NCBI Taxonomy: 256504

Symphytum tuberosum (ncbi_taxid: 256504)

found 32 associated metabolites at species taxonomy rank level.

Ancestor: Symphytum

Child Taxonomies: none taxonomy data.

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Echimidine

7-Angelyl-9-echimidinylretronecine

C20H31NO7 (397.21)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2304 INTERNAL_ID 2304; CONFIDENCE Reference Standard (Level 1)

   

Palmitone

hentriacontan-16-one

C31H62O (450.48)


Constituent of Piper nigrum (pepper). Palmitone is found in herbs and spices, pepper (spice), and potato. Palmitone is found in herbs and spices. Palmitone is a constituent of Piper nigrum (pepper)

   

Tricosane

CH3-[CH2]21-CH3

C23H48 (324.3756)


N-tricosane, also known as ch3-[ch2]21-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, N-tricosane is considered to be a hydrocarbon lipid molecule. N-tricosane is an alkane and waxy tasting compound and can be found in a number of food items such as kohlrabi, papaya, coconut, and ginkgo nuts, which makes N-tricosane a potential biomarker for the consumption of these food products. N-tricosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Tricosane belongs to the class of organic compounds known as acyclic alkanes. These are acyclic hydrocarbons consisting only of n carbon atoms and m hydrogen atoms where m=2*n + 2.

   

D-Glucose

(2R,3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0634)


Glucose is a monosaccharide containing six carbon atoms and an aldehyde group. It is referred to as an aldohexose. The glucose molecule can exist in an open-chain (acyclic) and ring (cyclic) form, the latter being the result of an intramolecular reaction between the aldehyde C atom and the C-5 hydroxyl group to form an intramolecular hemiacetal. In aqueous solution, both forms are in equilibrium and at pH 7 the cyclic one is predominant. Glucose is a primary source of energy for all living organisms. It is a fundamental metabolite found in all organisms, ranging from bacteria to plants to humans. Most of the world’s glucose is made by plants and algae during photosynthesis from water and carbon dioxide, where it is used to make cellulose (and other polymeric forms of glucose called polysaccharides) that stabilize plant cell walls. Glucose is also found in fruits and other parts of plants in its free state. In animals, glucose can be generated from the breakdown of glycogen in a process known as glycogenolysis. Glucose can also be synthesized de novo in animals. In particular it can be synthesized in the liver and kidneys from non-carbohydrate intermediates, such as pyruvate and glycerol, by a process known as gluconeogenesis. Humans also consume large amounts of glucose as part of their regular diet. Ingested glucose initially binds to the receptor for sweet taste on the tongue in humans. This complex of the proteins T1R2 and T1R3 makes it possible to identify glucose-containing food sources. Glucose in the body mainly comes from food - about 300 g per day for the average adult. In humans, the breakdown of glucose-containing polysaccharides happens partly during chewing by means of the enzyme known as amylase, which is contained in saliva, as well as by other enzymes such as maltase, lactase and sucrase on the brush border of the small intestine. The blood sugar content of a healthy person in the short-time fasting state, e.g. after overnight fasting, is about 70 to 100 mg/dL of blood (4 to 5.5 mM). In blood plasma, the measured values are about 10–15\\\\% higher. Dysregulated metabolism of glucose can lead to a number of diseases including diabetes. Diabetes is a metabolic disorder where the body is unable to regulate levels of glucose in the blood either because of a lack of insulin in the body or the failure, by cells in the body, to respond properly to insulin. Each of these situations can be caused by persistently high elevations of blood glucose levels, through pancreatic burnout and insulin resistance. A glucoside is a glycoside that is derived from glucose. Glucosides are common in plants, but rare in animals. Glucose is produced when a glucoside is hydrolysed by purely chemical means, or decomposed by fermentation or enzymes. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

beta-D-Galactose

(2R,3R,4S,5R,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0634)


Galactose is an optical isomer of glucose. An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (Galactose-1-phosphate uridyl-transferase deficiency disease) causes an error in galactose metabolism called galactosemia, resulting in elevations of galactose in the blood. Galactose (Gal) (also called brain sugar) is a type of sugar found in dairy products, in sugar beets and other gums and mucilages. It is also synthesized by the body, where it forms part of glycolipids and glycoproteins in several tissues. It is considered a nutritive sweetener because it has food energy. Galactose is less sweet than glucose and not very water-soluble. Galactose is a monosaccharide constituent, together with glucose, of the disaccharide lactose. The hydrolysis of lactose to glucose and galactose is catalyzed by the enzyme beta-galactosidase, a lactase. In the human body, glucose is changed into galactose in order to enable the mammary glands to secrete lactose. Galactan is a polymer of the sugar galactose. It is found in hemicellulose and can be converted to galactose by hydrolysis. Galactose is an aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (Galactose-1-phosphate uridyl-transferase deficiency disease) causes an error in galactose metabolism called galactosemia, resulting in elevations of galactose in the blood. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

D-Gulose

6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0634)


   

beta-D-Mannopyranose

(2R,3S,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0634)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Heneicosane

(S)-(-)-2,2-Bis(diphenylphosphino)-5,5,6,6,7,7,8,8-octahydro-1,1-binaphthyl (R)-H8-BINAP

C21H44 (296.3443)


Heneicosane, also known as CH3-[CH2]19-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heneicosane is considered to be a hydrocarbon lipid molecule. Heneicosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Heneicosane is an alkane and waxy tasting compound. Heneicosane is found, on average, in the highest concentration within a few different foods, such as black elderberries, common oregano, and lemon balms. Heneicosane has also been detected, but not quantified, in several different foods, such as sunflowers, kohlrabis, orange bell peppers, lindens, and pepper (c. annuum). This could make heneicosane a potential biomarker for the consumption of these foods. An alkane that has 21 carbons and a straight-chain structure. Heneicosane, also known as ch3-[ch2]19-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heneicosane is considered to be a hydrocarbon lipid molecule. Heneicosane is an alkane and waxy tasting compound and can be found in a number of food items such as orange bell pepper, yellow bell pepper, lemon balm, and pepper (c. annuum), which makes heneicosane a potential biomarker for the consumption of these food products. Heneicosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Crystals. (NTP, 1992) Henicosane is an alkane that has 21 carbons and a straight-chain structure. It has been isolated from plants like Periploca laevigata and Carthamus tinctorius. It has a role as a pheromone, a plant metabolite and a volatile oil component. Heneicosane is a natural product found in Erucaria microcarpa, Microcystis aeruginosa, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). An alkane that has 21 carbons and a straight-chain structure. It has been isolated from plants like Periploca laevigata and Carthamus tinctorius. Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3]. Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3].

   

1-Tricosanol

N-Tricosyl alcohol

C23H48O (340.3705)


1-tricosanol, also known as N-tricosyl alcohol, is a member of the class of compounds known as fatty alcohols. Fatty alcohols are aliphatic alcohols consisting of a chain of a least six carbon atoms. 1-tricosanol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 1-tricosanol can be synthesized from tricosane. 1-tricosanol can also be synthesized into 22-methyltricosan-1-ol. 1-tricosanol can be found in black elderberry and coriander, which makes 1-tricosanol a potential biomarker for the consumption of these food products.

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

D-Galactose

D-Galactose

C6H12O6 (180.0634)


   

Heneicosane

Heneicosane

C21H44 (296.3443)


Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3]. Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3].

   

TRICOSANE

tricosane

C23H48 (324.3756)


A straight chain alkane containing 23 carbon atoms.

   

palmitone

hentriacontan-16-one

C31H62O (450.48)


   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Henicosane

EINECS 211-118-9

C21H44 (296.3443)


Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3]. Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3].

   

AI3-35917

EINECS 211-347-4

C23H48 (324.3756)


   

CHEBI:28034

(2R,3R,4S,5R,6R)-6-(hydroxymethyl)tetrahydropyran-2,3,4,5-tetrol

C6H12O6 (180.0634)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Mannose-b

(2R,3S,4S,5S,6R)-6-(hydroxymethyl)tetrahydropyran-2,3,4,5-tetrol

C6H12O6 (180.0634)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

ZYMOSAN A

BETA-D-GLUCOSE (CONTAINS ALPHA-D-GLUCOSE)

C6H12O6 (180.0634)


COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

16-Hentriacontanone

hentriacontan-16-one

C31H62O (450.48)


A dialkyl ketone that is hentriacontane in which the hydrogens at position 16 are replaced by an oxo group.

   

beta-D-Galactopyranose

(2R,3R,4S,5R,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0634)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

tricosan-1-ol

tricosan-1-ol

C23H48O (340.3705)


A very long-chain primary fatty alcohol that is tricosane in which a hydrogen attached to one of the terminal carbons is replaced by a hydroxy group. It has been isolated from bulbs of Polianthes tuberosa, bran from the Italian bread wheat variety Pegaso and its 11 near-isogenic lines, and from the aerial parts of Centaurea austro-anatolica.

   

3-hydroxy-4-[(7-hydroxy-5,6,7,7a-tetrahydro-3h-pyrrolizin-1-yl)methoxy]-3-isopropyl-4-oxobutan-2-yl 2-methylbut-2-enoate

3-hydroxy-4-[(7-hydroxy-5,6,7,7a-tetrahydro-3h-pyrrolizin-1-yl)methoxy]-3-isopropyl-4-oxobutan-2-yl 2-methylbut-2-enoate

C20H31NO6 (381.2151)


   

(2r,3r)-4-{[(7s,7ar)-7-hydroxy-5,6,7,7a-tetrahydro-3h-pyrrolizin-1-yl]methoxy}-3-hydroxy-3-isopropyl-4-oxobutan-2-yl (2e)-2-methylbut-2-enoate

(2r,3r)-4-{[(7s,7ar)-7-hydroxy-5,6,7,7a-tetrahydro-3h-pyrrolizin-1-yl]methoxy}-3-hydroxy-3-isopropyl-4-oxobutan-2-yl (2e)-2-methylbut-2-enoate

C20H31NO6 (381.2151)


   

7-({[2,3-dihydroxy-2-(1-hydroxyethyl)-3-methylbutanoyl]oxy}methyl)-2,3,5,7a-tetrahydro-1h-pyrrolizin-1-yl 2-methylbut-2-enoate

7-({[2,3-dihydroxy-2-(1-hydroxyethyl)-3-methylbutanoyl]oxy}methyl)-2,3,5,7a-tetrahydro-1h-pyrrolizin-1-yl 2-methylbut-2-enoate

C20H31NO7 (397.21)


   

(2r,3r,4r,5s,6r)-2-{[(2r,3s,6r)-6-hydroxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4r,5s,6r)-2-{[(2r,3s,6r)-6-hydroxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C12H22O8 (294.1315)


   

2-[(6-hydroxy-2-methyloxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(6-hydroxy-2-methyloxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C12H22O8 (294.1315)


   

(1s,3ar,3br,7r,9as,9br,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1s,3ar,3br,7r,9as,9br,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H50O (414.3861)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

β-d-mannose

β-d-mannose

C6H12O6 (180.0634)