NCBI Taxonomy: 197604

Acalypha hispida (ncbi_taxid: 197604)

found 32 associated metabolites at species taxonomy rank level.

Ancestor: Acalypha

Child Taxonomies: none taxonomy data.

Geraniin

[(1R,7R,8S,26R,28S,29R,38R)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.04,38.07,26.08,29.011,16.017,22.032,37]tetraconta-3,11,13,15,17,19,21,32,34,36-decaen-28-yl] 3,4,5-trihydroxybenzoate

C41H28O27 (952.0818)


Geraniin is a tannin. Geraniin is a natural product found in Euphorbia makinoi, Macaranga tanarius, and other organisms with data available. Geraniin is a TNF-α releasing inhibitor with numerous activities including anticancer, anti-inflammatory, and anti-hyperglycemic activities, with an IC50 of 43 μM. Geraniin is a TNF-α releasing inhibitor with numerous activities including anticancer, anti-inflammatory, and anti-hyperglycemic activities, with an IC50 of 43 μM.

   

Gallic acid

3,4,5-trihydroxybenzoic acid

C7H6O5 (170.0215)


Gallic acid is an odorless white solid. Sinks in water. (USCG, 1999) Gallic acid is a trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. It has a role as an astringent, a cyclooxygenase 2 inhibitor, a plant metabolite, an antioxidant, an antineoplastic agent, a human xenobiotic metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an apoptosis inducer and a geroprotector. It is a conjugate acid of a gallate. Gallic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Gallic Acid is a natural product found in Visnea mocanera, Ardisia paniculata, and other organisms with data available. Gallic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. See also: Gallic acid monohydrate (active moiety of); Paeonia lactiflora root (part of); Galium aparine whole (part of) ... View More ... Gallic acid is an organic acid, also known as 3,4,5-trihydroxybenzoic acid, found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. The chemical formula is C6H2(OH)3CO2H. Gallic acid is widely distributed in plants and is found both free and as part of tannins. It is commonly used in the pharmaceutical industry. Gallic acid can also be used to synthesize the hallucinogenic alkaloid mescaline, also known as 3,4,5-trimethoxyphenethylamine. Salts and esters of gallic acid are termed gallates. Gallic acid has been found to be s metabolite of Aspergillus (PMID:24031294). A trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. Present in red wine. Japan approved food antioxidant additive Gallic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=149-91-7 (retrieved 2024-07-01) (CAS RN: 149-91-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

Kaempferol_3-O-rutinoside

5,7-Dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C27H30O15 (594.1585)


Kaempferol-3-rutinoside is a kaempferol O-glucoside that is kaempferol attached to a rutinosyl [6-deoxy-alpha-L-mannosyl-(1->6)-beta-D-glucosyl] residue at position 3 via a glycosidic linkage. It has been isolated from the leaves of Solanum campaniforme. It has a role as a metabolite, a radical scavenger and a plant metabolite. It is a rutinoside, a trihydroxyflavone, a disaccharide derivative and a kaempferol O-glucoside. Nicotiflorin is a natural product found in Visnea mocanera, Eupatorium cannabinum, and other organisms with data available. See also: Cocoa (part of). A kaempferol O-glucoside that is kaempferol attached to a rutinosyl [6-deoxy-alpha-L-mannosyl-(1->6)-beta-D-glucosyl] residue at position 3 via a glycosidic linkage. It has been isolated from the leaves of Solanum campaniforme. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one;Rutin

C27H30O16 (610.1534)


Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutins anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators involved in progression of gut inflammation. (PMID:16132362). Rutin is a rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. It has a role as a metabolite and an antioxidant. It is a disaccharide derivative, a quercetin O-glucoside, a tetrahydroxyflavone and a rutinoside. A flavonol glycoside found in many plants, including buckwheat; tobacco; forsythia; hydrangea; viola, etc. It has been used therapeutically to decrease capillary fragility. Rutin is a natural product found in Ficus virens, Visnea mocanera, and other organisms with data available. A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility. See also: Quercetin (related); Ginkgo (part of); Chamomile (part of) ... View More ... First isolated from Ruta graveolens (rue). Bioflavanoid. Quercetin 3-rutinoside is found in many foods, some of which are tea, bilberry, common oregano, and lemon grass. A rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids IPB_RECORD: 541; CONFIDENCE confident structure [Raw Data] CBA04_Rutin_neg_50eV.txt [Raw Data] CBA04_Rutin_pos_50eV.txt [Raw Data] CBA04_Rutin_neg_40eV.txt [Raw Data] CBA04_Rutin_pos_10eV.txt [Raw Data] CBA04_Rutin_neg_20eV.txt [Raw Data] CBA04_Rutin_neg_10eV.txt [Raw Data] CBA04_Rutin_neg_30eV.txt [Raw Data] CBA04_Rutin_pos_40eV.txt [Raw Data] CBA04_Rutin_pos_30eV.txt [Raw Data] CBA04_Rutin_pos_20eV.txt Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Corilagin

(1S,19R,21S,22R,23R)-6,7,8,11,12,13,22,23-octahydroxy-3,16-dioxo-2,17,20-trioxatetracyclo[17.3.1.0^{4,9}.0^{10,15}]tricosa-4,6,8,10,12,14-hexaen-21-yl 3,4,5-trihydroxybenzoate

C27H22O18 (634.0806)


Corilagin is a member of the class of compounds known as ellagitannins, a class of hydrolyzable tannins. Hydrolyzable tannins are tannins with a structure characterized by either of the following models: (1) a structure containing galloyl units (in some cases, shikimic acid units) linked to diverse polyol carbohydrate, catechin, or triterpenoid units, or (2) a structure containing at least two galloyl units C-C coupled to each other and not containing a glycosidically linked catechin unit. Corilagin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Corilagin can be found in pomegranate, which makes corilagin a potential biomarker for the consumption of this food product. Corilagin was first isolated in 1951 from Dividivi extract and from Caesalpinia coriaria, hence the name of the molecule. It can also be found in Alchornea glandulosa and in the leaves of Punica granatum (pomegranate) (Wikipedia). Corilagin has been shown to exhibit thrombolytic function (PMID: 14750026). Corilagin is an ellagitannin with a hexahydroxydiphenoyl group bridging over the 3-O and 6-O of the glucose core. It has a role as an antihypertensive agent, an EC 3.4.15.1 (peptidyl-dipeptidase A) inhibitor, a non-steroidal anti-inflammatory drug and an antioxidant. It is an ellagitannin and a gallate ester. Corilagin is a natural product found in Euphorbia fischeriana, Euphorbia hyssopifolia, and other organisms with data available. Corilagin is a gallotannin. It can be found in Alchornea glandulosa. [Wikipedia] Corilagin, a gallotannin, has anti-tumor, anti-inflammatory and hepatoprotective activities. Corilagin inhibits activity of reverse transcriptase of RNA tumor viruses. Corilagin also inhibits the growth of Staphylococcus aureus with a MIC of 25 μg/mL. Corilagin shows anti-tumor activity on hepatocellular carcinoma and ovarian cancer model. Corilagin shows low toxicity to normal cells and tissues[1][2][3]. Corilagin, a gallotannin, has anti-tumor, anti-inflammatory and hepatoprotective activities. Corilagin inhibits activity of reverse transcriptase of RNA tumor viruses. Corilagin also inhibits the growth of Staphylococcus aureus with a MIC of 25 μg/mL. Corilagin shows anti-tumor activity on hepatocellular carcinoma and ovarian cancer model. Corilagin shows low toxicity to normal cells and tissues[1][2][3].

   

Cyanidin 3-galactoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

[C21H21O11]+ (449.1084)


Isolated from numerous plants including cranberry (Vaccinium vitis-idaea), red pears and pistachio (Pistacia vera). Cyanidin 3-galactoside is found in many foods, some of which are corn, blackcurrant, strawberry, and pomes. Cyanidin 3-galactoside is found in american cranberry. Cyanidin 3-galactoside is isolated from numerous plants including cranberry (Vaccinium vitis-idaea), red pears and pistachio (Pistacia vera). Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Ethyl gallate

2-([(4-CHLOROPHENYL)SULFONYL]AMINO)PROPANOICACID

C9H10O5 (198.0528)


Ethyl gallate is a gallate ester obtained by the formal condensation of gallic acid with ethanol. It has a role as a plant metabolite. Ethyl gallate is a natural product found in Limonium axillare, Dimocarpus longan, and other organisms with data available. Ethyl gallate occurs, inter alia, in Indian gooseberry (Phyllanthus emblica). Ethyl gallate is found in many foods, some of which include grape wine, fruits, guava, and vinegar. Occurs, inter alia, in Indian gooseberry (Phyllanthus emblica). Ethyl gallate is found in many foods, some of which are grape wine, fruits, guava, and vinegar. A gallate ester obtained by the formal condensation of gallic acid with ethanol. Ethyl gallate is a nonflavonoid phenolic compound and also a scavenger of hydrogen peroxide. Ethyl gallate is a nonflavonoid phenolic compound and also a scavenger of hydrogen peroxide.

   

Kaempferol 3-rhamno-glucoside

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-4H-chromen-4-one

C27H30O15 (594.1585)


Kaempferol 3-rhamno-glucoside, also known as nicotiflorin or kaempferol 3-rutinoside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-rhamno-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-rhamno-glucoside can be found in ginkgo nuts and tea, which makes kaempferol 3-rhamno-glucoside a potential biomarker for the consumption of these food products. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxymethyl]-2-tetrahydropyranyl]oxy]-4-chromenone

C27H30O16 (610.1534)


C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2352 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.724 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.728 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1921; CONFIDENCE confident structure Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Kaempferol-3-rutinoside

Kaempferol-7-O-neohesperidoside

C27H30O15 (594.1585)


Kaempferol 3-rhamno-glucoside, also known as nicotiflorin or kaempferol 3-rutinoside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-rhamno-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-rhamno-glucoside can be found in ginkgo nuts and tea, which makes kaempferol 3-rhamno-glucoside a potential biomarker for the consumption of these food products. Acquisition and generation of the data is financially supported in part by CREST/JST. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.

   

Progallin A

Benzoic acid, 3,4,5-trihydroxy-, ethyl ester

C9H10O5 (198.0528)


Ethyl gallate is a nonflavonoid phenolic compound and also a scavenger of hydrogen peroxide. Ethyl gallate is a nonflavonoid phenolic compound and also a scavenger of hydrogen peroxide.

   

Idein

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1$l^{4}-chromen-1-ylium

C21H21O11+ (449.1084)


   

Idaein

Cyanidin 3-O-galactoside

C21H21O11+ (449.1084)


   

GALOP

InChI=1\C7H6O5\c8-4-1-3(7(11)12)2-5(9)6(4)10\h1-2,8-10H,(H,11,12

C7H6O5 (170.0215)


C26170 - Protective Agent > C275 - Antioxidant Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

Cyanidin 3-O-galactoside

Cyanidin 3-O-beta-D-galactoside

C21H21O11+ (449.1084)


An anthocyanin cation that is cyanidin(1+) carrying a single beta-D-galactosyl substituent at position 3.

   

(7r,8s,26r,28s,29s)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11,13,15,17(22),18,20,32,34,36-decaen-28-yl 3,4,5-trihydroxybenzoate

(7r,8s,26r,28s,29s)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11,13,15,17(22),18,20,32,34,36-decaen-28-yl 3,4,5-trihydroxybenzoate

C41H28O27 (952.0818)


   

(4s,5r,23s,25r,26r,36s,40r)-1,10,11,12,15,16,17,31,32-nonahydroxy-2,7,20,28,35,38-hexaoxo-3,6,21,24,27,34,37-heptaoxaoctacyclo[27.10.2.0⁴,²³.0⁵,²⁶.0⁸,¹³.0¹⁴,¹⁹.0³³,⁴¹.0³⁶,⁴⁰]hentetraconta-8(13),9,11,14,16,18,29,31,33(41)-nonaen-25-yl 3,4,5-trihydroxybenzoate

(4s,5r,23s,25r,26r,36s,40r)-1,10,11,12,15,16,17,31,32-nonahydroxy-2,7,20,28,35,38-hexaoxo-3,6,21,24,27,34,37-heptaoxaoctacyclo[27.10.2.0⁴,²³.0⁵,²⁶.0⁸,¹³.0¹⁴,¹⁹.0³³,⁴¹.0³⁶,⁴⁰]hentetraconta-8(13),9,11,14,16,18,29,31,33(41)-nonaen-25-yl 3,4,5-trihydroxybenzoate

C41H28O27 (952.0818)


   

(1s,4s,5r,23s,25r,26r,36s,40r)-1,10,11,12,15,16,17,31,32-nonahydroxy-2,7,20,28,35,38-hexaoxo-3,6,21,24,27,34,37-heptaoxaoctacyclo[27.10.2.0⁴,²³.0⁵,²⁶.0⁸,¹³.0¹⁴,¹⁹.0³³,⁴¹.0³⁶,⁴⁰]hentetraconta-8(13),9,11,14,16,18,29,31,33(41)-nonaen-25-yl 3,4,5-trihydroxybenzoate

(1s,4s,5r,23s,25r,26r,36s,40r)-1,10,11,12,15,16,17,31,32-nonahydroxy-2,7,20,28,35,38-hexaoxo-3,6,21,24,27,34,37-heptaoxaoctacyclo[27.10.2.0⁴,²³.0⁵,²⁶.0⁸,¹³.0¹⁴,¹⁹.0³³,⁴¹.0³⁶,⁴⁰]hentetraconta-8(13),9,11,14,16,18,29,31,33(41)-nonaen-25-yl 3,4,5-trihydroxybenzoate

C41H28O27 (952.0818)


   

(2r,3s,4r,5s,6r)-3,4,5-tris(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 2-{[(1s,7s,8r,26r,28s,29r,38r)-1,13,14,15,18,20,34,35,39,39-decahydroxy-2,5,10,23,30-pentaoxo-28-(3,4,5-trihydroxybenzoyloxy)-6,9,24,27,31,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11(16),12,14,17,19,21,32,34,36-decaen-19-yl]oxy}-3,4,5-trihydroxybenzoate

(2r,3s,4r,5s,6r)-3,4,5-tris(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 2-{[(1s,7s,8r,26r,28s,29r,38r)-1,13,14,15,18,20,34,35,39,39-decahydroxy-2,5,10,23,30-pentaoxo-28-(3,4,5-trihydroxybenzoyloxy)-6,9,24,27,31,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11(16),12,14,17,19,21,32,34,36-decaen-19-yl]oxy}-3,4,5-trihydroxybenzoate

C82H58O53 (1890.1843)


   

(2s,3r,4s,5r,6r)-2-{[2-(3,4-dihydroxyphenyl)-7-hydroxy-5-oxochromen-3-yl]oxy}-4,5-dihydroxy-6-({[(2s,3s,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-3-yl 3,4,5-trihydroxybenzoate

(2s,3r,4s,5r,6r)-2-{[2-(3,4-dihydroxyphenyl)-7-hydroxy-5-oxochromen-3-yl]oxy}-4,5-dihydroxy-6-({[(2s,3s,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-3-yl 3,4,5-trihydroxybenzoate

C34H34O19 (746.1694)


   

(1r,19r,21s,22s,23s)-6,7,8,11,12,13,22-heptahydroxy-3,16-dioxo-21-(3,4,5-trihydroxybenzoyloxy)-2,17,20-trioxatetracyclo[17.3.1.0⁴,⁹.0¹⁰,¹⁵]tricosa-4(9),5,7,10,12,14-hexaen-23-yl (1r)-7,8,9-trihydroxy-3,5-dioxo-1h,2h-cyclopenta[c]isochromene-1-carboxylate

(1r,19r,21s,22s,23s)-6,7,8,11,12,13,22-heptahydroxy-3,16-dioxo-21-(3,4,5-trihydroxybenzoyloxy)-2,17,20-trioxatetracyclo[17.3.1.0⁴,⁹.0¹⁰,¹⁵]tricosa-4(9),5,7,10,12,14-hexaen-23-yl (1r)-7,8,9-trihydroxy-3,5-dioxo-1h,2h-cyclopenta[c]isochromene-1-carboxylate

C40H28O25 (908.092)


   

(1r,38r)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11(16),12,14,17,19,21,32,34,36-decaen-28-yl 3,4,5-trihydroxybenzoate

(1r,38r)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11(16),12,14,17,19,21,32,34,36-decaen-28-yl 3,4,5-trihydroxybenzoate

C41H28O27 (952.0818)


   

(8r,9s,27r,29s,30r)-2,3,14,15,16,19,20,21,35,36-decahydroxy-6,11,24,32-tetraoxo-7,10,25,28,31,40-hexaoxaoctacyclo[35.2.1.0⁵,³⁹.0⁸,²⁷.0⁹,³⁰.0¹²,¹⁷.0¹⁸,²³.0³³,³⁸]tetraconta-1(39),2,4,12(17),13,15,18,20,22,33,35,37-dodecaen-29-yl 3,4,5-trihydroxybenzoate

(8r,9s,27r,29s,30r)-2,3,14,15,16,19,20,21,35,36-decahydroxy-6,11,24,32-tetraoxo-7,10,25,28,31,40-hexaoxaoctacyclo[35.2.1.0⁵,³⁹.0⁸,²⁷.0⁹,³⁰.0¹²,¹⁷.0¹⁸,²³.0³³,³⁸]tetraconta-1(39),2,4,12(17),13,15,18,20,22,33,35,37-dodecaen-29-yl 3,4,5-trihydroxybenzoate

C41H26O25 (918.0763)


   

(1r,7r,8r,26s,28s,29s)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11(16),12,14,17,19,21,32,34,36-decaen-28-yl 3,4,5-trihydroxybenzoate

(1r,7r,8r,26s,28s,29s)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11(16),12,14,17,19,21,32,34,36-decaen-28-yl 3,4,5-trihydroxybenzoate

C41H28O27 (952.0818)


   

(1s,19r,21s,22r,23r)-6,7,8,11,12,13,22,23-octahydroxy-3,16-dioxo-2,17,20-trioxatetracyclo[17.3.1.0⁴,⁹.0¹⁰,¹⁵]tricosa-4(9),5,7,10,12,14-hexaen-21-yl 3,4,5-trihydroxybenzoate

(1s,19r,21s,22r,23r)-6,7,8,11,12,13,22,23-octahydroxy-3,16-dioxo-2,17,20-trioxatetracyclo[17.3.1.0⁴,⁹.0¹⁰,¹⁵]tricosa-4(9),5,7,10,12,14-hexaen-21-yl 3,4,5-trihydroxybenzoate

C27H22O18 (634.0806)


   

(1r,7r,8r,26s,28s,29s,38r)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11(16),12,14,17,19,21,32,34,36-decaen-28-yl 3,4,5-trihydroxybenzoate

(1r,7r,8r,26s,28s,29s,38r)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11(16),12,14,17,19,21,32,34,36-decaen-28-yl 3,4,5-trihydroxybenzoate

C41H28O27 (952.0818)


   

(2s,3r,4s,5r,6r)-2,4,5-tris(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-3-yl 3,4,5-trihydroxy-2-{[(1r,8r,9s,27r,29s,30r,39r)-1,14,15,16,19,20,35,36-octahydroxy-2,3,6,11,24,32-hexaoxo-29-(3,4,5-trihydroxybenzoyloxy)-7,10,25,28,31,40-hexaoxaoctacyclo[35.2.1.0⁵,³⁹.0⁸,²⁷.0⁹,³⁰.0¹²,¹⁷.0¹⁸,²³.0³³,³⁸]tetraconta-4,12,14,16,18(23),19,21,33,35,37-decaen-21-yl]oxy}benzoate

(2s,3r,4s,5r,6r)-2,4,5-tris(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-3-yl 3,4,5-trihydroxy-2-{[(1r,8r,9s,27r,29s,30r,39r)-1,14,15,16,19,20,35,36-octahydroxy-2,3,6,11,24,32-hexaoxo-29-(3,4,5-trihydroxybenzoyloxy)-7,10,25,28,31,40-hexaoxaoctacyclo[35.2.1.0⁵,³⁹.0⁸,²⁷.0⁹,³⁰.0¹²,¹⁷.0¹⁸,²³.0³³,³⁸]tetraconta-4,12,14,16,18(23),19,21,33,35,37-decaen-21-yl]oxy}benzoate

C82H56O52 (1872.1738)


   

2,4,5-tris(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-3-yl 2-{[(1r,38r)-1,13,14,15,18,19,34,35,39,39-decahydroxy-2,5,10,23,31-pentaoxo-28-(3,4,5-trihydroxybenzoyloxy)-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11(16),12,14,17,19,21,32,34,36-decaen-20-yl]oxy}-3,4,5-trihydroxybenzoate; 2,4,5-tris(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-3-yl 2-{[(1r,39r)-1,2,2,14,15,16,19,20,35,36-decahydroxy-3,6,11,24,32-pentaoxo-29-(3,4,5-trihydroxybenzoyloxy)-7,10,25,28,31,40-hexaoxaoctacyclo[35.2.1.0⁵,³⁹.0⁸,²⁷.0⁹,³⁰.0¹²,¹⁷.0¹⁸,²³.0³³,³⁸]tetraconta-4,12(17),13,15,18,20,22,33,35,37-decaen-21-yl]oxy}-3,4,5-trihydroxybenzoate

2,4,5-tris(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-3-yl 2-{[(1r,38r)-1,13,14,15,18,19,34,35,39,39-decahydroxy-2,5,10,23,31-pentaoxo-28-(3,4,5-trihydroxybenzoyloxy)-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11(16),12,14,17,19,21,32,34,36-decaen-20-yl]oxy}-3,4,5-trihydroxybenzoate; 2,4,5-tris(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-3-yl 2-{[(1r,39r)-1,2,2,14,15,16,19,20,35,36-decahydroxy-3,6,11,24,32-pentaoxo-29-(3,4,5-trihydroxybenzoyloxy)-7,10,25,28,31,40-hexaoxaoctacyclo[35.2.1.0⁵,³⁹.0⁸,²⁷.0⁹,³⁰.0¹²,¹⁷.0¹⁸,²³.0³³,³⁸]tetraconta-4,12(17),13,15,18,20,22,33,35,37-decaen-21-yl]oxy}-3,4,5-trihydroxybenzoate

C164H116O106 (3780.3686)


   

(7r,8s,26r,28s,29r)-1,2,4,13,14,15,18,19,20,34,35-undecahydroxy-5,10,23,31-tetraoxo-6,9,24,27,30,39-hexaoxaoctacyclo[34.2.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]nonatriaconta-11(16),12,14,17,19,21,32,34,36-nonaen-28-yl 3,4,5-trihydroxybenzoate

(7r,8s,26r,28s,29r)-1,2,4,13,14,15,18,19,20,34,35-undecahydroxy-5,10,23,31-tetraoxo-6,9,24,27,30,39-hexaoxaoctacyclo[34.2.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]nonatriaconta-11(16),12,14,17,19,21,32,34,36-nonaen-28-yl 3,4,5-trihydroxybenzoate

C40H30O26 (926.1025)


   

(2r,3s,4r,5r,6s)-2,4,5-tris(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-3-yl 2-{[(1r,7r,8r,26s,28r,29s,38r)-1,13,14,15,18,19,34,35,39,39-decahydroxy-2,5,10,23,30-pentaoxo-28-(3,4,5-trihydroxybenzoyloxy)-6,9,24,27,31,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11(16),12,14,17,19,21,32,34,36-decaen-20-yl]oxy}-3,4,5-trihydroxybenzoate

(2r,3s,4r,5r,6s)-2,4,5-tris(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-3-yl 2-{[(1r,7r,8r,26s,28r,29s,38r)-1,13,14,15,18,19,34,35,39,39-decahydroxy-2,5,10,23,30-pentaoxo-28-(3,4,5-trihydroxybenzoyloxy)-6,9,24,27,31,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11(16),12,14,17,19,21,32,34,36-decaen-20-yl]oxy}-3,4,5-trihydroxybenzoate

C82H58O53 (1890.1843)


   

(1s,8s,9r,27s,29s,30s,39s)-1,2,2,14,15,16,19,20,21,35,36-undecahydroxy-3,6,11,24,32-pentaoxo-7,10,25,28,31,40-hexaoxaoctacyclo[35.2.1.0⁵,³⁹.0⁸,²⁷.0⁹,³⁰.0¹²,¹⁷.0¹⁸,²³.0³³,³⁸]tetraconta-4,12(17),13,15,18,20,22,33,35,37-decaen-29-yl 2-{[(1s,8r,9s,27r,29s,30r,39r)-1,2,2,14,15,16,19,20,35,36-decahydroxy-3,6,11,24,32-pentaoxo-29-(3,4,5-trihydroxybenzoyloxy)-7,10,25,28,31,40-hexaoxaoctacyclo[35.2.1.0⁵,³⁹.0⁸,²⁷.0⁹,³⁰.0¹²,¹⁷.0¹⁸,²³.0³³,³⁸]tetraconta-4,12(17),13,15,18(23),19,21,33,35,37-decaen-21-yl]oxy}-3,4,5-trihydroxybenzoate

(1s,8s,9r,27s,29s,30s,39s)-1,2,2,14,15,16,19,20,21,35,36-undecahydroxy-3,6,11,24,32-pentaoxo-7,10,25,28,31,40-hexaoxaoctacyclo[35.2.1.0⁵,³⁹.0⁸,²⁷.0⁹,³⁰.0¹²,¹⁷.0¹⁸,²³.0³³,³⁸]tetraconta-4,12(17),13,15,18,20,22,33,35,37-decaen-29-yl 2-{[(1s,8r,9s,27r,29s,30r,39r)-1,2,2,14,15,16,19,20,35,36-decahydroxy-3,6,11,24,32-pentaoxo-29-(3,4,5-trihydroxybenzoyloxy)-7,10,25,28,31,40-hexaoxaoctacyclo[35.2.1.0⁵,³⁹.0⁸,²⁷.0⁹,³⁰.0¹²,¹⁷.0¹⁸,²³.0³³,³⁸]tetraconta-4,12(17),13,15,18(23),19,21,33,35,37-decaen-21-yl]oxy}-3,4,5-trihydroxybenzoate

C82H54O54 (1902.1479)


   

(2s,3r,4s,5r,6r)-2-{[2-(3,4-dihydroxyphenyl)-7-hydroxy-5-oxochromen-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl 3,4,5-trihydroxybenzoate

(2s,3r,4s,5r,6r)-2-{[2-(3,4-dihydroxyphenyl)-7-hydroxy-5-oxochromen-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl 3,4,5-trihydroxybenzoate

C28H24O15 (600.1115)