NCBI Taxonomy: 1798711
Cyanobacteriota/Melainabacteria group (ncbi_taxid: 1798711)
found 40 associated metabolites at clade taxonomy rank level.
Ancestor: Terrabacteria group
Child Taxonomies: Cyanobacteriota, Candidatus Adamsella, Candidatus Saganbacteria, Candidatus Melainabacteria, Candidatus Sericytochromatia, Candidatus Margulisiibacteriota
Sucrose
Sucrose is a nonreducing disaccharide composed of glucose and fructose linked via their anomeric carbons. It is obtained commercially from sugarcane (Saccharum officinarum), sugar beet (Beta vulgaris), and other plants and used extensively as a food and a sweetener. Sucrose is derived by crushing and extracting sugarcane with water or by extracting sugar beet with water, evaporating, and purifying with lime, carbon, and various liquids. Sucrose is also obtainable from sorghum. Sucrose occurs in low percentages in honey and maple syrup. Sucrose is used as a sweetener in foods and soft drinks, in the manufacture of syrups, in invert sugar, confectionery, preserves and jams, demulcent, pharmaceutical products, and caramel. Sucrose is also a chemical intermediate for detergents, emulsifying agents, and other sucrose derivatives. Sucrose is widespread in the seeds, leaves, fruits, flowers, and roots of plants, where it functions as an energy store for metabolism and as a carbon source for biosynthesis. The annual world production of sucrose is in excess of 90 million tons mainly from the juice of sugar cane (20\\\%) and sugar beet (17\\\%). In addition to its use as a sweetener, sucrose is used in food products as a preservative, antioxidant, moisture control agent, stabilizer, and thickening agent. BioTransformer predicts that sucrose is a product of 6-O-sinapoyl sucrose metabolism via a hydrolysis-of-carboxylic-acid-ester-pattern1 reaction occurring in human gut microbiota and catalyzed by the liver carboxylesterase 1 (P23141) enzyme (PMID: 30612223). Sucrose appears as white odorless crystalline or powdery solid. Denser than water. Sucrose is a glycosyl glycoside formed by glucose and fructose units joined by an acetal oxygen bridge from hemiacetal of glucose to the hemiketal of the fructose. It has a role as an osmolyte, a sweetening agent, a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. A nonreducing disaccharide composed of glucose and fructose linked via their anomeric carbons. It is obtained commercially from sugarcane, sugar beet (beta vulgaris), and other plants and used extensively as a food and a sweetener. Sucrose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Sucrose is a natural product found in Haplophyllum ramosissimum, Cyperus esculentus, and other organisms with data available. Sucrose is a metabolite found in or produced by Saccharomyces cerevisiae. A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener. See also: Anise; ferrous disulfide; sucrose (component of); Phosphoric acid; sucrose (component of); Sucrose caramel (related) ... View More ... In chemistry, sugar loosely refers to a number of carbohydrates, such as monosaccharides, disaccharides, or oligosaccharides. In food, sugar refers to a class of edible crystalline carbohydrates, mainly sucrose, lactose, and fructose characterized by a sweet flavor. Other sugars are used in industrial food preparation, but are usually known by more specific names - glucose, fructose or fruit sugar, high fructose corn syrup, etc. Sugars is found in many foods, some of which are ucuhuba, butternut squash, common walnut, and miso. A glycosyl glycoside formed by glucose and fructose units joined by an acetal oxygen bridge from hemiacetal of glucose to the hemiketal of the fructose. Sucrose, a disaccharide, is a sugar composed of glucose and fructose subunits. It is produced naturally in plants and is the main constituent of white sugar. It has the molecular formula C 12H 22O 11. For human consumption, sucrose is extracted and refined from either sugarcane or sugar beet. Sugar mills – typically located in tropical regions near where sugarcane is grown – crush the cane and produce raw sugar which is shipped to other factories for refining into pure sucrose. Sugar beet factories are located in temperate climates where the beet is grown, and process the beets directly into refined sugar. The sugar-refining process involves washing the raw sugar crystals before dissolving them into a sugar syrup which is filtered and then passed over carbon to remove any residual colour. The sugar syrup is then concentrated by boiling under a vacuum and crystallized as the final purification process to produce crystals of pure sucrose that are clear, odorless, and sweet. Sugar is often an added ingredient in food production and recipes. About 185 million tonnes of sugar were produced worldwide in 2017.[6] Sucrose is particularly dangerous as a risk factor for tooth decay because Streptococcus mutans bacteria convert it into a sticky, extracellular, dextran-based polysaccharide that allows them to cohere, forming plaque. Sucrose is the only sugar that bacteria can use to form this sticky polysaccharide.[7] Sucrose. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=8030-20-4 (retrieved 2024-06-29) (CAS RN: 57-50-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Trehalose
C12H22O11 (342.11620619999997)
Trehalose, also known as mycose, is a 1-alpha (disaccharide) sugar found extensively but not abundantly in nature. It is thought to be implicated in anhydrobiosis - the ability of plants and animals to withstand prolonged periods of desiccation. The sugar is thought to form a gel phase as cells dehydrate, which prevents disruption of internal cell organelles by effectively splinting them in position. Rehydration then allows normal cellular activity to be resumed without the major, generally lethal damage that would normally follow a dehydration/reyhdration cycle. Trehalose is a non-reducing sugar formed from two glucose units joined by a 1-1 alpha bond giving it the name of alpha-D-glucopyranoglucopyranosyl-1,1-alpha-D-glucopyranoside. The bonding makes trehalose very resistant to acid hydrolysis, and therefore stable in solution at high temperatures even under acidic conditions. The bonding also keeps non-reducing sugars in closed-ring form, such that the aldehyde or ketone end-groups do not bind to the lysine or arginine residues of proteins (a process called glycation). The enzyme trehalase, present but not abundant in most people, breaks it into two glucose molecules, which can then be readily absorbed in the gut. Trehalose is an important components of insects circulating fluid. It acts as a storage form of insect circulating fluid and it is important in respiration. Trehalose has also been found to be a metabolite of Burkholderia, Escherichia and Propionibacterium (PMID:12105274; PMID:25479689) (krishikosh.egranth.ac.in/bitstream/1/84382/1/88571\\\\%20P-1257.pdf). Alpha,alpha-trehalose is a trehalose in which both glucose residues have alpha-configuration at the anomeric carbon. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite and a geroprotector. Cabaletta has been used in trials studying the treatment of Oculopharyngeal Muscular Dystrophy. Trehalose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Trehalose is a natural product found in Cora pavonia, Selaginella nothohybrida, and other organisms with data available. Trehalose is a metabolite found in or produced by Saccharomyces cerevisiae. Occurs in fungi. EU and USA approved sweetener Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 149 D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient. D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient.
Glucose
Glucose, also known as D-glucose or dextrose, is a member of the class of compounds known as hexoses. Hexoses are monosaccharides in which the sugar unit is a is a six-carbon containing moiety. Glucose contains an aldehyde group and is therefore referred to as an aldohexose. The glucose molecule can exist in an open-chain (acyclic) and ring (cyclic) form, the latter being the result of an intramolecular reaction between the aldehyde C atom and the C-5 hydroxyl group to form an intramolecular hemiacetal. In aqueous solution, both forms are in equilibrium and at pH 7 the cyclic one is predominant. Glucose is a neutral, hydrophilic molecule that readily dissolves in water. It exists as a white crystalline powder. Glucose is the primary source of energy for almost all living organisms. As such, it is the most abundant monosaccharide and the most widely used aldohexose in living organisms. When not circulating freely in blood (in animals) or resin (in plants), glucose is stored as a polymer. In plants it is mainly stored as starch and amylopectin and in animals as glycogen. Glucose is produced by plants through the photosynthesis using sunlight, water and carbon dioxide where it is used as an energy and a carbon source Glucose is particularly abundant in fruits and other parts of plants in its free state. Foods that are particularly rich in glucose are honey, agave, molasses, apples (2g/100g), grapes (8g/100g), oranges (8.5g/100g), jackfruit, dried apricots, dates (32 g/100g), bananas (5.8 g/100g), grape juice, sweet corn, Glucose is about 75\\\\% as sweet as sucrose and about 50\\\\% as sweet as fructose. Sweetness is detected through the binding of sugars to the T1R3 and T1R2 proteins, to form a G-protein coupled receptor that is the sweetness receptor in mammals. Glucose was first isolated from raisins in 1747 by the German chemist Andreas Marggraf. It was discovered in grapes by Johann Tobias Lowitz in 1792 and recognized as different from cane sugar (sucrose). Industrially, glucose is mainly used for the production of fructose and in the production of glucose-containing foods. In foods, it is used as a sweetener, humectant, to increase the volume and to create a softer mouthfeel. Various sources of glucose, such as grape juice (for wine) or malt (for beer), are used for fermentation to ethanol during the production of alcoholic beverages. Glucose is found in many plants as glucosides. A glucoside is a glycoside that is derived from glucose. Glucosides are common in plants, but rare in animals. Glucose is produced when a glucoside is hydrolyzed by purely chemical means or decomposed by fermentation or enzymes. Glucose can be obtained by the hydrolysis of carbohydrates such as milk sugar (lactose), cane sugar (sucrose), maltose, cellulose, and glycogen. Glucose is a building block of the disaccharides lactose and sucrose (cane or beet sugar), of oligosaccharides such as raffinose and of polysaccharides such as starch and amylopectin, glycogen or cellulose. For most animals, while glucose is normally obtained from the diet, it can also be generated via gluconeogenesis. Gluconeogenesis is a metabolic pathway that results in the generation of glucose from certain non-carbohydrate carbon substrates. Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrates, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of the kidneys. In humans the main gluconeogenic precursors are lactate, glycerol (which is a part of the triacylglycerol molecule), alanine and glutamine. B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CA - Tests for diabetes V - Various > V06 - General nutrients > V06D - Other nutrients > V06DC - Carbohydrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents CONFIDENCE standard compound; INTERNAL_ID 226 KEIO_ID G002 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.
Glycerol
Glycerol or glycerin is a colourless, odourless, viscous liquid that is sweet-tasting and mostly non-toxic. It is widely used in the food industry as a sweetener and humectant and in pharmaceutical formulations. Glycerol is an important component of triglycerides (i.e. fats and oils) and of phospholipids. Glycerol is a three-carbon substance that forms the backbone of fatty acids in fats. When the body uses stored fat as a source of energy, glycerol and fatty acids are released into the bloodstream. The glycerol component can be converted into glucose by the liver and provides energy for cellular metabolism. Normally, glycerol shows very little acute toxicity and very high oral doses or acute exposures can be tolerated. On the other hand, chronically high levels of glycerol in the blood are associated with glycerol kinase deficiency (GKD). GKD causes the condition known as hyperglycerolemia, an accumulation of glycerol in the blood and urine. There are three clinically distinct forms of GKD: infantile, juvenile, and adult. The infantile form is the most severe and is associated with vomiting, lethargy, severe developmental delay, and adrenal insufficiency. The mechanisms of glycerol toxicity in infants are not known, but it appears to shift metabolism towards chronic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated GKD. Many affected children with organic acidemias experience intellectual disability or delayed development. Patients with the adult form of GKD generally have no symptoms and are often detected fortuitously. Glycerol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-81-5 (retrieved 2024-07-01) (CAS RN: 56-81-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Glucose
D-Galactose (CAS: 59-23-4) is an aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. D-Galactose is an energy-providing nutrient and also a necessary basic substrate for the biosynthesis of many macromolecules in the body. Metabolic pathways for D-galactose are important not only for the provision of these pathways but also for the prevention of D-galactose metabolite accumulation. The main source of D-galactose is lactose in the milk of mammals, but it can also be found in some fruits and vegetables. Utilization of D-galactose in all living cells is initiated by the phosphorylation of the hexose by the enzyme galactokinase (E.C. 2.7.1.6) (GALK) to form D-galactose-1-phosphate. In the presence of D-galactose-1-phosphate uridyltransferase (E.C. 2.7.7.12) (GALT) D-galactose-1-phosphate is exchanged with glucose-1-phosphate in UDP-glucose to form UDP-galactose. Glucose-1-phosphate will then enter the glycolytic pathway for energy production. Deficiency of the enzyme GALT in galactosemic patients leads to the accumulation of D-galactose-1-phosphate. Classic galactosemia, a term that denotes the presence of D-galactose in the blood, is the rare inborn error of D-galactose metabolism, diagnosed by the deficiency of the second enzyme of the D-galactose assimilation pathway, GALT, which, in turn, is caused by mutations at the GALT gene (PMID: 15256214, 11020650, 10408771). Galactose in the urine is a biomarker for the consumption of milk. Alpha-D-Pyranose-form of the compound Galactose [CCD]. alpha-D-Galactose is found in many foods, some of which are kelp, fig, spelt, and rape. Galactose. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=59-23-4 (retrieved 2024-07-16) (CAS RN: 59-23-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Glucose
B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CA - Tests for diabetes V - Various > V06 - General nutrients > V06D - Other nutrients > V06DC - Carbohydrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.
Sucrose
C12H22O11 (342.11620619999997)
D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
glycerol
A triol with a structure of propane substituted at positions 1, 2 and 3 by hydroxy groups.
6-{[5-(butanoyloxy)-2-[(4-carbamimidamidobutyl)-c-hydroxycarbonimidoyl]-1-(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-methylpentanoyl)-octahydroindol-6-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid
2-{[hydroxy(1-propanoylpyrrolidin-2-yl)methylidene]amino}-n-{6,13,16,21-tetrahydroxy-5-[(4-methoxyphenyl)methyl]-4,11-dimethyl-2,8,15-tris(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl}pentanediimidic acid
2-{[(1-acetylpyrrolidin-2-yl)(hydroxy)methylidene]amino}-n-{6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-4,11-dimethyl-2,8,15-tris(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl}pentanediimidic acid
n-(4-carbamimidamidobutyl)-1-(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-methylpentanoyl)-5-(hexanoyloxy)-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydroindole-2-carboximidic acid
C41H66N6O13 (850.4687626000001)
2-{[(1-acetylpyrrolidin-2-yl)(hydroxy)methylidene]amino}-n-(5-{[4-(chlorooxy)phenyl]methyl}-6,13,16,21-tetrahydroxy-15-isopropyl-4,11-dimethyl-2,8-bis(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl)pentanediimidic acid
C48H72ClN9O13 (1017.4937851999999)
2-({[3-benzyl-2,5,11,14-tetrahydroxy-9-(1h-indol-3-ylmethyl)-6,7-dimethyl-8-oxo-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylbutanoic acid
2-({[3-benzyl-2,5,14-trihydroxy-6-(c-hydroxycarbonimidoylmethyl)-7,10-dimethyl-8,11-dioxo-9-(2-phenylethyl)-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,13-trien-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid
2-{[(1-acetylpyrrolidin-2-yl)(hydroxy)methylidene]amino}-n-{6,13,16,21-tetrahydroxy-15-isopropyl-5-[(4-methoxyphenyl)methyl]-4,11-dimethyl-2,8-bis(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl}pentanediimidic acid
3-phenyl-2-[({2,5,11,14-tetrahydroxy-3,9-bis[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]propanoic acid
C45H59N7O10 (857.4323194000001)
6-amino-2-[({3-benzyl-2,8,11,14-tetrahydroxy-4-methyl-6-[(methyl-c-hydroxycarbonimidoyl)methyl]-5-oxo-9-(2-phenylethyl)-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,7,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]hexanoic acid
2-{[(1-acetylpyrrolidin-2-yl)(hydroxy)methylidene]amino}-n-(5-{[4-(chlorooxy)phenyl]methyl}-6,13,16,21-tetrahydroxy-2,15-diisopropyl-4,11-dimethyl-8-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl)pentanediimidic acid
2-({[3-benzyl-10-ethyl-2,5,14-trihydroxy-6-(c-hydroxycarbonimidoylmethyl)-7-methyl-8,11-dioxo-9-(2-phenylethyl)-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,13-trien-15-yl]-c-hydroxycarbonimidoyl}amino)-5-carbamimidamidopentanoic acid
2-{[(1-acetylpyrrolidin-2-yl)(hydroxy)methylidene]amino}-n-{6,13,16,21-tetrahydroxy-5-[(4-methoxyphenyl)methyl]-4,11-dimethyl-2,8,15-tris(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl}pentanediimidic acid
(2s)-2-[({3-benzyl-2,5,8,11,14-pentahydroxy-6-[(methyl-c-hydroxycarbonimidoyl)methyl]-9-(2-phenylethyl)-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,7,10,13-pentaen-15-yl}-c-hydroxycarbonimidoyl)amino]-5-carbamimidamidopentanoic acid
C43H63N11O9 (877.4809988000001)
(2s)-2-[({3-benzyl-2,8,11,14-tetrahydroxy-4-methyl-6-[(methyl-c-hydroxycarbonimidoyl)methyl]-5-oxo-9-(2-phenylethyl)-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,7,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-5-carbamimidamidopentanoic acid
2-{[(1-acetylpyrrolidin-2-yl)(hydroxy)methylidene]amino}-n-{6,13,16,21-tetrahydroxy-2,15-diisopropyl-5-[(4-methoxyphenyl)methyl]-4,11-dimethyl-8-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl}pentanediimidic acid
C48H73N9O13 (983.5327567999999)
(2r,4r,5s,7s,8r)-5-methyl-8-[(2s)-6-methylhept-5-en-2-yl]-12-oxo-11-oxatricyclo[7.3.0.0²,⁴]dodec-1(9)-en-7-yl acetate
2-{[(1-acetylpyrrolidin-2-yl)(hydroxy)methylidene]amino}-n-{6,13,16,21-tetrahydroxy-8-isopropyl-5-[(4-methoxyphenyl)methyl]-4,11-dimethyl-2,15-bis(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl}pentanediimidic acid
n-(4-carbamimidamidobutyl)-1-(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-methylpentanoyl)-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydroindole-2-carboximidic acid
C35H56N6O11 (736.4006866000001)
6-amino-2-[({3-benzyl-4-ethyl-2,8,11,14-tetrahydroxy-6-[(methyl-c-hydroxycarbonimidoyl)methyl]-5-oxo-9-(2-phenylethyl)-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,7,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]hexanoic acid
6-({2-[(4-carbamimidamidobutyl)-c-hydroxycarbonimidoyl]-1-{2-[(1,2-dihydroxy-3-phenylpropylidene)amino]-4-methylpentanoyl}-5-(hexanoyloxy)-octahydroindol-6-yl}oxy)-3,4,5-trihydroxyoxane-2-carboxylic acid
6-({2-[(4-carbamimidamidobutyl)-c-hydroxycarbonimidoyl]-5-(hexanoyloxy)-1-{2-[2-hydroxy-3-(4-hydroxyphenyl)-n-methylpropanamido]-4-methylpentanoyl}-octahydroindol-6-yl}oxy)-3,4,5-trihydroxyoxane-2-carboxylic acid
C42H66N6O14 (878.4636776000001)
n-(5-{[4-(chlorooxy)phenyl]methyl}-6,13,16,21-tetrahydroxy-4,11-dimethyl-2,8,15-tris(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl)-2-{[hydroxy(1-methyl-2,5-dihydropyrrol-2-yl)methylidene]amino}pentanediimidic acid
C48H72ClN9O12 (1001.4988701999999)
5-(butanoyloxy)-n-(4-carbamimidamidobutyl)-1-(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-methylpentanoyl)-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydroindole-2-carboximidic acid
2-[({3-benzyl-2,8,11,14-tetrahydroxy-4-methyl-6-[(methyl-c-hydroxycarbonimidoyl)methyl]-5-oxo-9-(2-phenylethyl)-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,7,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-4-methylpentanoic acid
n-(4-carbamimidamidobutyl)-1-(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-methylpentanoyl)-5-hydroxy-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydroindole-2-carboximidic acid
C35H56N6O12 (752.3956016000001)
6-({2-[(4-carbamimidamidobutyl)-c-hydroxycarbonimidoyl]-1-(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-methylpentanoyl)-5-(octanoyloxy)-octahydroindol-6-yl}oxy)-3,4,5-trihydroxyoxane-2-carboxylic acid
C43H68N6O14 (892.4793268000001)
(2r,4s,5r,7s,8r)-5-methyl-8-[(2s)-6-methylhept-5-en-2-yl]-12-oxo-11-oxatricyclo[7.3.0.0²,⁴]dodec-1(9)-en-7-yl acetate
3-phenyl-2-[({2,5,11,14-tetrahydroxy-3,9-bis[2-(4-hydroxyphenyl)ethyl]-6,7-dimethyl-8-oxo-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]propanoic acid
C46H61N7O10 (871.4479686000001)
6-({2-[(4-carbamimidamidobutyl)-c-hydroxycarbonimidoyl]-1-(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-methylpentanoyl)-5-hydroxy-octahydroindol-6-yl}oxy)-3,4,5-trihydroxyoxane-2-carboxylic acid
6-({2-[(4-carbamimidamidobutyl)-c-hydroxycarbonimidoyl]-1-(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-methylpentanoyl)-5-(heptanoyloxy)-octahydroindol-6-yl}oxy)-3,4,5-trihydroxyoxane-2-carboxylic acid
C42H66N6O14 (878.4636776000001)