Reaction Process: BioCyc:TRYPANO_PARATHION-DEGRADATION-PWY
parathion degradation related metabolites
find 7 related metabolites which is associated with chemical reaction(pathway) parathion degradation
H2O + parathion ⟶ 4-nitrophenol + H+ + diethylthiophosphate
Parathion
C10H14NO5PS (291.03302840000003)
Parathion is a highly toxic cholinesterase inhibitor that is used as an acaricide and as an insecticide. D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors A highly toxic cholinesterase inhibitor that is used as an acaricide and as an insecticide. [HMDB] C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
Diethylphosphate
Diethylphosphate is product of metabolism and of environmental degradation of Chlorpyrifos (CPF; a commonly used diethylphosphorothionate organophosphorus (OP) insecticide) and are routinely measured in urine as biomarkers of exposure. (PMID: 17590257). [HMDB] Diethylphosphate is product of metabolism and of environmental degradation of Chlorpyrifos (CPF; a commonly used diethylphosphorothionate organophosphorus (OP) insecticide) and are routinely measured in urine as biomarkers of exposure. (PMID: 17590257). KEIO_ID D141 Diethylphosphate (DEP) is product of metabolism and of environmental degradation of a commonly used insecticide Chlorpyrifos.
4-Nitrophenol
4-Nitrophenol (also called p-nitrophenol or 4-hydroxynitrobenzene) is a phenolic compound that has a nitro group at the opposite position of the hydroxyl group on the benzene ring. It belongs to the class of organic compounds known as nitrophenols. Nitrophenols are compounds containing a nitrophenol moiety, which consists of a benzene ring bearing both a hydroxyl group and a nitro group on two different ring carbon atoms. 4-Nitrophenol shows two polymorphs in the crystalline state. The alpha-form is colorless pillars, unstable at room temperature, and stable toward sunlight. The beta-form is yellow pillars, stable at room temperature, and gradually turns red upon irradiation of sunlight. Usually 4-nitrophenol exists as a mixture of these two forms. 4-Nitrophenol can be used as a pH indicator and as an intermediate in the synthesis of paracetamol. Itis also used as the precursor for the preparation of phenetidine and acetophenetidine, indicators, and raw materials for fungicides. Bioaccumulation of this compound rarely occurs. In peptide synthesis, carboxylate ester derivatives of 4-nitrophenol may serve as activated components for construction of amide moieties. 4-Nitrophenol is a potentially toxic compound: it can cause eyes, skin, and respiratory tract irritations. It may also cause inflammation of those parts. It has a delayed interaction with blood and forms methaemoglobin which is responsible for methemoglobinemia -which is characterized by tissue hypoxia, as methemoglobin cannot bind oxygen-, potentially causing cyanosis, confusion, and unconsciousness. When ingested, it causes abdominal pain and vomiting. Prolonged contact with skin may cause allergic response. Genotoxicity and carcinogenicity of 4-nitrophenol are not known. The LD50 in mice is 282 mg/kg and in rats is 202 mg/kg. Outside of the human body, 4-Nitrophenol has been detected, but not quantified in cow milk. Conjugates are more polar than the parent compounds and therefore are easier to excrete in the urine. CONFIDENCE standard compound; INTERNAL_ID 1202; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3370; ORIGINAL_PRECURSOR_SCAN_NO 3368 CONFIDENCE standard compound; INTERNAL_ID 1202; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3384; ORIGINAL_PRECURSOR_SCAN_NO 3382 CONFIDENCE standard compound; INTERNAL_ID 1202; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3386; ORIGINAL_PRECURSOR_SCAN_NO 3382 CONFIDENCE standard compound; INTERNAL_ID 1202; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3360; ORIGINAL_PRECURSOR_SCAN_NO 3357 CONFIDENCE standard compound; INTERNAL_ID 1202; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3383; ORIGINAL_PRECURSOR_SCAN_NO 3379 CONFIDENCE standard compound; INTERNAL_ID 1202; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9235; ORIGINAL_PRECURSOR_SCAN_NO 9231 CONFIDENCE standard compound; INTERNAL_ID 1202; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9286; ORIGINAL_PRECURSOR_SCAN_NO 9282 CONFIDENCE standard compound; INTERNAL_ID 1202; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9273; ORIGINAL_PRECURSOR_SCAN_NO 9268 CONFIDENCE standard compound; INTERNAL_ID 1202; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9283; ORIGINAL_PRECURSOR_SCAN_NO 9278 CONFIDENCE standard compound; INTERNAL_ID 1202; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3372; ORIGINAL_PRECURSOR_SCAN_NO 3370 CONFIDENCE standard compound; INTERNAL_ID 982; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3485; ORIGINAL_PRECURSOR_SCAN_NO 3484 CONFIDENCE standard compound; INTERNAL_ID 982; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3494; ORIGINAL_PRECURSOR_SCAN_NO 3493 CONFIDENCE standard compound; INTERNAL_ID 982; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3463; ORIGINAL_PRECURSOR_SCAN_NO 3462 CONFIDENCE standard compound; INTERNAL_ID 982; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3492; ORIGINAL_PRECURSOR_SCAN_NO 3491 CONFIDENCE standard compound; INTERNAL_ID 982; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3496; ORIGINAL_PRECURSOR_SCAN_NO 3495 4-Nitrophenol is a phenolic metabolite of environmental chemicals present in samples from the general population. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 2298
Diethylthiophosphate
Diethylthiophosphate, also known as DETP, belongs to the class of organic compounds known as thiophosphate diesters. These are organic compounds containing the thiophosphoric acid functional group or a derivative thereof, with the general structure ROP(OR)(OR)=S, where exactly two R-groups are organyl groups. The glutathione transferase reactions produce products that are, in most cases, of low toxicity. Diethylthiophosphate is a potentially toxic compound. Acute OP intoxication results from blockage of the decomposition of synaptic acetylcholine because the pesticide covalently binds to chlolinesterase Chronic exposure to POs has neurological sequelae as well and data suggests that OP exposure alters sperm chromatin condensation (A3181, A3182, A3183, A3181). Chronic exposure to POs has neurological sequelae as well (PMID 8179040) and data suggests that OP exposure alters sperm chromatin condensation (PMID 15050412). PON1 hydrolyzes the active metabolites in several organophosphates insecticides as well as, nerve agents such as soman, sarin, and VX. Metabolism of organophosphates occurs principally by oxidation, by hydrolysis via esterases and by reaction with glutathione. Acute OP intoxication results from blockage of the decomposition of synaptic acetylcholine because the pesticide covalently binds to chlolinesterase (PMID 11991535). Diethylthiophosphate is the most frequent metabolite of organophosphorus (OP) found in urine (PMID 15050412). Organophosphorus compounds are widely used as pesticides because of easy degradation in the environment. Acute OP intoxication results from blockage of the decomposition of synaptic acetylcholine because the pesticide covalently binds to chlolinesterase (PMID 11991535). Chronic exposure to POs has neurological sequelae as well (PMID 8179040) and data suggests that OP exposure alters sperm chromatin condensation (PMID 15050412) [HMDB] KEIO_ID D113
Water
Water is a chemical substance that is essential to all known forms of life. It appears colorless to the naked eye in small quantities, though it is actually slightly blue in color. It covers 71\\% of Earths surface. Current estimates suggest that there are 1.4 billion cubic kilometers (330 million m3) of it available on Earth, and it exists in many forms. It appears mostly in the oceans (saltwater) and polar ice caps, but it is also present as clouds, rain water, rivers, freshwater aquifers, lakes, and sea ice. Water in these bodies perpetually moves through a cycle of evaporation, precipitation, and runoff to the sea. Clean water is essential to human life. In many parts of the world, it is in short supply. From a biological standpoint, water has many distinct properties that are critical for the proliferation of life that set it apart from other substances. It carries out this role by allowing organic compounds to react in ways that ultimately allow replication. All known forms of life depend on water. Water is vital both as a solvent in which many of the bodys solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Water is thus essential and central to these metabolic processes. Water is also central to photosynthesis and respiration. Photosynthetic cells use the suns energy to split off waters hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the suns energy and reform water and CO2 in the process (cellular respiration). Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H+, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as hydroxide ion (OH-) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7. Acids have pH values less than 7 while bases have values greater than 7. Stomach acid (HCl) is useful to digestion. However, its corrosive effect on the esophagus during reflux can temporarily be neutralized by ingestion of a base such as aluminum hydroxide to produce the neutral molecules water and the salt aluminum chloride. Human biochemistry that involves enzymes usually performs optimally around a biologically neutral pH of 7.4. (Wikipedia). Water, also known as purified water or dihydrogen oxide, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Water can be found in a number of food items such as caraway, oxheart cabbage, alaska wild rhubarb, and japanese walnut, which makes water a potential biomarker for the consumption of these food products. Water can be found primarily in most biofluids, including ascites Fluid, blood, cerebrospinal fluid (CSF), and lymph, as well as throughout all human tissues. Water exists in all living species, ranging from bacteria to humans. In humans, water is involved in several metabolic pathways, some of which include cardiolipin biosynthesis CL(20:4(5Z,8Z,11Z,14Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)), cardiolipin biosynthesis cl(i-13:0/i-15:0/i-20:0/i-24:0), cardiolipin biosynthesis CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), and cardiolipin biosynthesis cl(a-13:0/i-18:0/i-13:0/i-19:0). Water is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-21:0/i-13:0/21:0), de novo triacylglycerol biosynthesis tg(22:0/20:0/i-20:0), de novo triacylglycerol biosynthesis tg(a-21:0/i-20:0/i-14:0), and de novo triacylglycerol biosynthesis tg(i-21:0/a-17:0/i-12:0). Water is a drug which is used for diluting or dissolving drugs for intravenous, intramuscular or subcutaneous injection, according to instructions of the manufacturer of the drug to be administered [fda label]. Water plays an important role in the world economy. Approximately 70\\% of the freshwater used by humans goes to agriculture. Fishing in salt and fresh water bodies is a major source of food for many parts of the world. Much of long-distance trade of commodities (such as oil and natural gas) and manufactured products is transported by boats through seas, rivers, lakes, and canals. Large quantities of water, ice, and steam are used for cooling and heating, in industry and homes. Water is an excellent solvent for a wide variety of chemical substances; as such it is widely used in industrial processes, and in cooking and washing. Water is also central to many sports and other forms of entertainment, such as swimming, pleasure boating, boat racing, surfing, sport fishing, and diving .
Hydrogen sulfide
Hydrogen sulfide, also known as h2s or acide sulfhydrique, is a member of the class of compounds known as other non-metal sulfides. Other non-metal sulfides are inorganic compounds containing a sulfur atom of an oxidation state of -2, in which the heaviest atom bonded to the oxygen belongs to the class of other non-metals. Hydrogen sulfide can be found in a number of food items such as small-leaf linden, agar, devilfish, and nutmeg, which makes hydrogen sulfide a potential biomarker for the consumption of these food products. Hydrogen sulfide can be found primarily in blood and feces, as well as throughout most human tissues. Hydrogen sulfide exists in all living species, ranging from bacteria to humans. In humans, hydrogen sulfide is involved in a couple of metabolic pathways, which include cysteine metabolism and cystinosis, ocular nonnephropathic. Hydrogen sulfide is also involved in beta-mercaptolactate-cysteine disulfiduria, which is a metabolic disorder. Moreover, hydrogen sulfide is found to be associated with hydrogen sulfide poisoning. Hydrogen sulfide is a non-carcinogenic (not listed by IARC) potentially toxic compound. Hydrogen sulfide often results from the microbial breakdown of organic matter in the absence of oxygen gas, such as in swamps and sewers; this process is commonly known as anaerobic digestion. H 2S also occurs in volcanic gases, natural gas, and in some sources of well water. The human body produces small amounts of H 2S and uses it as a signaling molecule . Treatment involves immediate inhalation of amyl nitrite, injections of sodium nitrite, inhalation of pure oxygen, administration of bronchodilators to overcome eventual bronchospasm, and in some cases hyperbaric oxygen therapy (HBO). HBO therapy has anecdotal support and remains controversial (L1139) (T3DB). Hydrogen sulfide is a highly toxic and flammable gas. Because it is heavier than air it tends to accumulate at the bottom of poorly ventilated spaces. Although very pungent at first, it quickly deadens the sense of smell, so potential victims may be unaware of its presence until it is too late. H2S arises from virtually anywhere where elemental sulfur comes into contact with organic material, especially at high temperatures. Hydrogen sulfide is a covalent hydride chemically related to water (H2O) since oxygen and sulfur occur in the same periodic table group. It often results when bacteria break down organic matter in the absence of oxygen, such as in swamps, and sewers (alongside the process of anaerobic digestion). It also occurs in volcanic gases, natural gas and some well waters. It is also important to note that Hydrogen sulfide is a central participant in the sulfur cycle, the biogeochemical cycle of sulfur on Earth. As mentioned above, sulfur-reducing and sulfate-reducing bacteria derive energy from oxidizing hydrogen or organic molecules in the absence of oxygen by reducing sulfur or sulfate to hydrogen sulfide. Other bacteria liberate hydrogen sulfide from sulfur-containing amino acids. Several groups of bacteria can use hydrogen sulfide as fuel, oxidizing it to elemental sulfur or to sulfate by using oxygen or nitrate as oxidant. The purple sulfur bacteria and the green sulfur bacteria use hydrogen sulfide as electron donor in photosynthesis, thereby producing elemental sulfur. (In fact, this mode of photosynthesis is older than the mode of cyanobacteria, algae and plants which uses water as electron donor and liberates oxygen). Hydrogen sulfide can be found in Alcaligenes, Chromobacteriumn, Klebsiella, Proteus and Pseudomonas (PMID: 13061742). D018377 - Neurotransmitter Agents > D064426 - Gasotransmitters D004785 - Environmental Pollutants > D000393 - Air Pollutants