NCBI Taxonomy: 75947

Lactuca virosa (ncbi_taxid: 75947)

found 180 associated metabolites at species taxonomy rank level.

Ancestor: Lactuca

Child Taxonomies: none taxonomy data.

Luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.047736)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Apigenin

5,7-Dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O5 (270.052821)


Apigenin is a trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. It has a role as a metabolite and an antineoplastic agent. It is a conjugate acid of an apigenin-7-olate. Apigenin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter and the increase in hINV promoter activity. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes. (A7924). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin. (A7925). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis. (A7926). 5,7,4-trihydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, and MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes (PMID: 16982614). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin (PMID: 16844095). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis (PMID: 16648565). Flavone found in a wide variety of foodstuffs; buckwheat, cabbage, celeriac, celery, lettuce, oregano, parsley, peppermint, perilla, pummelo juice, thyme, sweet potatoes, green tea and wild carrot [DFC] A trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB002_Apigenin_pos_10eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_40eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_20eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_30eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_50eV_CB000005.txt [Raw Data] CB002_Apigenin_neg_40eV_000005.txt [Raw Data] CB002_Apigenin_neg_20eV_000005.txt [Raw Data] CB002_Apigenin_neg_10eV_000005.txt [Raw Data] CB002_Apigenin_neg_50eV_000005.txt CONFIDENCE standard compound; INTERNAL_ID 151 [Raw Data] CB002_Apigenin_neg_30eV_000005.txt CONFIDENCE standard compound; ML_ID 26 Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

Quercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one

C15H10O7 (302.042651)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

MOROL

(3S,4aR,6aR,6bR,8aR,12bR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12b,13,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.386145)


Germanicol is a pentacyclic triterpenoid that is oleanane substituted by a hydroxy group at the 3beta-position and with a double bond between positioins 18 and 19. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. Germanicol is a natural product found in Barringtonia racemosa, Euphorbia nicaeensis, and other organisms with data available.

   

Lactupicrin

Benzeneacetic acid, 4-hydroxy-, 2,3,3a,4,5,7,9a,9b-octahydro-9-(hydroxymethyl)-6-methyl-3-methylene-2,7-dioxoazuleno(4,5-b)furan-4-yl ester, (3aR-(3aalpha,4alpha,9aalpha,9bbeta))-

C23H22O7 (410.1365462)


Lactucopicrin is an azulenofuran, a cyclic terpene ketone, an enone, a member of phenols, a sesquiterpene lactone and a primary alcohol. It has a role as a plant metabolite, a sedative and an antimalarial. It is functionally related to a 4-hydroxyphenylacetic acid and a lactucin. Lactupicrin is a natural product found in Cichorium endivia, Cichorium spinosum, and other organisms with data available. Constituent of Lactuca sativa (lettuce), Cichorium intybus (chicory) and Cichorium endivia (endive). Lactupicrin is found in many foods, some of which are endive, romaine lettuce, chicory, and lettuce. Lactupicrin is found in chicory. Lactupicrin is a constituent of Lactuca sativa (lettuce), Cichorium intybus (chicory) and Cichorium endivia (endive) Lactupicrin (Lactucopicrin) is a characteristic bitter sesquiterpene lactone that can relieve pain. Lactupicrin exhibits atheroprotective effect[1][2]. Lactupicrin (Lactucopicrin) is a characteristic bitter sesquiterpene lactone that can relieve pain. Lactupicrin exhibits atheroprotective effect[1][2].

   

Cichoriin

6-hydroxy-7-((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-tetrahydro-2H-pyran-2-yloxy)-2H-chromen-2-one

C15H16O9 (340.0794286)


Cichoriin is a glycoside and a member of coumarins. Cichoriin is a natural product found in Koelpinia linearis, Cichorium intybus, and other organisms with data available. Isolated from chicory (Cichorium intybus). Cichoriin is found in chicory and green vegetables. Cichoriin is found in chicory. Cichoriin is isolated from chicory (Cichorium intybus Cichoriin is an active compounds against SARS-CoV-2, and may be a potential candidate in researching severe COVID-19[1]. Cichoriin is an active compounds against SARS-CoV-2, and may be a potential candidate in researching severe COVID-19[1].

   

Lactucin

4-hydroxy-9-(hydroxymethyl)-6-methyl-3-methylidene-2H,3H,3aH,4H,5H,7H,9aH,9bH-azuleno[4,5-b]furan-2,7-dione

C15H16O5 (276.0997686)


Lactucin is found in chicory. Lactucin is a constituent of Cichorium intybus (chicory) Lactucin is a bitter substance that forms a white crystalline solid and belongs to the group of sesquiterpene lactones. It is found in some varieties of lettuce and is an ingredient of lactucarium. It has been shown to have analgesic and sedative properties Constituent of Cichorium intybus (chicory)

   

Taraxasterol

(3S,4aR,6aR,6aR,6bR,8aR,12S,12aS,14aR,14bR)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-1,2,3,4a,5,6,6a,7,8,9,10,12,12a,13,14,14a-hexadecahydropicen-3-ol

C30H50O (426.386145)


Constituent of dandelion roots (Taraxacum officinale), Roman chamomile flowers (Anthemis nobilis) and many other plants. Taraxasterol is found in many foods, some of which are soy bean, chicory, evening primrose, and common grape. Taraxasterol is found in alcoholic beverages. Taraxasterol is a constituent of dandelion roots (Taraxacum officinale), Roman chamomile flowers (Anthemis nobilis) and many other plants Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1]. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1].

   
   

Vernoflexuoside

Glucozaluzanin C

C21H28O8 (408.1784088)


   

8-Deoxylactucin

(9aS,9bS)-9-(hydroxymethyl)-6-methyl-3-methylidene-2H,3H,3aH,4H,5H,7H,9aH,9bH-azuleno[4,5-b]furan-2,7-dione

C15H16O4 (260.1048536)


8-deoxylactucin is a member of the class of compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom. 8-deoxylactucin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 8-deoxylactucin can be found in chicory, which makes 8-deoxylactucin a potential biomarker for the consumption of this food product.

   

Jacquinelin

(3S,3aS,9aS,9bS)-9-(hydroxymethyl)-3,6-dimethyl-2H,3H,3aH,4H,5H,7H,9aH,9bH-azuleno[4,5-b]furan-2,7-dione

C15H18O4 (262.1205028)


Jacquinelin, also known as 11,13-dihydro-8-deoxylactucin or jacquilenin, is a member of the class of compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom. Jacquinelin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Jacquinelin can be found in chicory and endive, which makes jacquinelin a potential biomarker for the consumption of these food products.

   

Crepidiaside B

(3S,3aS,9aS,9bS)-3,6-dimethyl-9-({[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-2H,3H,3aH,4H,5H,7H,9aH,9bH-azuleno[4,5-b]furan-2,7-dione

C21H28O9 (424.17332380000005)


Crepidiaside b is a member of the class of compounds known as O-glycosyl compounds. O-glycosyl compounds are glycoside in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond. Crepidiaside b is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Crepidiaside b can be found in chicory and endive, which makes crepidiaside b a potential biomarker for the consumption of these food products.

   

Cichorioside B

(3S,3aR,4S,9aS,9bR)-4-hydroxy-3,6-dimethyl-9-({[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-2H,3H,3aH,4H,5H,7H,9aH,9bH-azuleno[4,5-b]furan-2,7-dione

C21H28O10 (440.16823880000004)


Cichorioside b is a member of the class of compounds known as O-glycosyl compounds. O-glycosyl compounds are glycoside in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond. Cichorioside b is soluble (in water) and a very weakly acidic compound (based on its pKa). Cichorioside b can be found in chicory and endive, which makes cichorioside b a potential biomarker for the consumption of these food products.

   

Taraxasterol acetate

4,4,6a,6b,8a,12,14b-Heptamethyl-11-methylidene-docosahydropicen-3-yl acetic acid

C32H52O2 (468.3967092)


Taraxasterol acetate, also known as urs-20(30)-en-3-ol acetate, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Taraxasterol acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Taraxasterol acetate can be found in burdock, which makes taraxasterol acetate a potential biomarker for the consumption of this food product.

   

Taraxasterol

(3S,4aR,6aR,6aR,6bR,8aR,12S,12aR,14aR,14bR)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-1,2,3,4a,5,6,6a,7,8,9,10,12,12a,13,14,14a-hexadecahydropicen-3-ol

C30H50O (426.386145)


Taraxasterol is a pentacyclic triterpenoid that is taraxastane with a beta-hydroxy group at position 3. It has a role as a metabolite and an anti-inflammatory agent. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of a taraxastane. Taraxasterol is a natural product found in Eupatorium altissimum, Eupatorium perfoliatum, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is taraxastane with a beta-hydroxy group at position 3. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1]. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1].

   

Apigenin

5,7,4-Trihydroxyflavone

C15H10O5 (270.052821)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.061 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.062 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.058 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.059 Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy- (9CI)

C15H10O6 (286.047736)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Quercetin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyran-4-one

C15H10O7 (302.042651)


Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Lactucin

Lactucin

C15H16O5 (276.0997686)


An azulenofuran that is 3-methylidene-3,3a,4,5,9a,9b-hexahydroazuleno[4,5-b]furan-2,7-dione carrying additional hydroxy, methyl and hydroxymethyl substituents at positions 4, 6 and 9 respectively (the 3aR,4S,9aS,9bR-diastereomer). Found in chicory.

   

Lactucopicrin

Lactucopicrin

C23H22O7 (410.1365462)


Lactupicrin (Lactucopicrin) is a characteristic bitter sesquiterpene lactone that can relieve pain. Lactupicrin exhibits atheroprotective effect[1][2]. Lactupicrin (Lactucopicrin) is a characteristic bitter sesquiterpene lactone that can relieve pain. Lactupicrin exhibits atheroprotective effect[1][2].

   

Scorzoside

3-methyl-6,9-dimethylidene-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydroazuleno[4,5-b]furan-2-one

C21H30O8 (410.194058)


   

Versulin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-(4-hydroxyphenyl)- (9CI)

C15H10O5 (270.052821)


Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

Quertin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-

C15H10O7 (302.042651)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Cichoriin

6-hydroxy-7-((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-tetrahydro-2H-pyran-2-yloxy)-2H-chromen-2-one

C15H16O9 (340.0794286)


Cichoriin is a glycoside and a member of coumarins. Cichoriin is a natural product found in Koelpinia linearis, Cichorium intybus, and other organisms with data available. Cichoriin is an active compounds against SARS-CoV-2, and may be a potential candidate in researching severe COVID-19[1]. Cichoriin is an active compounds against SARS-CoV-2, and may be a potential candidate in researching severe COVID-19[1].

   

Lactopicrin

Benzeneacetic acid, 4-hydroxy-, 2,3,3a,4,5,7,9a,9b-octahydro-9-(hydroxymethyl)-6-methyl-3-methylene-2,7-dioxoazuleno(4,5-b)furan-4-yl ester, (3aR-(3aalpha,4alpha,9aalpha,9bbeta))-

C23H22O7 (410.1365462)


Lactucopicrin is an azulenofuran, a cyclic terpene ketone, an enone, a member of phenols, a sesquiterpene lactone and a primary alcohol. It has a role as a plant metabolite, a sedative and an antimalarial. It is functionally related to a 4-hydroxyphenylacetic acid and a lactucin. Lactupicrin is a natural product found in Cichorium endivia, Cichorium spinosum, and other organisms with data available. Lactupicrin (Lactucopicrin) is a characteristic bitter sesquiterpene lactone that can relieve pain. Lactupicrin exhibits atheroprotective effect[1][2]. Lactupicrin (Lactucopicrin) is a characteristic bitter sesquiterpene lactone that can relieve pain. Lactupicrin exhibits atheroprotective effect[1][2].

   

5-hydroxy-3,6,9-trimethylidene-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydroazuleno[4,5-b]furan-2-one

5-hydroxy-3,6,9-trimethylidene-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydroazuleno[4,5-b]furan-2-one

C21H28O9 (424.17332380000005)


   

3,10-dimethyl-2-oxo-9-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-6-carbaldehyde

3,10-dimethyl-2-oxo-9-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-6-carbaldehyde

C21H30O9 (426.18897300000003)


   

(3s,3as,9r,11as)-6-(hydroxymethyl)-3,10-dimethyl-9-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3s,3as,9r,11as)-6-(hydroxymethyl)-3,10-dimethyl-9-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C21H32O9 (428.2046222)


   

(3as,11ar)-6-methyl-3-methylidene-10-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3as,11ar)-6-methyl-3-methylidene-10-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C21H30O8 (410.194058)


   

4-hydroxy-9-(hydroxymethyl)-3,6-dimethyl-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

4-hydroxy-9-(hydroxymethyl)-3,6-dimethyl-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H18O5 (278.1154178)


   

(3s,3as,6ar,8s,9ar,9bs)-3-methyl-6,9-dimethylidene-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

(3s,3as,6ar,8s,9ar,9bs)-3-methyl-6,9-dimethylidene-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

C21H30O8 (410.194058)


   

(3s,3as,9r,11as)-3,10-dimethyl-2-oxo-9-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-6-carbaldehyde

(3s,3as,9r,11as)-3,10-dimethyl-2-oxo-9-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-6-carbaldehyde

C21H30O9 (426.18897300000003)


   

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12b,13,14,14a-tetradecahydropicen-3-ol

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12b,13,14,14a-tetradecahydropicen-3-ol

C30H50O (426.386145)


   

3-methyl-6,9-dimethylidene-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

3-methyl-6,9-dimethylidene-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

C21H30O8 (410.194058)


   

11β,13-dihydrolactucopicrin

NA

C23H24O7 (412.1521954)


{"Ingredient_id": "HBIN000358","Ingredient_name": "11\u03b2,13-dihydrolactucopicrin","Alias": "NA","Ingredient_formula": "C23H24O7","Ingredient_Smile": "CC1C2C(CC(=C3C(C2OC1=O)C(=CC3=O)CO)C)OC(=O)CC4=CC=C(C=C4)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "41170","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

6-(hydroxymethyl)-3,10-dimethyl-9-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

6-(hydroxymethyl)-3,10-dimethyl-9-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C21H32O9 (428.2046222)


   

(3as,5r,6ar,8s,9ar,9bs)-5,8-dihydroxy-3,6,9-trimethylidene-octahydroazuleno[4,5-b]furan-2-one

(3as,5r,6ar,8s,9ar,9bs)-5,8-dihydroxy-3,6,9-trimethylidene-octahydroazuleno[4,5-b]furan-2-one

C15H18O4 (262.1205028)


   

(3s,3as,5r,6ar,8s,9ar,9bs)-5-hydroxy-3-methyl-6,9-dimethylidene-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

(3s,3as,5r,6ar,8s,9ar,9bs)-5-hydroxy-3-methyl-6,9-dimethylidene-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

C21H30O9 (426.18897300000003)


   

(3s,3as,9s,11as)-3,10-dimethyl-2-oxo-9-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-6-carbaldehyde

(3s,3as,9s,11as)-3,10-dimethyl-2-oxo-9-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-6-carbaldehyde

C21H30O9 (426.18897300000003)


   

6-methyl-3-methylidene-10-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

6-methyl-3-methylidene-10-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C21H30O8 (410.194058)


   

{4-hydroxy-6-methyl-3-methylidene-2,7-dioxo-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-9-yl}methyl 2-(4-hydroxyphenyl)acetate

{4-hydroxy-6-methyl-3-methylidene-2,7-dioxo-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-9-yl}methyl 2-(4-hydroxyphenyl)acetate

C23H22O7 (410.1365462)


   

9-(hydroxymethyl)-3,6-dimethyl-2,7-dioxo-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylprop-2-enoate

9-(hydroxymethyl)-3,6-dimethyl-2,7-dioxo-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylprop-2-enoate

C19H22O6 (346.1416312)


   

5,8-dihydroxy-3,6,9-trimethylidene-octahydroazuleno[4,5-b]furan-2-one

5,8-dihydroxy-3,6,9-trimethylidene-octahydroazuleno[4,5-b]furan-2-one

C15H18O4 (262.1205028)


   

5,8-dihydroxy-3-methyl-6,9-dimethylidene-octahydro-3h-azuleno[4,5-b]furan-2-one

5,8-dihydroxy-3-methyl-6,9-dimethylidene-octahydro-3h-azuleno[4,5-b]furan-2-one

C15H20O4 (264.13615200000004)


   

11β,13-dihydrolactucin

11β,13-dihydrolactucin

C15H18O5 (278.1154178)


   

3,6-dimethyl-9-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

3,6-dimethyl-9-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C21H28O9 (424.17332380000005)


   

4-hydroxy-3,6-dimethyl-9-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

4-hydroxy-3,6-dimethyl-9-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C21H28O10 (440.16823880000004)


   

9-(hydroxymethyl)-3,6-dimethyl-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

9-(hydroxymethyl)-3,6-dimethyl-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H18O4 (262.1205028)


   

(3as,5r,6ar,8s,9ar,9bs)-5-hydroxy-3,6,9-trimethylidene-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydroazuleno[4,5-b]furan-2-one

(3as,5r,6ar,8s,9ar,9bs)-5-hydroxy-3,6,9-trimethylidene-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydroazuleno[4,5-b]furan-2-one

C21H28O9 (424.17332380000005)


   

5-hydroxy-3-methyl-6,9-dimethylidene-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

5-hydroxy-3-methyl-6,9-dimethylidene-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

C21H30O9 (426.18897300000003)


   

4-hydroxy-6-methyl-3-methylidene-9-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

4-hydroxy-6-methyl-3-methylidene-9-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C21H26O10 (438.15258960000006)


   

(3s,3ar,4s,9as,9br)-9-(hydroxymethyl)-3,6-dimethyl-2,7-dioxo-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylprop-2-enoate

(3s,3ar,4s,9as,9br)-9-(hydroxymethyl)-3,6-dimethyl-2,7-dioxo-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylprop-2-enoate

C19H22O6 (346.1416312)


   

(3s,3as,5r,6ar,8s,9ar,9bs)-5,8-dihydroxy-3-methyl-6,9-dimethylidene-octahydro-3h-azuleno[4,5-b]furan-2-one

(3s,3as,5r,6ar,8s,9ar,9bs)-5,8-dihydroxy-3-methyl-6,9-dimethylidene-octahydro-3h-azuleno[4,5-b]furan-2-one

C15H20O4 (264.13615200000004)


   

(3as,4r,9ar,9bs)-4-hydroxy-9-(hydroxymethyl)-6-methyl-3-methylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

(3as,4r,9ar,9bs)-4-hydroxy-9-(hydroxymethyl)-6-methyl-3-methylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H16O5 (276.0997686)


   

9-(hydroxymethyl)-6-methyl-3-methylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

9-(hydroxymethyl)-6-methyl-3-methylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H16O4 (260.1048536)


   

(3s,3as,5r,6ar,9ar,9bs)-3-methyl-6,9-dimethylidene-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

(3s,3as,5r,6ar,9ar,9bs)-3-methyl-6,9-dimethylidene-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

C21H30O8 (410.194058)


   

(3s,3as,4r,9ar,9bs)-4-hydroxy-3,6-dimethyl-9-({[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

(3s,3as,4r,9ar,9bs)-4-hydroxy-3,6-dimethyl-9-({[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C21H28O10 (440.16823880000004)


   

(3ar,4s,9as,9br)-4-hydroxy-6-methyl-3-methylidene-9-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

(3ar,4s,9as,9br)-4-hydroxy-6-methyl-3-methylidene-9-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C21H26O10 (438.15258960000006)