NCBI Taxonomy: 46962
Caulophyllum (ncbi_taxid: 46962)
found 394 associated metabolites at genus taxonomy rank level.
Ancestor: Leonticeae
Child Taxonomies: Caulophyllum robustum, Caulophyllum thalictroides, Caulophyllum giganteum
(R)-Higenamine
(RS)-norcoclaurine is a norcoclaurine. It is a conjugate base of a (RS)-norcoclaurinium. Higenamine is under investigation in clinical trial NCT01451229 (Pharmacokinetics and Pharmacodynamics of Higenamine in Chinese Healthy Subjects). Higenamine is a natural product found in Delphinium caeruleum, Aconitum triphyllum, and other organisms with data available. (R)-Higenamine is found in coffee and coffee products. (R)-Higenamine is an alkaloid from the seed embryo of Nelumbo nucifera (East India lotus). D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D000893 - Anti-Inflammatory Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents D018501 - Antirheumatic Agents
Magnoflorine
C20H24NO4+ (342.17052440000003)
(S)-magnoflorine is an aporphine alkaloid that is (S)-corytuberine in which the nitrogen has been quaternised by an additional methyl group. It has a role as a plant metabolite. It is an aporphine alkaloid and a quaternary ammonium ion. It is functionally related to a (S)-corytuberine. Magnoflorine is a natural product found in Zanthoxylum myriacanthum, Fumaria capreolata, and other organisms with data available. See also: Caulophyllum thalictroides Root (part of).
Anagyrine
Anagyrine is an alkaloid. Anagyrine is a natural product found in Daphniphyllum oldhamii, Ormosia fordiana, and other organisms with data available. Thermospine is a natural product found in Platycelyphium voense, Thermopsis mongolica, and other organisms with data available. Thermopsine is a quinolizidine alkaloid isolated from the fruits and pods and stem bark of Sophora velutina subsp. Thermopsine has antibacterial activity[1].
(S)-Reticuline
C19H23NO4 (329.16269980000004)
(S)-Reticuline is an endogenous precursor of morphine (PMID: 15383669). (S)-Reticuline is a key intermediate in the synthesis of morphine, the major active metabolite of the opium poppy. "Endogenous morphine" has been long isolated and authenticated by mass spectrometry in trace amounts from animal- and human-specific tissue or fluids (PMID: 15874902). Human neuroblastoma cells (SH-SY5Y) were shown capable of synthesizing morphine as well. (S)-Reticuline undergoes a change of configuration at C-1 during its transformation into salutaridinol and thebaine. From thebaine, there is a bifurcate pathway leading to morphine proceeding via codeine or oripavine, in both plants and mammals (PMID 15937106). (S)-reticuline is the (S)-enantiomer of reticuline. It has a role as an EC 2.1.1.116 [3-hydroxy-N-methyl-(S)-coclaurine 4-O-methyltransferase] inhibitor. It is a conjugate base of a (S)-reticulinium(1+). It is an enantiomer of a (R)-reticuline. Reticuline is a natural product found in Fumaria capreolata, Berberis integerrima, and other organisms with data available. See also: Peumus boldus leaf (part of). Alkaloid from Papaver somniferum (opium poppy) and Annona reticulata (custard apple) The (S)-enantiomer of reticuline.
Machiline
C17H19NO3 (285.13648639999997)
(R)-coclaurine is a coclaurine. It is an enantiomer of a (S)-coclaurine. (R)-Coclaurine is a natural product found in Mezilaurus synandra, Stephania excentrica, and other organisms with data available.
SAPONIN K3
Hederagenin 3-O-arabinoside is a triterpenoid saponin that is hederagenin attached to an alpha-L-arabinopyranosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite. It is a triterpenoid saponin, a monosaccharide derivative, a pentacyclic triterpenoid, a hydroxy monocarboxylic acid and an alpha-L-arabinopyranoside. It is functionally related to a hederagenin. It derives from a hydride of an oleanane. Cauloside A is a natural product found in Lonicera japonica, Hedera caucasigena, and other organisms with data available. See also: Caulophyllum robustum Root (part of). A triterpenoid saponin that is hederagenin attached to an alpha-L-arabinopyranosyl residue at position 3 via a glycosidic linkage. D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors D004791 - Enzyme Inhibitors Cauloside A (Leontoside A) is a saponin isolated from Dipsacus asper roots. Cauloside A has potent antifungal activity[1][2]. Cauloside A (Leontoside A) is a saponin isolated from Dipsacus asper roots. Cauloside A has potent antifungal activity[1][2].
Coclaurine
C17H19NO3 (285.13648639999997)
(S)-coclaurine is the (S)-enantiomer of coclaurine. It is a conjugate base of a (S)-coclaurinium. It is an enantiomer of a (R)-coclaurine. Coclaurine is a natural product found in Delphinium pentagynum, Damburneya salicifolia, and other organisms with data available. Coclaurine, also known as (r,s)-coclaurine or machiline, is a member of the class of compounds known as benzylisoquinolines. Benzylisoquinolines are organic compounds containing an isoquinoline to which a benzyl group is attached. Coclaurine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Coclaurine can be found in custard apple and soursop, which makes coclaurine a potential biomarker for the consumption of these food products. Coclaurine is a nicotinic acetylcholine receptor antagonist which has been isolated from a variety of plant sources including Nelumbo nucifera, Sarcopetalum harveyanum, Ocotea duckei, and others. It belongs to the class of tetrahydroisoquinoline alkaloids. Dimerization of coclaurine leads to the biscoclaurine alkaloids such as cepharanthine .
Cauloside C
Akeboside Std is a triterpenoid. Cauloside C is a natural product found in Lonicera japonica, Lonicera macrantha, and other organisms with data available. See also: Caulophyllum robustum Root (part of). Cauloside C is a triterpene glycoside isolated from Caulophyllum robustum Max. Cauloside C exerts anti-inflammatory effects through the inhibition of expression of iNOS and proinflammatory cytokines[1]. Cauloside C is a triterpene glycoside isolated from Caulophyllum robustum Max. Cauloside C exerts anti-inflammatory effects through the inhibition of expression of iNOS and proinflammatory cytokines[1].
Dopamine
Dopamine is a member of the catecholamine family of neurotransmitters in the brain and is a precursor to epinephrine (adrenaline) and norepinephrine (noradrenaline). Dopamine is synthesized in the body (mainly by nervous tissue and adrenal glands) first by the hydration of the amino acid tyrosine to DOPA by tyrosine hydroxylase and then by the decarboxylation of DOPA by aromatic-L-amino-acid decarboxylase. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (dopamine receptors) mediates its action, which plays a major role in reward-motivated behaviour. Dopamine has many other functions outside the brain. In blood vessels, dopamine inhibits norepinephrine release and acts as a vasodilator (at normal concentrations); in the kidneys, it increases sodium excretion and urine output; in the pancreas, it reduces insulin production; in the digestive system, it reduces gastrointestinal motility and protects intestinal mucosa; and in the immune system, it reduces the activity of lymphocytes. Parkinsons disease, a degenerative condition causing tremor and motor impairment, is caused by a loss of dopamine-secreting neurons in an area of the midbrain called the substantia nigra. There is evidence that schizophrenia involves altered levels of dopamine activity, and most antipsychotic drugs used to treat this are dopamine antagonists, which reduce dopamine activity. Attention deficit hyperactivity disorder, bipolar disorder, and addiction are also characterized by defects in dopamine production or metabolism. It has been suggested that animals derived their dopamine-synthesizing machinery from bacteria via horizontal gene transfer that may have occurred relatively late in evolutionary time. This is perhaps a result of the symbiotic incorporation of bacteria into eukaryotic cells that gave rise to mitochondria. Dopamine is elevated in the urine of people who consume bananas. When present in sufficiently high levels, dopamine can be a neurotoxin and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural tissue. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of dopamine are associated with neuroblastoma, Costello syndrome, leukemia, phaeochromocytoma, aromatic L-amino acid decarboxylase deficiency, and Menkes disease (MNK). High levels of dopamine can lead to hyperactivity, insomnia, agitation and anxiety, depression, delusions, excessive salivation, nausea, and digestive problems. A study has shown that urinary dopamine is produced by Bacillus and Serratia (PMID: 24621061) Occurs in several higher plants, such as banana (Musa sapientum). As a member of the catecholamine family, dopamine is a precursor to norepinephrine (noradrenaline) and then epinephrine (adrenaline) in the biosynthetic pathways for these neurotransmitters. Dopamine is elevated in the urine of people who consume bananas. Dopamine is found in many foods, some of which are garden onion, purslane, garden tomato, and swiss chard. Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. Dopamine constitutes about 80\% of the catecholamine content in the brain. It is an amine synthesized by removing a carboxyl group from a molecule of its precursor chemical, L-DOPA, which is synthesized in the brain and kidneys. Dopamine is also synthesized in plants and most animals. In the brain, dopamine functions as a neurotransmitter—a chemical released by neurons (nerve cells) to send signals to other nerve cells. Neurotransmitters are synthesized in specific regions of the brain, but affect many regions systemically. The brain includes several distinct dopamine pathways, one of which plays a major role in the motivational component of reward-motivated behavior. The anticipation of most types of rewards increases the level of dopamine in the brain,[4] and many addictive drugs increase dopamine release or block its reuptake into neurons following release.[5] Other brain dopamine pathways are involved in motor control and in controlling the release of various hormones. These pathways and cell groups form a dopamine system which is neuromodulatory.[5] In popular culture and media, dopamine is often portrayed as the main chemical of pleasure, but the current opinion in pharmacology is that dopamine instead confers motivational salience;[6][7][8] in other words, dopamine signals the perceived motivational prominence (i.e., the desirability or aversiveness) of an outcome, which in turn propels the organism's behavior toward or away from achieving that outcome.[8][9] Outside the central nervous system, dopamine functions primarily as a local paracrine messenger. In blood vessels, it inhibits norepinephrine release and acts as a vasodilator; in the kidneys, it increases sodium excretion and urine output; in the pancreas, it reduces insulin production; in the digestive system, it reduces gastrointestinal motility and protects intestinal mucosa; and in the immune system, it reduces the activity of lymphocytes. With the exception of the blood vessels, dopamine in each of these peripheral systems is synthesized locally and exerts its effects near the cells that release it. Several important diseases of the nervous system are associated with dysfunctions of the dopamine system, and some of the key medications used to treat them work by altering the effects of dopamine. Parkinson's disease, a degenerative condition causing tremor and motor impairment, is caused by a loss of dopamine-secreting neurons in an area of the midbrain called the substantia nigra. Its metabolic precursor L-DOPA can be manufactured; Levodopa, a pure form of L-DOPA, is the most widely used treatment for Parkinson's. There is evidence that schizophrenia involves altered levels of dopamine activity, and most antipsychotic drugs used to treat this are dopamine antagonists which reduce dopamine activity.[10] Similar dopamine antagonist drugs are also some of the most effective anti-nausea agents. Restless legs syndrome and attention deficit hyperactivity disorder (ADHD) are associated with decreased dopamine activity.[11] Dopaminergic stimulants can be addictive in high doses, but some are used at lower doses to treat ADHD. Dopamine itself is available as a manufactured medication for intravenous injection. It is useful in the treatment of severe heart failure or cardiogenic shock.[12] In newborn babies it may be used for hypotension and septic shock.[13] Dopamine is synthesized in a restricted set of cell types, mainly neurons and cells in the medulla of the adrenal glands.[22] The primary and minor metabolic pathways respectively are: Primary: L-Phenylalanine → L-Tyrosine → L-DOPA → Dopamine[19][20] Minor: L-Phenylalanine → L-Tyrosine → p-Tyramine → Dopamine[19][20][21] Minor: L-Phenylalanine → m-Tyrosine → m-Tyramine → Dopamine[21][23][24] The direct precursor of dopamine, L-DOPA, can be synthesized indirectly from the essential amino acid phenylalanine or directly from the non-essential amino acid tyrosine.[25] These amino acids are found in nearly every protein and so are readily available in food, with tyrosine being the most common. Although dopamine is also found in many types of food, it is incapable of crossing the blood–brain barrier that surrounds and protects the brain.[26] It must therefore be synthesized inside the brain to perform its neuronal activity.[26] L-Phenylalanine is converted into L-tyrosine by the enzyme phenylalanine hydroxylase, with molecular oxygen (O2) and tetrahydrobiopterin as cofactors. L-Tyrosine is converted into L-DOPA by the enzyme tyrosine hydroxylase, with tetrahydrobiopterin, O2, and iron (Fe2+) as cofactors.[25] L-DOPA is converted into dopamine by the enzyme aromatic L-amino acid decarboxylase (also known as DOPA decarboxylase), with pyridoxal phosphate as the cofactor.[25] Dopamine itself is used as precursor in the synthesis of the neurotransmitters norepinephrine and epinephrine.[25] Dopamine is converted into norepinephrine by the enzyme dopamine β-hydroxylase, with O2 and L-ascorbic acid as cofactors.[25] Norepinephrine is converted into epinephrine by the enzyme phenylethanolamine N-methyltransferase with S-adenosyl-L-methionine as the cofactor.[25] Some of the cofactors also require their own synthesis.[25] Deficiency in any required amino acid or cofactor can impair the synthesis of dopamine, norepinephrine, and epinephrine.[25] Degradation Dopamine is broken down into inactive metabolites by a set of enzymes—monoamine oxidase (MAO), catechol-O-methyl transferase (COMT), and aldehyde dehydrogenase (ALDH), acting in sequence.[27] Both isoforms of monoamine oxidase, MAO-A and MAO-B, effectively metabolize dopamine.[25] Different breakdown pathways exist but the main end-product is homovanillic acid (HVA), which has no known biological activity.[27] From the bloodstream, homovanillic acid is filtered out by the kidneys and then excreted in the urine.[27] The two primary metabolic routes that convert dopamine into HVA are:[28] Dopamine → DOPAL → DOPAC → HVA – catalyzed by MAO, ALDH, and COMT respectively Dopamine → 3-Methoxytyramine → HVA – catalyzed by COMT and MAO+ALDH respectively In clinical research on schizophrenia, measurements of homovanillic acid in plasma have been used to estimate levels of dopamine activity in the brain. A difficulty in this approach however, is separating the high level of plasma homovanillic acid contributed by the metabolism of norepinephrine.[29][30] Although dopamine is normally broken down by an oxidoreductase enzyme, it is also susceptible to oxidation by direct reaction with oxygen, yielding quinones plus various free radicals as products.[31] The rate of oxidation can be increased by the presence of ferric iron or other factors. Quinones and free radicals produced by autoxidation of dopamine can poison cells, and there is evidence that this mechanism may contribute to the cell loss that occurs in Parkinson's disease and other conditions.[32]
Tyramine
Tyramine is a monoamine compound derived from the amino acid tyrosine. Tyramine is metabolized by the enzyme monoamine oxidase. In foods, it is often produced by the decarboxylation of tyrosine during fermentation or decay. Foods containing considerable amounts of tyramine include fish, chocolate, alcoholic beverages, cheese, soy sauce, sauerkraut, and processed meat. A large dietary intake of tyramine can cause an increase in systolic blood pressure of 30 mmHg or more. Tyramine acts as a neurotransmitter via a G protein-coupled receptor with high affinity for tyramine called TA1. The TA1 receptor is found in the brain as well as peripheral tissues including the kidney. An indirect sympathomimetic, Tyramine can also serve as a substrate for adrenergic uptake systems and monoamine oxidase so it prolongs the actions of adrenergic transmitters. It also provokes transmitter release from adrenergic terminals. Tyramine is a biomarker for the consumption of cheese [Spectral] Tyramine (exact mass = 137.08406) and L-Methionine (exact mass = 149.05105) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Tyramine (exact mass = 137.08406) and Glutathione (exact mass = 307.08381) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics Acquisition and generation of the data is financially supported in part by CREST/JST. D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents IPB_RECORD: 267; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 5105 D049990 - Membrane Transport Modulators KEIO_ID T008 Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1]. Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1].
(S)-N-Methylcoclaurine
This compound belongs to the family of Benzylisoquinolines. These are organic compounds containing an isoquinoline to which a benzyl group is attached.
lupanine
C15H24N2O (248.18885339999997)
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 56 INTERNAL_ID 56; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 42 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 35 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 27 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 20 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 12 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 5 alpha-Isolupanine is a natural product found in Listia bainesii, Thermopsis chinensis, and other organisms with data available.
Baptifoline
Baptifoline is found in coffee and coffee products. Baptifoline is an alkaloid from Caulophyllum thalictroides (blue cohosh). Alkaloid from Caulophyllum thalictroides (blue cohosh). Baptifoline is found in coffee and coffee products.
Coclaurine
C17H19NO3 (285.13648639999997)
Coclaurine, also known as (r,s)-coclaurine or machiline, is a member of the class of compounds known as benzylisoquinolines. Benzylisoquinolines are organic compounds containing an isoquinoline to which a benzyl group is attached. Coclaurine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Coclaurine can be found in custard apple and soursop, which makes coclaurine a potential biomarker for the consumption of these food products. Coclaurine is a nicotinic acetylcholine receptor antagonist which has been isolated from a variety of plant sources including Nelumbo nucifera, Sarcopetalum harveyanum, Ocotea duckei, and others. It belongs to the class of tetrahydroisoquinoline alkaloids. Dimerization of coclaurine leads to the biscoclaurine alkaloids such as cepharanthine .
Thalictroidine
Thalictroidine is found in coffee and coffee products. Thalictroidine is an alkaloid from the rhizomes of Caulophyllum thalictroides (blue cohosh Alkaloid from the rhizomes of Caulophyllum thalictroides (blue cohosh). Thalictroidine is found in coffee and coffee products.
Lupanine
C15H24N2O (248.18885339999997)
Hederagenin
Hederagenin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Hederagenin is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Hederagenin can be found in a number of food items such as rye, dill, european cranberry, and black salsify, which makes hederagenin a potential biomarker for the consumption of these food products. Hederagenin is the aglycone part of numerous saponins found in Hedera helix (common ivy). The most prevalent of these being hederacoside C and alpha-hederin. It is also one of three primary triterpenoids extracted from the Chenopodium quinoa plant categorized by the EPA as a biopesticide. HeadsUp Plant Protectant is made up of approximately equal ratios of the saponin aglycones oleanolic acid, hederagenin, and phytolaccagenic acid and is intended for use as a seed treatment on tuber (e.g. potato seed pieces), legume, and cereal seeds or as a pre-plant root dip for roots of transplants, at planting, to prevent fungal growth, bacterial growth, and viral plant diseases .
magnoflorine
C20H24NO4 (342.17052440000003)
Magnoflorine is a member of the class of compounds known as aporphines. Aporphines are quinoline alkaloids containing the dibenzo[de,g]quinoline ring system or a dehydrogenated derivative thereof. Magnoflorine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Magnoflorine can be found in a number of food items such as carob, other cereal product, durian, and japanese chestnut, which makes magnoflorine a potential biomarker for the consumption of these food products. Magnoflorine is a chemical compound isolated from the rhizome of Sinomenium acutum and from Pachygone ovata. It is classified as an aporphine alkaloid .
Hederagenin
Hederagenin is a sapogenin that is olean-12-en-28-oic acid substituted by hydroxy groups at positions 3 and 23 (the 3beta stereoisomer). It has a role as a plant metabolite. It is a pentacyclic triterpenoid, a dihydroxy monocarboxylic acid and a sapogenin. It is functionally related to an oleanolic acid. It is a conjugate acid of a hederagenin(1-). It derives from a hydride of an oleanane. Hederagenin is a natural product found in Zygophyllum obliquum, Sapindus emarginatus, and other organisms with data available. See also: Paeonia lactiflora root (part of); Caulophyllum robustum Root (part of); Medicago sativa whole (part of). A sapogenin that is olean-12-en-28-oic acid substituted by hydroxy groups at positions 3 and 23 (the 3beta stereoisomer). Hederagenin is a triterpenoid saponin that can inhibit the expression of iNOS, COX-2, and NF-κB in cells caused by LPS stimulation. Hederagenin is a triterpenoid saponin that can inhibit the expression of iNOS, COX-2, and NF-κB in cells caused by LPS stimulation.
Cauloside D
Cauloside D is a triterpenoid saponin with hederagenin as the aglycone part. It has been isolated from the stem bark of Kalopanax pictus. It has a role as an anti-inflammatory agent and a plant metabolite. It is a pentacyclic triterpenoid, a triterpenoid saponin and a carboxylic ester. It is functionally related to a hederagenin. Cauloside D is a natural product found in Anemone hupehensis, Pulsatilla campanella, and other organisms with data available. A triterpenoid saponin with hederagenin as the aglycone part. It has been isolated from the stem bark of Kalopanax pictus. Hederacoside D is one of the bioactive saponins from Hedera helix, and plays pivotal roles in the overall biological activity. Hederacoside D is one of the bioactive saponins from Hedera helix, and plays pivotal roles in the overall biological activity.
Caulophyllumine A
Caulophyllumine A is a natural product found in Caulophyllum thalictroides with data available.
Baptifoline
Unii-27F71M186X is a natural product found in Thermopsis chinensis, Thermopsis lanceolata, and other organisms with data available. See also: Caulophyllum thalictroides Root (part of).
Tyramine
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics A primary amino compound obtained by formal decarboxylation of the amino acid tyrosine. D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators Annotation level-2 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2741; CONFIDENCE confident structure Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1]. Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1].
Dopamine
C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics Catechol in which the hydrogen at position 4 is substituted by a 2-aminoethyl group. D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; VYFYYTLLBUKUHU_STSL_0097_Dopamine_2000fmol_180430_S2_LC02_MS02_90; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.
Magnoflorine
[C20H24NO4]+ (342.17052440000003)
Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids
(+)-Lupanine
C15H24N2O (248.18885339999997)
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 29
Higenamine
D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D000893 - Anti-Inflammatory Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents D018501 - Antirheumatic Agents
Tyramin
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1]. Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1].
Cauloside A
D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors D004791 - Enzyme Inhibitors Cauloside A (Leontoside A) is a saponin isolated from Dipsacus asper roots. Cauloside A has potent antifungal activity[1][2]. Cauloside A (Leontoside A) is a saponin isolated from Dipsacus asper roots. Cauloside A has potent antifungal activity[1][2].
Dopamin
C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents
magnoflorine
[C20H24NO4]+ (342.17052440000003)
Magnoflorine is a member of the class of compounds known as aporphines. Aporphines are quinoline alkaloids containing the dibenzo[de,g]quinoline ring system or a dehydrogenated derivative thereof. Magnoflorine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Magnoflorine can be found in a number of food items such as carob, other cereal product, durian, and japanese chestnut, which makes magnoflorine a potential biomarker for the consumption of these food products. Magnoflorine is a chemical compound isolated from the rhizome of Sinomenium acutum and from Pachygone ovata. It is classified as an aporphine alkaloid . Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids
Baptifoline
10-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-2-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-hexadecahydropicene-4a-carboxylic acid
9-formyl-5-hydroxy-2,2,6a,6b,9,12a-hexamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(4as,6as,6br,8ar,10s,12ar,12br,14bs)-2,2,6a,6b,9,9,12a-heptamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl (4ar,5r,6as,6br,8ar,9r,10s,12ar,12br,14bs)-5-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
(1r,9r)-11-methyl-7,11-diazatricyclo[7.3.1.0²,⁷]trideca-2,4-dien-6-one
C12H16N2O (204.12625659999998)
6-({[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl 10-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
6-({[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl 10-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
(4ar,5r,6as,6br,8ar,9r,10s,12ar,12br,14bs)-5-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(4ar,5r,6as,6br,9r,10s,12ar)-5-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(4as,6as,6br,8ar,9s,10s,12ar,12br,14bs)-9-formyl-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
anagyrine
{"Ingredient_id": "HBIN015975","Ingredient_name": "anagyrine","Alias": "FYU1U980Q9; 5-24-03-00410 (Beilstein Handbook Reference); (1R,9R,10R)-7,15-DIAZATETRACYCLO[7.7.1.0(2),?.0(1)?,(1)?]HEPTADECA-2,4-DIEN-6-ONE; BRN 0086776; ANAGYRINE; (-)-Anagyrine; UNII-FYU1U980Q9; 7,7a,8,9,10,11,13,14-Octahydro-7,14-memethano-4H,6H-dipyrido(1,2-a:1',2'-e)(1,5)diazocin-4-one; 3,4,5,6-Tetradehydrospartein-2-one; (7alpha)-11,12,13,14-tetradehydrospartein-15-one; (-)-anagyrine; CHEMBL509692; Rhombinine; Anagyrine; AC1LE9O5; NSC76019; ZINC900282; Monolupine; 486-89-5","Ingredient_formula": "C15H20N2O","Ingredient_Smile": "C1CCN2CC3CC(C2C1)CN4C3=CC=CC4=O","Ingredient_weight": "244.33 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT01268;SMIT05719","TCMID_id": "1134","TCMSP_id": "MOL003687;MOL006571","TCM_ID_id": "6815;17611","PubChem_id": "71056954","DrugBank_id": "NA"}
baptifoline
{"Ingredient_id": "HBIN017585","Ingredient_name": "baptifoline","Alias": "Epibaptifoline","Ingredient_formula": "C15H20N2O2","Ingredient_Smile": "C1CN2CC3CC(C2CC1O)CN4C3=CC=CC4=O","Ingredient_weight": "260.33 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT14437","TCMID_id": "2145","TCMSP_id": "NA","TCM_ID_id": "6429","PubChem_id": "131676079","DrugBank_id": "NA"}
(9r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadeca-2,4-dien-6-one
5-[2-(dimethylamino)ethyl]-7,14-dimethoxy-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4,6,8(16),11,13-hexaene-3,10-dione
C20H19NO6 (369.12123140000006)
(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2r,3s,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
2,2,6a,6b,9,9,12a-heptamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(1s,2r,4ar,6ar,6br,8ar,10s,12ar,12br,14ar,14bs)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-hexadecahydropicene-4a-carboxylic acid
(4ar,5r,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (4as,6br,9r,10s,12ar)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
(4as,6as,6br,8ar,9r,12ar,12br,14bs)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
6-({[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl 10-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
5-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b-dodecahydropicene-4a-carboxylic acid
10-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-4,5,9,9,13,19,20-heptamethyl-21-oxahexacyclo[18.2.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracosan-22-one
(4ar,5r,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
(4ar,5r,6as,6br,8ar,9s,10s,12ar,12br,14bs)-9-formyl-5-hydroxy-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (4ar,5r,6as,6br,8ar,9r,10s,12ar,12br,14bs)-5-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
C53H86O23 (1090.5559606000002)
5-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(4as,6as,6br,8ar,10s,12ar,12br,14bs)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(1s,2s,4s,5r,6s,9s,10r,11r,14r,15s,18s,23r)-9-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-10-(hydroxymethyl)-6,10,14,15,21,21-hexamethyl-3,24-dioxaheptacyclo[16.5.2.0¹,¹⁵.0²,⁴.0⁵,¹⁴.0⁶,¹¹.0¹⁸,²³]pentacosan-25-one
(4ar,5r,6as,6br,8ar,9r,10s,12as,12br)-5-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b-dodecahydropicene-4a-carboxylic acid
(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
4-[(1e)-2-[(2s)-1-methylpiperidin-2-yl]ethenyl]phenol
10-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 5-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
10-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-5-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
6-({[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl 9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
10-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (4ar,5r,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
(1s,2s,4s,5r,6s,9s,10r,11r,14r,15s,17r,18r,23r)-17-hydroxy-10-(hydroxymethyl)-6,10,14,15,21,21-hexamethyl-9-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-3,24-dioxaheptacyclo[16.5.2.0¹,¹⁵.0²,⁴.0⁵,¹⁴.0⁶,¹¹.0¹⁸,²³]pentacosan-25-one
(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
(1r,2r,9s,10r)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one
C15H24N2O (248.18885339999997)
9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
9-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-10-(hydroxymethyl)-6,10,14,15,21,21-hexamethyl-3,24-dioxaheptacyclo[16.5.2.0¹,¹⁵.0²,⁴.0⁵,¹⁴.0⁶,¹¹.0¹⁸,²³]pentacosan-25-one
3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl 5-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
6-({[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl 5-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
C53H86O23 (1090.5559606000002)
10-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4ar,5r,6as,6br,8ar,9r,10s,12ar,12br,14bs)-5-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
(4ar,5r,6as,6br,8ar,10s,12ar,12br,14bs)-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
17-hydroxy-10-(hydroxymethyl)-6,10,14,15,21,21-hexamethyl-9-[(3,4,5-trihydroxyoxan-2-yl)oxy]-3,24-dioxaheptacyclo[16.5.2.0¹,¹⁵.0²,⁴.0⁵,¹⁴.0⁶,¹¹.0¹⁸,²³]pentacosan-25-one
(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (4ar,5r,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
9-formyl-2,2,6a,6b,9,12a-hexamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(1r,4r,5r,8r,10s,13r,14r,17r,18s,19s,20s)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-4,5,9,9,13,19,20-heptamethyl-21-oxahexacyclo[18.2.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracosan-22-one
6-({[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl 10-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
(1s,9r)-11-methyl-7,11-diazatricyclo[7.3.1.0²,⁷]trideca-2,4-dien-6-one
C12H16N2O (204.12625659999998)