolysis). Specifically, F6P is produce is produced by the isomerisation of glucose 6-phosphate via the enzyme phosphoglucose isomerase. F6P is in turn further phosphorylated to fructose-1,6-bisphosphate by the enzyme phosphofructokinase-1. Glycolysis is the metabolic pathway that converts glucose into pyruvic acid. The free energy released in this process is used to form ATP and reduced nicotinamide adenine dinucleotide (NADH). In addition to its key involvement in glycolysis, fructose 6-phosphate can also be biosynthesized from glucosamine 6-phosphate via the enzyme glucosamine-6-phosphate isomerase 1. In addition, fructose 6-phosphate and L-glutamine can be converted into glucosamine 6-phosphate and L-glutamic acid through the action of the enzyme glutamine--fructose-6-phosphate aminotransferase. An important intermediate in the Carbohydrates pathway. The interconversion of glucose-6-phosphate and fructose-6-phosphate, the second step of the Embden-Meyerhof glycolytic pathway, is catalyzed by the enzyme phosphoglucose isomerase (PGI). In gluconeogenesis, fructose-6-phosphate is the immediate precursor of glucose-6-phosphate (wikipedia) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID F001

   

alpha-D-Glucose

(2S,3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


alpha-D-Glucose, also known as alpha-dextrose or alpha-D-GLC, belongs to the class of organic compounds known as hexoses. These are monosaccharides in which the sugar unit is a is a six-carbon containing moeity. alpha-D-Glucose exists in all living species, ranging from bacteria to humans. Outside of the human body, alpha-D-Glucose has been detected, but not quantified in several different foods, such as lemon grass, sourdoughs, mixed nuts, sweet rowanberries, and ginsengs. This could make alpha-D-glucose a potential biomarker for the consumption of these foods. D-Glucopyranose having alpha-configuration at the anomeric centre. A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

beta-D-Glucose 6-phosphate

{[(2R,3S,4S,5R,6R)-3,4,5,6-tetrahydroxyoxan-2-yl]methoxy}phosphonic acid

C6H13O9P (260.0297178)


beta-D-Glucose 6 phosphate (b-G6P) is the beta-anomer of glucose-6-phosphate. There are two anomers of glucose 6 phosphate: the alpha anomer and the beta anomer. Specifically, beta-D-Glucose 6-phosphate is glucose sugar phosphorylated on carbon 6. It is a very common metabolite in cells as the vast majority of glucose entering a cell will become phosphorylated in this way. The primary reason for the immediate phosphorylation of glucose is to prevent diffusion out of the cell. The phosphorylation adds a charged phosphate group so the glucose 6-phosphate cannot easily cross the cell membrane. b-G6P is involved in glycolysis, gluconeogenesis, pentose phosphate, and glycogen and sucrose metabolic pathways. beta-D-Glucose 6 phosphate can be generated through beta-D-fructose phosphate or alpha-D-glucose 6 phosphate (via glucose-6-phosphate isomerase) or beta-D glucose (via hexokinase). It can then be sent off to the pentose phosphate pathway which generates the useful cofactor NADPH as well as ribulose 5-phosphate, a carbon source for the synthesis of other molecules. Alternately, if the cell needs energy or carbon skeletons for synthesis then glucose 6-phosphate is targeted for glycolysis. A third route is to have glucose 6 phosphate stored or converted into glycogen, especially if blood glucose levels are high. Beta-d-glucose 6-phosphate, also known as B-D-glucose 6-(dihydrogen phosphoric acid) or 6-O-phosphono-beta-D-glucopyranose, is a member of the class of compounds known as hexose phosphates. Hexose phosphates are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. Beta-d-glucose 6-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Beta-d-glucose 6-phosphate can be found in a number of food items such as sapodilla, hickory nut, atlantic herring, and swede, which makes beta-d-glucose 6-phosphate a potential biomarker for the consumption of these food products. Beta-d-glucose 6-phosphate exists in all living species, ranging from bacteria to humans. In humans, beta-d-glucose 6-phosphate is involved in several metabolic pathways, some of which include glycolysis, glycogenosis, type IC, glycogenosis, type IB, and trehalose degradation. Beta-d-glucose 6-phosphate is also involved in several metabolic disorders, some of which include glucose-6-phosphate dehydrogenase deficiency, warburg effect, fanconi-bickel syndrome, and transaldolase deficiency.

   

alpha-D-Glucose 6-phosphate

6-O-phosphono-alpha-D-glucopyranose

C6H13O9P (260.0297178)


A D-glucopyranose 6-phosphate where alpha-D-glucose is the sugar component. [Spectral] alpha-D-Glucose 6-phosphate (exact mass = 260.02972) and L-Isoleucine (exact mass = 131.09463) and 3-Sulfino-L-alanine (exact mass = 153.00958) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] alpha-D-Glucose 6-phosphate (exact mass = 260.02972) and 3-Sulfino-L-alanine (exact mass = 153.00958) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.