NCBI Taxonomy: 162893

Saraca (ncbi_taxid: 162893)

found 45 associated metabolites at genus taxonomy rank level.

Ancestor: Saraceae

Child Taxonomies: Saraca dives, Saraca asoca, Saraca indica, Saraca declinata, Saraca palembanica, unclassified Saraca, Saraca griffithiana, Saraca thaipingensis

Epicatechin

(2R,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C15H14O6 (290.079)


Epicatechin is an antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Catechin is a tannin peculiar to green and white tea because the black tea oxidation process reduces catechins in black tea. Catechin is a powerful, water soluble polyphenol and antioxidant that is easily oxidized. Several thousand types are available in the plant world. As many as two thousand are known to have a flavon structure and are called flavonoids. Catechin is one of them. Green tea is manufactured from fresh, unfermented tea leaves; the oxidation of catechins is minimal, and hence they are able to serve as antioxidants. Researchers believe that catechin is effective because it easily sticks to proteins, blocking bacteria from adhering to cell walls and disrupting their ability to destroy them. Viruses have hooks on their surfaces and can attach to cell walls. The catechin in green tea prevents viruses from adhering and causing harm. Catechin reacts with toxins created by harmful bacteria (many of which belong to the protein family) and harmful metals such as lead, mercury, chrome, and cadmium. From its NMR espectra, there is a doubt on 2 and 3 atoms configuration. It seems to be that they are in trans position. Epicatechin, also known as (+)-cyanidanol-3 or 2,3-cis-epicatechin, is a member of the class of compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Thus, epicatechin is considered to be a flavonoid lipid molecule. Epicatechin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Epicatechin can be found in cashew nut, which makes epicatechin a potential biomarker for the consumption of this food product. Epicatechin can be found primarily in blood, feces, and urine, as well as throughout most human tissues. Epicatechin is a flavan-3-ol, a type of natural phenol and antioxidant. It is a plant secondary metabolite. It belongs to the group of flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids . (-)-epicatechin is a catechin with (2R,3R)-configuration. It has a role as an antioxidant. It is a polyphenol and a catechin. It is an enantiomer of a (+)-epicatechin. Epicatechin has been used in trials studying the treatment of Pre-diabetes. (-)-Epicatechin is a natural product found in Visnea mocanera, Litsea rotundifolia, and other organisms with data available. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. See also: Crofelemer (monomer of); Bilberry (part of); Cats Claw (part of) ... View More ... A catechin with (2R,3R)-configuration. [Raw Data] CB030_(-)-Epicatechin_pos_20eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_50eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_40eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_10eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_30eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_neg_50eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_30eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_10eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_40eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_20eV_000009.txt Epicatechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=490-46-0 (retrieved 2024-07-09) (CAS RN: 490-46-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB.

   

Procyanidin B2

(2R,3R)-2-(3,4-dihydroxyphenyl)-8-[(2R,3R,4R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-yl]-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C30H26O12 (578.1424)


Procyanidin B2 is a proanthocyanidin consisting of two molecules of (-)-epicatechin joined by a bond between positions 4 and 8 in a beta-configuration. Procyanidin B2 can be found in Cinchona pubescens (Chinchona, in the rind, bark and cortex), in Cinnamomum verum (Ceylon cinnamon, in the rind, bark and cortex), in Crataegus monogyna (Common hawthorn, in the flower and blossom), in Uncaria guianensis (Cats claw, in the root), in Vitis vinifera (Common grape vine, in the leaf), in Litchi chinensis (litchi, in the pericarp), in the apple, in Ecdysanthera utilis and in red wine. It has a role as a metabolite and an antioxidant. It is a hydroxyflavan, a proanthocyanidin, a biflavonoid and a polyphenol. It is functionally related to a (-)-epicatechin. Procyanidin B2 is a natural product found in Begonia fagifolia, Saraca asoca, and other organisms with data available. See also: Cocoa (part of); Primula veris flower (part of). A proanthocyanidin consisting of two molecules of (-)-epicatechin joined by a bond between positions 4 and 8 in a beta-configuration. Procyanidin B2 can be found in Cinchona pubescens (Chinchona, in the rind, bark and cortex), in Cinnamomum verum (Ceylon cinnamon, in the rind, bark and cortex), in Crataegus monogyna (Common hawthorn, in the flower and blossom), in Uncaria guianensis (Cats claw, in the root), in Vitis vinifera (Common grape vine, in the leaf), in Litchi chinensis (litchi, in the pericarp), in the apple, in Ecdysanthera utilis and in red wine. Present in red wine. Procyanidin B2 is found in many foods, some of which are alcoholic beverages, sherry, bilberry, and yellow zucchini. Procyanidin B2 is found in alcoholic beverages. Procyanidin B2 is present in red wine. Procyanidin B2 is a natural flavonoid, with anti-cancer, antioxidant activities. Procyanidin B2 is a natural flavonoid, with anti-cancer, antioxidant activities.

   

Palmitic acid

hexadecanoic acid

C16H32O2 (256.2402)


Palmitic acid, also known as palmitate or hexadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, palmitic acid is considered to be a fatty acid lipid molecule. Palmitic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Palmitic acid can be found in a number of food items such as sacred lotus, spinach, shallot, and corn salad, which makes palmitic acid a potential biomarker for the consumption of these food products. Palmitic acid can be found primarily in most biofluids, including feces, sweat, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Palmitic acid exists in all living species, ranging from bacteria to humans. In humans, palmitic acid is involved in several metabolic pathways, some of which include alendronate action pathway, rosuvastatin action pathway, simvastatin action pathway, and cerivastatin action pathway. Palmitic acid is also involved in several metabolic disorders, some of which include hypercholesterolemia, familial lipoprotein lipase deficiency, ethylmalonic encephalopathy, and carnitine palmitoyl transferase deficiency (I). Moreover, palmitic acid is found to be associated with schizophrenia. Palmitic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Palmitic acid, or hexadecanoic acid in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms. Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and dairy products. Palmitate is the salts and esters of palmitic acid. The palmitate anion is the observed form of palmitic acid at physiologic pH (7.4) . Palmitic acid is the first fatty acid produced during lipogenesis (fatty acid synthesis) and from which longer fatty acids can be produced. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC) which is responsible for converting acetyl-ACP to malonyl-ACP on the growing acyl chain, thus preventing further palmitate generation (DrugBank). Palmitic acid, or hexadecanoic acid, is one of the most common saturated fatty acids found in animals, plants, and microorganisms. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Excess carbohydrates in the body are converted to palmitic acid. Palmitic acid is the first fatty acid produced during fatty acid synthesis and is the precursor to longer fatty acids. As a consequence, palmitic acid is a major body component of animals. In humans, one analysis found it to make up 21–30\\\% (molar) of human depot fat (PMID: 13756126), and it is a major, but highly variable, lipid component of human breast milk (PMID: 352132). Palmitic acid is used to produce soaps, cosmetics, and industrial mould release agents. These applications use sodium palmitate, which is commonly obtained by saponification of palm oil. To this end, palm oil, rendered from palm tree (species Elaeis guineensis), is treated with sodium hydroxide (in the form of caustic soda or lye), which causes hydrolysis of the ester groups, yielding glycerol and sodium palmitate. Aluminium salts of palmitic acid and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and palmitic acid (Wikipedia). Palmitic acid is also used in the determination of water hardness and is a surfactant of Levovist, an intravenous ultrasonic contrast agent. Hexadecanoic acid is a straight-chain, sixteen-carbon, saturated long-chain fatty acid. It has a role as an EC 1.1.1.189 (prostaglandin-E2 9-reductase) inhibitor, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a hexadecanoate. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. Palmitic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Palmitic Acid is a saturated long-chain fatty acid with a 16-carbon backbone. Palmitic acid is found naturally in palm oil and palm kernel oil, as well as in butter, cheese, milk and meat. Palmitic acid, or hexadecanoic acid is one of the most common saturated fatty acids found in animals and plants, a saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. It occurs in the form of esters (glycerides) in oils and fats of vegetable and animal origin and is usually obtained from palm oil, which is widely distributed in plants. Palmitic acid is used in determination of water hardness and is an active ingredient of *Levovist*TM, used in echo enhancement in sonographic Doppler B-mode imaging and as an ultrasound contrast medium. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. A straight-chain, sixteen-carbon, saturated long-chain fatty acid. Palmitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-10-3 (retrieved 2024-07-01) (CAS RN: 57-10-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Stearic acid

1-Heptadecanecarboxylic acid

C18H36O2 (284.2715)


Stearic acid, also known as stearate or N-octadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, stearic acid is considered to be a fatty acid lipid molecule. Stearic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Stearic acid can be synthesized from octadecane. Stearic acid is also a parent compound for other transformation products, including but not limited to, 3-oxooctadecanoic acid, (9S,10S)-10-hydroxy-9-(phosphonooxy)octadecanoic acid, and 16-methyloctadecanoic acid. Stearic acid can be found in a number of food items such as green bell pepper, common oregano, ucuhuba, and babassu palm, which makes stearic acid a potential biomarker for the consumption of these food products. Stearic acid can be found primarily in most biofluids, including urine, feces, cerebrospinal fluid (CSF), and sweat, as well as throughout most human tissues. Stearic acid exists in all living species, ranging from bacteria to humans. In humans, stearic acid is involved in the plasmalogen synthesis. Stearic acid is also involved in mitochondrial beta-oxidation of long chain saturated fatty acids, which is a metabolic disorder. Moreover, stearic acid is found to be associated with schizophrenia. Stearic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Stearic acid ( STEER-ik, stee-ARR-ik) is a saturated fatty acid with an 18-carbon chain and has the IUPAC name octadecanoic acid. It is a waxy solid and its chemical formula is C17H35CO2H. Its name comes from the Greek word στέαρ "stéar", which means tallow. The salts and esters of stearic acid are called stearates. As its ester, stearic acid is one of the most common saturated fatty acids found in nature following palmitic acid. The triglyceride derived from three molecules of stearic acid is called stearin . Stearic acid, also known as octadecanoic acid or C18:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Stearic acid (its ester is called stearate) is a saturated fatty acid that has 18 carbons and is therefore a very hydrophobic molecule that is practically insoluble in water. It exists as a waxy solid. In terms of its biosynthesis, stearic acid is produced from carbohydrates via the fatty acid synthesis machinery wherein acetyl-CoA contributes two-carbon building blocks, up to the 16-carbon palmitate, via the enzyme complex fatty acid synthase (FA synthase), at which point a fatty acid elongase is needed to further lengthen it. After synthesis, there are a variety of reactions it may undergo, including desaturation to oleate via stearoyl-CoA desaturase (PMID: 16477801). Stearic acid is found in all living organisms ranging from bacteria to plants to animals. It is one of the useful types of saturated fatty acids that comes from many animal and vegetable fats and oils. For example, it is a component of cocoa butter and shea butter. It is used as a food additive, in cleaning and personal care products, and in lubricants. Its name comes from the Greek word stear, which means ‚Äòtallow‚Äô or ‚Äòhard fat‚Äô. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.

   

Oleic acid

Emersol 221 low titer white oleic acid

C18H34O2 (282.2559)


Oleic acid (or 9Z)-Octadecenoic acid) is an unsaturated C-18 or an omega-9 fatty acid that is the most widely distributed and abundant fatty acid in nature. It occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. The name derives from the Latin word oleum, which means oil. Oleic acid is the most abundant fatty acid in human adipose tissue, and the second most abundant in human tissues overall, following palmitic acid. Oleic acid is a component of the normal human diet, being a part of animal fats and vegetable oils. Triglycerides of oleic acid represent the majority of olive oil (about 70\\\\%). Oleic acid triglycerides also make up 59–75\\\\% of pecan oil, 61\\\\% of canola oil, 36–67\\\\% of peanut oil, 60\\\\% of macadamia oil, 20–80\\\\% of sunflower oil, 15–20\\\\% of grape seed oil, sea buckthorn oil, 40\\\\% of sesame oil, and 14\\\\% of poppyseed oil. High oleic variants of plant sources such as sunflower (~80\\\\%) and canola oil (70\\\\%) also have been developed. consumption has been associated with decreased low-density lipoprotein (LDL) cholesterol, and possibly with increased high-density lipoprotein (HDL) cholesterol, however, the ability of oleic acid to raise HDL is still debated. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil that is considered a health benefit. Oleic acid is used in manufacturing of surfactants, soaps, plasticizers. It is also used as an emulsifying agent in foods and pharmaceuticals. Oleic acid is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. Major constituent of plant oils e.g. olive oil (ca. 80\\\\%), almond oil (ca. 80\\\\%) and many others, mainly as glyceride. Constituent of tall oiland is also present in apple, melon, raspberry oil, tomato, banana, roasted peanuts, black tea, rice bran, cardamon, plum brandy, peated malt, dairy products and various animal fats. Component of citrus fruit coatings. Emulsifying agent in foods CONFIDENCE standard compound; INTERNAL_ID 290 COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

Linoleic acid

C18:2 9C, 12C Omega6 todos cis-9,12-octadienoico

C18H32O2 (280.2402)


Linoleic acid is a doubly unsaturated fatty acid, also known as an omega-6 fatty acid, occurring widely in plant glycosides. In this particular polyunsaturated fatty acid (PUFA), the first double bond is located between the sixth and seventh carbon atom from the methyl end of the fatty acid (n-6). Linoleic acid is an essential fatty acid in human nutrition because it cannot be synthesized by humans. It is used in the biosynthesis of prostaglandins (via arachidonic acid) and cell membranes (From Stedman, 26th ed). Linoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Linoleic acid (LA) is an organic compound with the formula HOOC(CH2)7CH=CHCH2CH=CH(CH2)4CH3. Both alkene groups (−CH=CH−) are cis. It is a fatty acid sometimes denoted 18:2 (n-6) or 18:2 cis-9,12. A linoleate is a salt or ester of this acid.[5] Linoleic acid is a polyunsaturated, omega-6 fatty acid. It is a colorless liquid that is virtually insoluble in water but soluble in many organic solvents.[2] It typically occurs in nature as a triglyceride (ester of glycerin) rather than as a free fatty acid.[6] It is one of two essential fatty acids for humans, who must obtain it through their diet,[7] and the most essential, because the body uses it as a base to make the others. The word "linoleic" derives from Latin linum 'flax', and oleum 'oil', reflecting the fact that it was first isolated from linseed oil.

   

Pelargonidin 3,5-di-O-glucoside

7-hydroxy-2-(4-hydroxyphenyl)-3,5-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})-1λ⁴-chromen-1-ylium

[C27H31O15]+ (595.1663)


Pelargonin is a member of the class of compounds known as anthocyanidin-5-o-glycosides. Anthocyanidin-5-o-glycosides are phenolic compounds containing one anthocyanidin moiety which is O-glycosidically linked to a carbohydrate moiety at the C5-position. Pelargonin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Pelargonin can be found in a number of food items such as green bean, grass pea, pomegranate, and yellow wax bean, which makes pelargonin a potential biomarker for the consumption of these food products. Pelargonin is an anthocyanin. It is the 3,5-O-diglucoside of pelargonidin . Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBB01_Pelargonin_pos_50eV.txt [Raw Data] CBB01_Pelargonin_pos_40eV.txt [Raw Data] CBB01_Pelargonin_pos_20eV.txt [Raw Data] CBB01_Pelargonin_pos_10eV.txt [Raw Data] CBB01_Pelargonin_pos_30eV.txt

   

procyanidin B2

(2S,3S)-2-(3,4-dihydroxyphenyl)-8-[(2R,3R,4R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-chroman-4-yl]chromane-3,5,7-triol

C30H26O12 (578.1424)


Annotation level-1 Acquisition and generation of the data is financially supported in part by CREST/JST. Procyanidin B2 is a natural flavonoid, with anti-cancer, antioxidant activities. Procyanidin B2 is a natural flavonoid, with anti-cancer, antioxidant activities.

   

Procyanidin B1

(2R,3S)-2-(3,4-dihydroxyphenyl)-8-[(2R,3R,4R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-yl]-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C30H26O12 (578.1424)


Procyanidin B1 is a proanthocyanidin consisting of (-)-epicatechin and (+)-catechin units joined by a bond between positions 4 and 8 respectively in a beta-configuration.. Procyanidin B1 can be found in Cinnamomum verum (Ceylon cinnamon, in the rind, bark or cortex), in Uncaria guianensis (cats claw, in the root), and in Vitis vinifera (common grape vine, in the leaf) or in peach. It has a role as a metabolite, an EC 3.4.21.5 (thrombin) inhibitor and an anti-inflammatory agent. It is a hydroxyflavan, a proanthocyanidin, a biflavonoid and a polyphenol. It is functionally related to a (-)-epicatechin and a (+)-catechin. Procyanidin B1 is a natural product found in Quercus miyagii, Saraca asoca, and other organisms with data available. See also: Garcinia mangostana fruit rind (part of); Maritime Pine (part of). A proanthocyanidin consisting of (-)-epicatechin and (+)-catechin units joined by a bond between positions 4 and 8 respectively in a beta-configuration.. Procyanidin B1 can be found in Cinnamomum verum (Ceylon cinnamon, in the rind, bark or cortex), in Uncaria guianensis (cats claw, in the root), and in Vitis vinifera (common grape vine, in the leaf) or in peach. Present in red wine. Procyanidin B1 is found in many foods, some of which are common bean, green bell pepper, common hazelnut, and guava. Procyanidin B1 is found in alcoholic beverages. Procyanidin B1 is present in red win Procyanidin B1 is a polyphenolic flavonoid isolated from commonly eaten fruits, binds to TLR4/MD-2 complex, and has anti-inflammatory activity. Procyanidin B1 is a polyphenolic flavonoid isolated from commonly eaten fruits, binds to TLR4/MD-2 complex, and has anti-inflammatory activity.

   

Pelargonin

7-hydroxy-2-(4-hydroxyphenyl)-3,5-bis({[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})-1lambda4-chromen-1-ylium

C27H31O15+ (595.1663)


Pelargonin is a member of the class of compounds known as anthocyanidin-5-o-glycosides. Anthocyanidin-5-o-glycosides are phenolic compounds containing one anthocyanidin moiety which is O-glycosidically linked to a carbohydrate moiety at the C5-position. Pelargonin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Pelargonin can be found in a number of food items such as green bean, grass pea, pomegranate, and yellow wax bean, which makes pelargonin a potential biomarker for the consumption of these food products. Pelargonin is an anthocyanin. It is the 3,5-O-diglucoside of pelargonidin . Pelargonin, also known as pelargonin chloride (CAS: 17334-58-6), belongs to the class of organic compounds known as anthocyanidin-5-O-glycosides. These are phenolic compounds containing one anthocyanidin moiety which is O-glycosidically linked to a carbohydrate moiety at the C5-position. Pelargonin is a pigment found in barberries, the petals of the scarlet pelargonium flower pomegranates, and red wine. Pelargonin is found in common bean.

   

3,3',4',5,7-Pentahydroxyflavan(4->8)-3,4',5,7-tetrahydroxyflavan

8-[2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-yl]-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C30H26O11 (562.1475)


3,3,4,5,7-Pentahydroxyflavan(4->8)-3,4,5,7-tetrahydroxyflavan is found in pulses. 3,3,4,5,7-Pentahydroxyflavan(4->8)-3,4,5,7-tetrahydroxyflavan is isolated from azuki bean (Vigna angularis) seeds. Isolated from azuki bean (Vigna angularis) seeds. 3,3,4,5,7-Pentahydroxyflavan(4->8)-3,4,5,7-tetrahydroxyflavan is found in pulses.

   

Linoleate

cis-9, cis-12-octadecadienoic acid

C18H32O2 (280.2402)


COVID info from PDB, Protein Data Bank, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Oleate

cis-9-octadecenoic acid

C18H34O2 (282.2559)


COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

Palmitic Acid

n-Hexadecanoic acid

C16H32O2 (256.2402)


COVID info from WikiPathways D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Procyanidin B1

(2R,3R,4R)-2-(3,4-dihydroxyphenyl)-4-[(2R,3S)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-chroman-8-yl]chroman-3,5,7-triol

C30H26O12 (578.1424)


Annotation level-2 Acquisition and generation of the data is financially supported in part by CREST/JST. Procyanidin B1 is a polyphenolic flavonoid isolated from commonly eaten fruits, binds to TLR4/MD-2 complex, and has anti-inflammatory activity. Procyanidin B1 is a polyphenolic flavonoid isolated from commonly eaten fruits, binds to TLR4/MD-2 complex, and has anti-inflammatory activity.

   

Catechol

(+)-Catechin Hydrate

C15H14O6 (290.079)


Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

stearic acid

stearic acid

C18H36O2 (284.2715)


Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.

   

Oleic acid

cis-9-Octadecenoic acid

C18H34O2 (282.2559)


An octadec-9-enoic acid in which the double bond at C-9 has Z (cis) stereochemistry. Oleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-80-1 (retrieved 2024-07-16) (CAS RN: 112-80-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

Hexadecanoic acid

Hexadecanoic acid

C16H32O2 (256.2402)


   

Octadecanoic acid

Octadecanoic acid

C18H36O2 (284.2715)


A C18 straight-chain saturated fatty acid component of many animal and vegetable lipids. As well as in the diet, it is used in hardening soaps, softening plastics and in making cosmetics, candles and plastics.

   
   

Cognac oil

9,12-Octadecadienoic acid, (Z,Z)-, labeled with carbon-14

C18H32O2 (280.2402)


An octadecadienoic acid in which the two double bonds are at positions 9 and 12 and have Z (cis) stereochemistry. COVID info from PDB, Protein Data Bank, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Red oil

4-02-00-01641 (Beilstein Handbook Reference)

C18H34O2 (282.2559)


COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

linoleic

9,12-Octadecadienoic acid, (9E,12E)-

C18H32O2 (280.2402)


Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1]. Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1].

   

(2r,3r,4r)-2-(3,4-dihydroxyphenyl)-4-[(2r,3s)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

(2r,3r,4r)-2-(3,4-dihydroxyphenyl)-4-[(2r,3s)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

C30H26O12 (578.1424)


   

(1r,3ar,3br,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3ar,3br,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H50O (414.3861)


   

(2r,3r,4s,5r)-2-{[(1r,2s,3s)-7-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-3-(hydroxymethyl)-6,8-dimethoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}oxane-3,4,5-triol

(2r,3r,4s,5r)-2-{[(1r,2s,3s)-7-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-3-(hydroxymethyl)-6,8-dimethoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}oxane-3,4,5-triol

C27H36O12 (552.2207)


   

(2r,3r,4s,5r)-2-{[(1s,2r,3r)-7-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-3-(hydroxymethyl)-6,8-dimethoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}oxane-3,4,5-triol

(2r,3r,4s,5r)-2-{[(1s,2r,3r)-7-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-3-(hydroxymethyl)-6,8-dimethoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}oxane-3,4,5-triol

C27H36O12 (552.2207)


   

2-(3,4-dihydroxyphenyl)-4-[2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

2-(3,4-dihydroxyphenyl)-4-[2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

C30H26O12 (578.1424)


   

(2r,3r,4s,5s,6s)-2-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6s)-2-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.439)


   

(2r,3r)-2-(3,4-dihydroxyphenyl)-4-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

(2r,3r)-2-(3,4-dihydroxyphenyl)-4-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

C30H26O12 (578.1424)


   

(2s,3r,4s,5s,6r)-2-{2-[(2s)-1-hydroxy-3-(4-hydroxy-3-methoxyphenyl)propan-2-yl]-4-(3-hydroxypropyl)-6-methoxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{2-[(2s)-1-hydroxy-3-(4-hydroxy-3-methoxyphenyl)propan-2-yl]-4-(3-hydroxypropyl)-6-methoxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C26H36O11 (524.2258)


   

(2r,3r,4r)-2-(3,4-dihydroxyphenyl)-4-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

(2r,3r,4r)-2-(3,4-dihydroxyphenyl)-4-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

C30H26O12 (578.1424)


   

2-(3,4-dihydroxyphenyl)-7-hydroxy-3-{[(2s,3r,4r,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-{[(2s,3r,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

2-(3,4-dihydroxyphenyl)-7-hydroxy-3-{[(2s,3r,4r,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-{[(2s,3r,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

[C27H31O16]+ (611.1612)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

(2s,3r,4r,5s)-2-{[(1r,2s,3s)-7-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-3-(hydroxymethyl)-6,8-dimethoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}oxane-3,4,5-triol

(2s,3r,4r,5s)-2-{[(1r,2s,3s)-7-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-3-(hydroxymethyl)-6,8-dimethoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}oxane-3,4,5-triol

C27H36O12 (552.2207)


   

(2r,3r,4s,5s,6r)-2-{[(3as,3bs,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(3as,3bs,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.439)


   

(2r,3r,4r)-4-[(2s,3s)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-2-(4-hydroxyphenyl)-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

(2r,3r,4r)-4-[(2s,3s)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-2-(4-hydroxyphenyl)-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

C30H26O11 (562.1475)


   

(2r,3s,4s,5s)-2-{[(1s,2r,3r)-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}oxane-3,4,5-triol

(2r,3s,4s,5s)-2-{[(1s,2r,3r)-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}oxane-3,4,5-triol

C25H32O10 (492.1995)


   

(2r,3s,4s,5s)-2-{[(1s,2r,3r)-7-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-3-(hydroxymethyl)-6,8-dimethoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}oxane-3,4,5-triol

(2r,3s,4s,5s)-2-{[(1s,2r,3r)-7-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-3-(hydroxymethyl)-6,8-dimethoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}oxane-3,4,5-triol

C27H36O12 (552.2207)


   

(2r,3r,4s,5r)-2-{[(1s,2r,3r)-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}oxane-3,4,5-triol

(2r,3r,4s,5r)-2-{[(1s,2r,3r)-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}oxane-3,4,5-triol

C25H32O10 (492.1995)


   

(2r,3r)-8-[(2r,3r,4r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-4-yl]-2-(4-hydroxyphenyl)-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

(2r,3r)-8-[(2r,3r,4r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-4-yl]-2-(4-hydroxyphenyl)-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

C30H26O11 (562.1475)