Reaction Process: PathBank:SMP0087171
Alpha Linolenic Acid and Linoleic Acid Metabolism related metabolites
find 15 related metabolites which is associated with chemical reaction(pathway) Alpha Linolenic Acid and Linoleic Acid Metabolism
-Linolenic acid ⟶ Stearidonic acid
linolenate(18:3)
alpha-Linolenic acid (ALA) is a polyunsaturated fatty acid (PUFA). It is a member of the group of essential fatty acids called omega-3 fatty acids. alpha-Linolenic acid, in particular, is not synthesized by mammals and therefore is an essential dietary requirement for all mammals. Certain nuts (English walnuts) and vegetable oils (canola, soybean, flaxseed/linseed, olive) are particularly rich in alpha-linolenic acid. Omega-3 fatty acids get their name based on the location of one of their first double bond. In all omega-3 fatty acids, the first double bond is located between the third and fourth carbon atom counting from the methyl end of the fatty acid (n-3). Although humans and other mammals can synthesize saturated and some monounsaturated fatty acids from carbon groups in carbohydrates and proteins, they lack the enzymes necessary to insert a cis double bond at the n-6 or the n-3 position of a fatty acid. Omega-3 fatty acids like alpha-linolenic acid are important structural components of cell membranes. When incorporated into phospholipids, they affect cell membrane properties such as fluidity, flexibility, permeability, and the activity of membrane-bound enzymes. Omega-3 fatty acids can modulate the expression of a number of genes, including those involved with fatty acid metabolism and inflammation. alpha-Linolenic acid and other omega-3 fatty acids may regulate gene expression by interacting with specific transcription factors, including peroxisome proliferator-activated receptors (PPARs) and liver X receptors (LXRs). alpha-Linolenic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. α-Linolenic acid can be obtained by humans only through their diets. Humans lack the desaturase enzymes required for processing stearic acid into A-linoleic acid or other unsaturated fatty acids. Dietary α-linolenic acid is metabolized to stearidonic acid, a precursor to a collection of polyunsaturated 20-, 22-, 24-, etc fatty acids (eicosatetraenoic acid, eicosapentaenoic acid, docosapentaenoic acid, tetracosapentaenoic acid, 6,9,12,15,18,21-tetracosahexaenoic acid, docosahexaenoic acid).[12] Because the efficacy of n−3 long-chain polyunsaturated fatty acid (LC-PUFA) synthesis decreases down the cascade of α-linolenic acid conversion, DHA synthesis from α-linolenic acid is even more restricted than that of EPA.[13] Conversion of ALA to DHA is higher in women than in men.[14] α-Linolenic acid, also known as alpha-linolenic acid (ALA) (from Greek alpha meaning "first" and linon meaning flax), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils. In terms of its structure, it is named all-cis-9,12,15-octadecatrienoic acid.[2] In physiological literature, it is listed by its lipid number, 18:3 (n−3). It is a carboxylic acid with an 18-carbon chain and three cis double bonds. The first double bond is located at the third carbon from the methyl end of the fatty acid chain, known as the n end. Thus, α-linolenic acid is a polyunsaturated n−3 (omega-3) fatty acid. It is a regioisomer of gamma-linolenic acid (GLA), an 18:3 (n−6) fatty acid (i.e., a polyunsaturated omega-6 fatty acid with three double bonds). Alpha-linolenic acid is a linolenic acid with cis-double bonds at positions 9, 12 and 15. Shown to have an antithrombotic effect. It has a role as a micronutrient, a nutraceutical and a mouse metabolite. It is an omega-3 fatty acid and a linolenic acid. It is a conjugate acid of an alpha-linolenate and a (9Z,12Z,15Z)-octadeca-9,12,15-trienoate. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. alpha-Linolenic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Linolenic Acid is a natural product found in Prunus mume, Dipteryx lacunifera, and other organisms with data available. Linolenic Acid is an essential fatty acid belonging to the omega-3 fatty acids group. It is highly concentrated in certain plant oils and has been reported to inhibit the synthesis of prostaglandin resulting in reduced inflammation and prevention of certain chronic diseases. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. A fatty acid that is found in plants and involved in the formation of prostaglandins. Seed oils are the richest sources of α-linolenic acid, notably those of hempseed, chia, perilla, flaxseed (linseed oil), rapeseed (canola), and soybeans. α-Linolenic acid is also obtained from the thylakoid membranes in the leaves of Pisum sativum (pea leaves).[3] Plant chloroplasts consisting of more than 95 percent of photosynthetic thylakoid membranes are highly fluid due to the large abundance of ALA, evident as sharp resonances in high-resolution carbon-13 NMR spectra.[4] Some studies state that ALA remains stable during processing and cooking.[5] However, other studies state that ALA might not be suitable for baking as it will polymerize with itself, a feature exploited in paint with transition metal catalysts. Some ALA may also oxidize at baking temperatures. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].
Gamma-Linolenic acid
Gamma-linolenic acid is a C18, omega-6 acid fatty acid comprising a linolenic acid having cis- double bonds at positions 6, 9 and 12. It has a role as a human metabolite, a plant metabolite and a mouse metabolite. It is an omega-6 fatty acid and a linolenic acid. It is a conjugate acid of a gamma-linolenate. Gamolenic acid, or gamma-linolenic acid (γ-Linolenic acid) or GLA, is an essential fatty acid (EFA) comprised of 18 carbon atoms with three double bonds that is most commonly found in human milk and other botanical sources. It is an omega-6 polyunsaturated fatty acid (PUFA) also referred to as 18:3n-6; 6,9,12-octadecatrienoic acid; and cis-6, cis-9, cis-12- octadecatrienoic acid. Gamolenic acid is produced minimally in the body as the delta 6-desaturase metabolite of [DB00132]. It is converted to [DB00154], a biosynthetic precursor of monoenoic prostaglandins such as PGE1. While Gamolenic acid is found naturally in the fatty acid fractions of some plant seed oils, [DB11358] and [DB11238] are rich sources of gamolenic acid. Evening primrose oil has been investigated for clinical use in menopausal syndrome, diabetic neuropathy, and breast pain, where gamolenic acid is present at concentrations of 7-14\\\\\%. Gamolenic acid may be found in over-the-counter dietary supplements. Gamolenic acid is also found in some fungal sources and also present naturally in the form of triglycerides. Various clinical indications of gamolenic acid have been studied, including rheumatoid arthritis, atopic eczema, acute respiratory distress syndrome, asthma, premenstrual syndrome, cardiovascular disease, ulcerative colitis, ADHD, cancer, osteoporosis, diabetic neuropathy, and insomnia. gamma-Linolenic acid is a natural product found in Anemone cylindrica, Eurhynchium striatum, and other organisms with data available. Gamolenic Acid is a polyunsaturated long-chain fatty acid with an 18-carbon backbone and exactly three double bonds, originating from the 6th, 9th and 12th positions from the methyl end, with all double bonds in the cis- configuration. An omega-6 fatty acid produced in the body as the delta 6-desaturase metabolite of linoleic acid. It is converted to dihomo-gamma-linolenic acid, a biosynthetic precursor of monoenoic prostaglandins such as PGE1. (From Merck Index, 11th ed) gamma-Linolenic acid, also known as 18:3n6 or GLA, belongs to the class of organic compounds known as linoleic acids and derivatives. These are derivatives of linoleic acid. Linoleic acid is a polyunsaturated omega-6 18-carbon long fatty acid, with two CC double bonds at the 9- and 12-positions. gamma-Linolenic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. gamma-Linolenic acid is an omega-6 fatty acid produced in the body as the delta 6-desaturase metabolite of linoleic acid. It is converted into dihomo-gamma-linolenic acid, a biosynthetic precursor of monoenoic prostaglandins such as PGE1 (PubChem). A C18, omega-6 acid fatty acid comprising a linolenic acid having cis- double bonds at positions 6, 9 and 12. gamma-Linolenic acid or GLA (γ-linolenic acid) (INN: gamolenic acid) is an n−6, or omega-6, fatty acid found primarily in seed oils. When acting on GLA, arachidonate 5-lipoxygenase produces no leukotrienes and the conversion by the enzyme of arachidonic acid to leukotrienes is inhibited. GLA is obtained from vegetable oils such as evening primrose (Oenothera biennis) oil (EPO), blackcurrant seed oil, borage seed oil, and hemp seed oil. GLA is also found in varying amounts in edible hemp seeds, oats, barley,[3] and spirulina.[4] Normal safflower (Carthamus tinctorius) oil does not contain GLA, but a genetically modified GLA safflower oil available in commercial quantities since 2011 contains 40\\\% GLA.[5] Borage oil contains 20\\\% GLA, evening primrose oil ranges from 8\\\% to 10\\\% GLA, and black-currant oil contains 15–20\\\%.[6] The human body produces GLA from linoleic acid (LA). This reaction is catalyzed by Δ6-desaturase (D6D), an enzyme that allows the creation of a double bond on the sixth carbon counting from the carboxyl terminus. LA is consumed sufficiently in most diets, from such abundant sources as cooking oils and meats. However, a lack of GLA can occur when there is a reduction of the efficiency of the D6D conversion (for instance, as people grow older or when there are specific dietary deficiencies) or in disease states wherein there is excessive consumption of GLA metabolites.[7] From GLA, the body forms dihomo-γ-linolenic acid (DGLA). This is one of the body's three sources of eicosanoids (along with AA and EPA.) DGLA is the precursor of the prostaglandin PGH1, which in turn forms PGE1 and the thromboxane TXA1. Both PGE11 and TXA1 are anti-inflammatory; thromboxane TXA1, unlike its series-2 variant, induces vasodilation, and inhibits platelet[8] consequently, TXA1 modulates (reduces) the pro-inflammatory properties of the thromboxane TXA2. PGE1 has a role in regulation of immune system function and is used as the medicine alprostadil. Unlike AA and EPA, DGLA cannot yield leukotrienes. However, it can inhibit the formation of pro-inflammatory leukotrienes from AA.[9] Although GLA is an n−6 fatty acid, a type of acid that is, in general, pro-inflammatory[citation needed], it has anti-inflammatory properties. (See discussion at Essential fatty acid interactions: The paradox of dietary GLA.) Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1].
Eicosapentaenoic acid
Icosapent, also known as icosapentaenoate or (5z,8z,11z,14z,17z)-eicosapentaenoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, icosapent is considered to be a fatty acid lipid molecule. Icosapent is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Icosapent can be found in a number of food items such as barley, sacred lotus, white lupine, and rape, which makes icosapent a potential biomarker for the consumption of these food products. Icosapent can be found primarily in blood, feces, sweat, and urine, as well as throughout most human tissues. In humans, icosapent is involved in the alpha linolenic acid and linoleic acid metabolism. Moreover, icosapent is found to be associated with essential hypertension and hypertension. Ethyl eicosapentaenoic acid (E-EPA, icosapent ethyl) is a derivative of the omega-3 fatty acid eicosapentaenoic acid (EPA) that is used in combination with changes in diet to lower triglyceride levels in adults with severe (≥ 500 mg/dL) hypertriglyceridemia. This was the second class of fish oil-based drug to be approved for use as a drug and was approved by the FDA in 2012. These fish oil drugs are similar to fish oil dietary supplements but the ingredients are better controlled and have been tested in clinical trials . The anti-inflammatory, antithrombotic and immunomodulatory actions of EPA is probably due to its role in eicosanoid physiology and biochemistry. Most eicosanoids are produced by the metabolism of omega-3 fatty acids, specifically, arachidonic acid. These eicosanoids, leukotriene B4 (LTB4) and thromboxane A2 (TXA2) stimulate leukocyte chemotaxis, platelet aggregation and vasoconstriction. They are thrombogenic and artherogenic. On the other hand, EPA is metabolized to leukotriene B5 (LTB5) and thromboxane A3 (TXA3), which are eicosanoids that promote vasodilation, inhibit platelet aggregation and leukocyte chemotaxis and are anti-artherogenic and anti-thrombotic. The triglyceride-lowering effect of EPA results from inhibition of lipogenesis and stimulation of fatty acid oxidation. Fatty acid oxidation of EPA occurs mainly in the mitochondria. EPA is a substrate for Prostaglandin-endoperoxide synthase 1 and 2. It also appears to affect the function and bind to the Carbohydrate responsive element binding protein (ChREBP) and to a fatty acid receptor (G-coupled receptor) known as GP40 (DrugBank). Eicosapentaenoic acid (EPA or also icosapentaenoic acid) is an important polyunsaturated fatty acid found in fish oils. It serves as the precursor for the prostaglandin-3 and thromboxane-3 families. A diet rich in eicosapentaenoic acid lowers serum lipid concentration, reduces incidence of cardiovascular disorders, prevents platelet aggregation, and inhibits arachidonic acid conversion into the thromboxane-2 and prostaglandin-2 families. Eicosapentaenoic acid is an omega-3 fatty acid. In physiological literature, it is given the name 20:5(n-3). Its systematic chemical name is all-cis-5,8,11,14,17-icosapentaenoic acid. It also has the trivial name timnodonic acid. Chemically, EPA is a carboxylic acid with a 20-carbon chain and five cis double bonds; the first double bond is located at the third carbon from the omega end. Because of the presence of double bonds, EPS is a polyunsaturated fatty acid. Metabolically it acts as a precursor for prostaglandin-3 (which inhibits platelet aggregation), thromboxane-3, and leukotriene-5 groups. It is found in fish oils of cod liver, herring, mackerel, salmon, menhaden, and sardine. It is also found in human breast milk (Wikipedia). Chemical was purchased from CAY 90110 (Lot. 0443819-6); Diagnostic ions: 301.2, 257.1, 202.9 CONFIDENCE standard compound; INTERNAL_ID 305 Eicosapentaenoic Acid (EPA) is an orally active Omega-3 long-chain polyunsaturated fatty acid (ω-3 LC-PUFA). Eicosapentaenoic Acid exhibits a DNA demethylating action that promotes the re-expression of the tumor suppressor gene CCAAT/enhancer-binding protein δ (C/EBPδ). Eicosapentaenoic Acid activates RAS/ERK/C/EBPβ pathway through H-Ras intron 1 CpG island demethylation in U937 leukemia cells. Eicosapentaenoic Acid can promote relaxation of vascular smooth muscle cells and vasodilation[1][2][3]. Eicosapentaenoic Acid (EPA) is an orally active Omega-3 long-chain polyunsaturated fatty acid (ω-3 LC-PUFA). Eicosapentaenoic Acid exhibits a DNA demethylating action that promotes the re-expression of the tumor suppressor gene CCAAT/enhancer-binding protein δ (C/EBPδ). Eicosapentaenoic Acid activates RAS/ERK/C/EBPβ pathway through H-Ras intron 1 CpG island demethylation in U937 leukemia cells. Eicosapentaenoic Acid can promote relaxation of vascular smooth muscle cells and vasodilation[1][2][3].
Dihomo-gamma-linolenic acid
8,11,14-Eicosatrienoic acid is a 20-carbon-chain omega-6 fatty acid, unsaturated at positions 8, 11, and 14. It differs from arachidonic acid (5,8,11,14-eicosatetraenoic acid) only at position 5. 8,11,14-Eicosatrienoic acid is also known as Dihomo-gamma-linolenic acid (DGLA). In physiological literature, it is given the name 20:3(n-6). DGLA is the elongation product of the 18 carbon gamma-linolenic acid (GLA). DGLA can be converted into prostaglandin E1 (PGE1). PGE1 inhibits platelet aggregation and also exerts a vasodilatory effect. DGLA competes with arachadonic acid for COX and lipoxygenase, inhibiting the production of arachadonic acids eicosanoids [HMDB] 8,11,14-Eicosatrienoic acid is a 20-carbon-chain omega-6 fatty acid, unsaturated at positions 8, 11, and 14. It differs from arachidonic acid (5,8,11,14-eicosatetraenoic acid) only at position 5. 8,11,14-Eicosatrienoic acid is also known as Dihomo-gamma-linolenic acid (DGLA). In physiological literature, it is given the name 20:3(n-6). DGLA is the elongation product of the 18 carbon gamma-linolenic acid (GLA). DGLA can be converted into prostaglandin E1 (PGE1). PGE1 inhibits platelet aggregation and also exerts a vasodilatory effect. DGLA competes with arachadonic acid for COX and lipoxygenase, inhibiting the production of arachadonic acids eicosanoids. Dihomo-γ-linolenic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1783-84-2 (retrieved 2024-07-01) (CAS RN: 1783-84-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Linoleic acid
Linoleic acid is a doubly unsaturated fatty acid, also known as an omega-6 fatty acid, occurring widely in plant glycosides. In this particular polyunsaturated fatty acid (PUFA), the first double bond is located between the sixth and seventh carbon atom from the methyl end of the fatty acid (n-6). Linoleic acid is an essential fatty acid in human nutrition because it cannot be synthesized by humans. It is used in the biosynthesis of prostaglandins (via arachidonic acid) and cell membranes (From Stedman, 26th ed). Linoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Linoleic acid (LA) is an organic compound with the formula HOOC(CH2)7CH=CHCH2CH=CH(CH2)4CH3. Both alkene groups (−CH=CH−) are cis. It is a fatty acid sometimes denoted 18:2 (n-6) or 18:2 cis-9,12. A linoleate is a salt or ester of this acid.[5] Linoleic acid is a polyunsaturated, omega-6 fatty acid. It is a colorless liquid that is virtually insoluble in water but soluble in many organic solvents.[2] It typically occurs in nature as a triglyceride (ester of glycerin) rather than as a free fatty acid.[6] It is one of two essential fatty acids for humans, who must obtain it through their diet,[7] and the most essential, because the body uses it as a base to make the others. The word "linoleic" derives from Latin linum 'flax', and oleum 'oil', reflecting the fact that it was first isolated from linseed oil.
Arachidonic acid
Arachidonic acid is a polyunsaturated, essential fatty acid that has a 20-carbon chain as a backbone and four cis-double bonds at the C5, C8, C11, and C14 positions. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is synthesized from dietary linoleic acid. Arachidonic acid mediates inflammation and the functioning of several organs and systems either directly or upon its conversion into eicosanoids. Arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids) including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. Arachidonic acid can be metabolized by cytochrome p450 (CYP450) enzymes into 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs), their corresponding dihydroxyeicosatrienoic acids (DHETs), and 20-hydroxyeicosatetraenoic acid (20-HETE). The production of kidney CYP450 arachidonic acid metabolites is altered in diabetes, pregnancy, hepatorenal syndrome, and in various models of hypertension, and it is likely that changes in this system contribute to the abnormalities in renal function that are associated with many of these conditions. Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 position of membrane glycerophospholipids to liberate arachidonic acid (PMID: 12736897, 12736897, 12700820, 12570747, 12432908). The beneficial effects of omega-3 fatty acids are believed to be due in part to selective alteration of arachidonate metabolism that involves cyclooxygenase (COX) enzymes (PMID: 23371504). 9-Oxononanoic acid (9-ONA), one of the major products of peroxidized fatty acids, was found to stimulate the activity of phospholipase A2 (PLA2), the key enzyme to initiate the arachidonate cascade and eicosanoid production (PMID: 23704812). Arachidonate lipoxygenase (ALOX) enzymes metabolize arachidonic acid to generate potent inflammatory mediators and play an important role in inflammation-associated diseases (PMID: 23404351). Essential fatty acid. Constituent of many animal phospholipids Arachidonic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=506-32-1 (retrieved 2024-07-15) (CAS RN: 506-32-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Arachidonic acid is an essential fatty acid and a major constituent of biomembranes. Arachidonic acid is an essential fatty acid and a major constituent of biomembranes.
Adrenic acid
Adrenic acid, also known as 7,10,13,16-docosatetraenoic acid or adrenate, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Adrenic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Adrenic acid can be found in blood and in human myelin tissue. Within the cell, adrenic acid is primarily located in the cytoplasm, in the membrane (predicted from logP), and in the peroxisome. It can also be found in the extracellular space. In humans, adrenic acid is involved in alpha-linolenic acid and linoleic acid metabolism. Docosatetraenoic acid designates any straight chain 22:4 fatty acid. In particular, all-cis-7,10,13,16-docosatetraenoic acid is an ω-6 fatty acid with the trivial name adrenic acid (AdA). This is a naturally occurring polyunsaturated fatty acid formed through a 2-carbon chain elongation of arachidonic acid. It is one of the most abundant fatty acids in the early human brain. This unsaturated fatty acid is also metabolized by cells into biologically active products, such as dihomoprostaglandins and dihomo-epoxyeicosatrienoic acids (dihomo-EETs) (Wikipedia). Adrenic acid, which is a prostacyclin inhibitor, appears to be a potential prothrombotic agent (PMID: 1642692). Adrenic acid, which is a prostacyclin inhibitor, appears to be potential prothrombotic agent. (PMID 1642692) [HMDB]
Stearidonic acid
Steridonic acid, also known as (6z,9z,12z,15z)-octadecatetraenoic acid or stearidonate, belongs to lineolic acids and derivatives class of compounds. Those are derivatives of lineolic acid. Lineolic acid is a polyunsaturated omega-6 18 carbon long fatty acid, with two CC double bonds at the 9- and 12-positions. Thus, steridonic acid is considered to be a fatty acid lipid molecule. Steridonic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Steridonic acid can be found in borage, which makes steridonic acid a potential biomarker for the consumption of this food product. Steridonic acid can be found primarily in blood and feces. In humans, steridonic acid is involved in the alpha linolenic acid and linoleic acid metabolism. Stearidonic acid is found in dietary plant oils which are metabolized to longer-chain, more unsaturated (n-3) PUFA. These oils appear to possess hypotriglyceridemic properties typically associated with fish oils.(PMID: 15173404). Stearidonic acid may be used as a precursor to increase the EPA content of human lipids and that combinations of gamma-linolenic acid and stearidonic acid eicosapentaenoic acid can be used to manipulate the fatty acid compositions of lipid pools in subtle ways. Such effects may offer new strategies for manipulation of cell composition in order to influence cellular responses and functions in desirable ways. (PMID: 15120716).
Clupanodonic acid
Docosapentaenoic acid (also known as clupanodonic acid) is an essential omega-3 fatty acid (EFA) which is prevalent in fish oils. Docosapentaenoic acid, commonly called DPA, is an intermediary between eicosapentaenoic acid (EPA, 20:5 ω-3) and docosahexaenoic acid (DHA, 22:6 ω-3). Seal oil is a rich source. There are three functions of docosapentaenoic acid. The most important is as part of phospholipids in all animal cellular membranes: a deficiency of docosapentaenoic acid leads to faulty membranes being formed. A second is in the transport and oxidation of cholesterol: clupanodonic acid tends to lower plasma cholesterol. A third function is as a precursor of prostanoids which are only formed from docosapentaenoic acid. Deficiency of this in experimental animals causes lesions mainly attributable to faulty cellular membranes: sudden failure of growth, lesions of skin and kidney and connective tissue, erythrocyte fragility, impaired fertility, uncoupling of oxidation and phosphorylation. In man pure deficiency of docosapentaenoic acid has been studied particularly in persons fed intravenously. A relative deficiency (that is, a low ratio in the body of docosapentaenoic to long-chain saturated fatty acids and isomers of docosapentaenoate) is common on Western diets and plays an important part in the causation of atherosclerosis, coronary thrombosis, multiple sclerosis, the triopathy of diabetes mellitus, hypertension and certain forms of malignant disease. Various factors affect the dietary requirement of docosapentaenoic acid. (PMID: 6469703) [HMDB]. 7Z,10Z,13Z,16Z,19Z-Docosapentaenoic acid is found in many foods, some of which are green zucchini, green bell pepper, green bean, and red bell pepper. Docosapentaenoic acid (22n-3) (also known as clupanodonic acid) is an essential omega-3 fatty acid (EFA) which is prevalent in fish oils. Docosapentaenoic acid, commonly called DPA, is an intermediary between eicosapentaenoic acid (EPA, 20:5 ω-3) and docosahexaenoic acid (DHA, 22:6 ω-3). Seal oil is a rich source of this metabolite. There are three functions of docosapentaenoic acid. Most importantly, it is a component of phospholipids found in all animal cell membranes, and a deficiency of docosapentaenoic acid leads to faulty membranes being formed. Secondly, it is involved in the transport and oxidation of cholesterol, and clupanodonic acid tends to lower plasma cholesterol. A third function is as a precursor of prostanoids which are only formed from docosapentaenoic acid. Deficiency of this in experimental animals causes lesions mainly attributable to faulty cellular membranes. Outcomes include sudden failure of growth, lesions of the skin, kidney, and connective tissue, erythrocyte fragility, impaired fertility, and the uncoupling of oxidation and phosphorylation. In humans, pure deficiency of docosapentaenoic acid has been studied particularly in persons fed intravenously. A relative deficiency (that is, a low ratio in the body of docosapentaenoic to long-chain saturated fatty acids and isomers of docosapentaenoate) is common in Western diets and plays an important part in the causation of atherosclerosis, coronary thrombosis, multiple sclerosis, the triopathy of diabetes mellitus, hypertension, and certain forms of malignant disease. Various factors affect the dietary requirement of docosapentaenoic acid (PMID: 6469703). Docosapentaenoic acid (22n-3) is a component of phospholipids found in all animal cell membranes.
Cis-8,11,14,17-Eicosatetraenoic acid
Cis-8,11,14,17-Eicosatetraenoic acid is an eicosanoid present in marine lipids, a minor n-3 polyunsaturated fatty acid (PUFA) which is a position isomer of 20:4n-6. n-3 PUFA contained in marine lipids appear to have a protective effect against coronary heart disease and thrombosis. Human platelets metabolize 8,11,14,17-eicosatetraenoic acid primarily into 12-hydroxy-8,10,14,17-eicosatetraenoic acid. The eicosanoids are a diverse family of molecules that have powerful effects on cell function. They are best known as intercellular messengers, having autocrine and paracrine effects following their secretion from the cells that synthesize them. The diversity of possible products that can be synthesized from eicosatrienoic acid is due, in part to the variety of enzymes that can act on it. Studies have placed many, but not all, of these enzymes at or inside the nucleus. In some cases, the nuclear import or export of eicosatrienoic acid-processing enzymes is highly regulated. Furthermore, nuclear receptors that are activated by specific eicosanoids are known to exist. Taken together, these findings indicate that the enzymatic conversion of eicosatrienoic acid to specific signaling molecules can occur in the nucleus, that it is regulated, and that the synthesized products may act within the nucleus. PMID: 3109494, 8142566, 16574479, 15896193, 10037447). Trans fatty acids are characteristically produced during industrial hydrogenation of plant oils. Cis-8,11,14,17-Eicosatetraenoic acid is an eicosanoid present in marine lipids, a minor n-3 polyunsaturated fatty acid (PUFA) which is a position isomer of 20:4n-6. n-3 PUFA contained in marine lipids appear to have a protective effect against coronary heart disease and thrombosis. Human platelets metabolize 8,11,14,17-eicosatetraenoic acid primarily into 12-hydroxy-8,10,14,17-eicosatetraenoic acid. The eicosanoids are a diverse family of molecules that have powerful effects on cell function. They are best known as intercellular messengers, having autocrine and paracrine effects following their secretion from the cells that synthesize them. The diversity of possible products that can be synthesized from eicosatrienoic acid is due, in part to the variety of enzymes that can act on it. Studies have placed many, but not all, of these enzymes at or inside the nucleus. In some cases, the nuclear import or export of eicosatrienoic acid-processing enzymes is highly regulated. Furthermore, nuclear receptors that are activated by specific eicosanoids are known to exist. Taken together, these findings indicate that the enzymatic conversion of eicosatrienoic acid to specific signaling molecules can occur in the nucleus, that it is regulated, and that the synthesized products may act within the nucleus. PMID: 3109494, 8142566, 16574479, 15896193, 10037447)
Tetracosahexaenoic acid
The formation of docosahexaenoic acid(DHA) involves the production of tetracosahexaenoic acid C24:6n-3) from dietary linolenic acid (C18:3n-3) via a series of elongation and desaturation reactions, followed by beta-oxidation of C24:6n-3 to C22:6n-3. DHA is deficient in patients lacking peroxisomes.(PMID: 11734571). The formation of docosahexaenoic acid(DHA) involves the production of tetracosahexaenoic acid C24:6n-3) from dietary linolenic acid (C18:3n-3) via a series of elongation and desaturation reactions, followed by beta-oxidation of C24:6n-3 to C22:6n-3.
PC(18:3(9Z,12Z,15Z)/18:2(9Z,12Z))
C44H78NO8P (779.5464757999999)
PC(18:3(9Z,12Z,15Z)/18:2(9Z,12Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:3(9Z,12Z,15Z)/18:2(9Z,12Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the linoleic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. 1-18:3-2-18:2-phosphatidylcholine is also known as phosphatidylcholine (1-18:3-2-18:2) or 18:3-18:2-pc. 1-18:3-2-18:2-phosphatidylcholine is practically insoluble (in water) and a moderately acidic compound (based on its pKa). 1-18:3-2-18:2-phosphatidylcholine can be found in a number of food items such as black raspberry, yardlong bean, swiss chard, and sunburst squash (pattypan squash), which makes 1-18:3-2-18:2-phosphatidylcholine a potential biomarker for the consumption of these food products. 1-18:3-2-18:2-phosphatidylcholine can be found primarily in blood and saliva, as well as throughout all human tissues. In humans, 1-18:3-2-18:2-phosphatidylcholine is involved in few metabolic pathways, which include alpha linolenic acid and linoleic acid metabolism, phosphatidylcholine biosynthesis PC(18:3(9Z,12Z,15Z)/18:2(9Z,12Z)), and phosphatidylethanolamine biosynthesis PE(18:3(9Z,12Z,15Z)/18:2(9Z,12Z)).
Tetracosatetraenoic acid (24:4n-6)
Tetracosatetraenoic acid n-6 is metabolized to radiolabelled monohydroxylated fatty acids (predominantly the 9-hydroxy positional isomer) but not to other lipoxygenase or cyclooxygenase products by the calcium ionophore-stimulated cells. (PMID: 8049246). Oxidation of tetracosatetraenoic acid n-6 is relatively normal in adrenoleukodystrophy cells and in the cells from one PD,peroxisomal disease patient. Tetracosatetraenoic acid n-6 is metabolized to radiolabelled monohydroxylated fatty acids (predominantly the 9-hydroxy positional isomer) but not to other lipoxygenase or cyclooxygenase products by the calcium ionophore-stimulated cells.
Tetracosapentaenoic acid (24:5n-6)
Tetracosapentaenioc acid is intermediate of Linolenic acid metabolism. [HMDB] Tetracosapentaenioc acid is intermediate of Linolenic acid metabolism.
Tetracosapentaenoic acid (24:5n-3)
Tetracosapentaenioc acid is intermediate of alpha-Linolenic acid metabolism. [HMDB] Tetracosapentaenioc acid is intermediate of alpha-Linolenic acid metabolism.