NCBI Taxonomy: 1141485
Polycarpaeae (ncbi_taxid: 1141485)
found 54 associated metabolites at tribe taxonomy rank level.
Ancestor: Caryophyllaceae
Child Taxonomies: Haya, Cerdia, Cometes, Ortegia, Xerotia, Augustea, Drymaria, Pteranthus, Polycarpon, Illecebrum, Cardionema, Microphyes, Loeflingia, Stipulicida, Polycarpaea, Sphaerocoma, Polytepalum, Pycnophyllum, Achyronychia, Dicheranthus, Scopulophila, Pycnophyllopsis
Isovitexin
Isovitexin is a C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. It has a role as an EC 3.2.1.20 (alpha-glucosidase) inhibitor and a metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of an isovitexin-7-olate. Isovitexin is a natural product found in Carex fraseriana, Rauhiella, and other organisms with data available. See also: Fenugreek seed (part of); Acai (part of); Crataegus monogyna flowering top (part of). [Raw Data] CBA25_Isovitexin_neg_20eV_1-7_01_1425.txt [Raw Data] CBA25_Isovitexin_neg_10eV_1-7_01_1369.txt [Raw Data] CBA25_Isovitexin_pos_30eV_1-7_01_1399.txt [Raw Data] CBA25_Isovitexin_neg_40eV_1-7_01_1427.txt [Raw Data] CBA25_Isovitexin_neg_30eV_1-7_01_1426.txt [Raw Data] CBA25_Isovitexin_neg_50eV_1-7_01_1428.txt [Raw Data] CBA25_Isovitexin_pos_20eV_1-7_01_1398.txt [Raw Data] CBA25_Isovitexin_pos_10eV_1-7_01_1358.txt [Raw Data] CBA25_Isovitexin_pos_40eV_1-7_01_1400.txt [Raw Data] CBA25_Isovitexin_pos_50eV_1-7_01_1401.txt Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB.
4-Hydroxybenzaldehyde
4-Hydroxybenzaldehyde, also known as 4-formylphenol or 4-hydroxybenzenecarbonal, belongs to the class of organic compounds known as hydroxybenzaldehydes. These are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. A hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. 4-Hydroxybenzaldehyde exists in all living organisms, ranging from bacteria to humans. 4-Hydroxybenzaldehyde is a sweet, almond, and balsam tasting compound. 4-Hydroxybenzaldehyde is found, on average, in the highest concentration within vinegars and oats. 4-Hydroxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cardoons, colorado pinyons, oyster mushrooms, common chokecherries, and potato. This could make 4-hydroxybenzaldehyde a potential biomarker for the consumption of these foods. 4-hydroxybenzaldehyde is a hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. It has a role as a plant metabolite, a mouse metabolite and an EC 1.14.17.1 (dopamine beta-monooxygenase) inhibitor. 4-Hydroxybenzaldehyde is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. Occurs naturally combined in many glycosides. Constituent of vanillin. Isol. in free state from opium poppy (Papaver somniferum) A hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. 4-Hydroxybenzaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=123-08-0 (retrieved 2024-07-02) (CAS RN: 123-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.
4-Hydroxybenzoic acid
4-Hydroxybenzoic acid, also known as p-hydroxybenzoate or 4-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 4-Hydroxybenzoic acid is a white crystalline solid that is slightly soluble in water and chloroform but more soluble in polar organic solvents such as alcohols and acetone. It is a nutty and phenolic tasting compound. 4-Hydroxybenzoic acid exists in all living species, ranging from bacteria to plants to humans. 4-Hydroxybenzoic acid can be found naturally in coconut. It is one of the main catechins metabolites found in humans after consumption of green tea infusions. It is also found in wine, in vanilla, in Açaí oil, obtained from the fruit of the açaí palm (Euterpe oleracea), at relatively high concetrations (892±52 mg/kg). It is also found in cloudy olive oil and in the edible mushroom Russula virescens. It has been detected in red huckleberries, rabbiteye blueberries, and corianders and in a lower concentration in olives, red raspberries, and almonds. In humans, 4-hydroxybenzoic acid is involved in ubiquinone biosynthesis. In particular, the enzyme 4-hydroxybenzoate polyprenyltransferase uses a polyprenyl diphosphate and 4-hydroxybenzoate to produce diphosphate and 4-hydroxy-3-polyprenylbenzoate. This enzyme participates in ubiquinone biosynthesis. 4-Hydroxybenzoic acid can be biosynthesized by the enzyme Chorismate lyase. Chorismate lyase is an enzyme that transforms chorismate into 4-hydroxybenzoate and pyruvate. This enzyme catalyses the first step in ubiquinone biosynthesis in Escherichia coli and other Gram-negative bacteria. 4-Hydroxybenzoate is an intermediate in many enzyme-mediated reactions in microbes. For instance, the enzyme 4-hydroxybenzaldehyde dehydrogenase uses 4-hydroxybenzaldehyde, NAD+ and H2O to produce 4-hydroxybenzoate, NADH and H+. This enzyme participates in toluene and xylene degradation in bacteria such as Pseudomonas mendocina. 4-hydroxybenzaldehyde dehydrogenase is also found in carrots. The enzyme 4-hydroxybenzoate 1-hydroxylase transforms 4-hydroxybenzoate, NAD(P)H, 2 H+ and O2 into hydroquinone, NAD(P)+, H2O and CO2. This enzyme participates in 2,4-dichlorobenzoate degradation and is found in Candida parapsilosis. The enzyme 4-hydroxybenzoate 3-monooxygenase transforms 4-hydroxybenzoate, NADPH, H+ and O2 into protocatechuate, NADP+ and H2O. This enzyme participates in benzoate degradation via hydroxylation and 2,4-dichlorobenzoate degradation and is found in Pseudomonas putida and Pseudomonas fluorescens. 4-Hydroxybenzoic acid is a popular antioxidant in part because of its low toxicity. 4-Hydroxybenzoic acid has estrogenic activity both in vitro and in vivo (PMID 9417843).
Isolated from many plants, free and combined. Alkyl esters of 4-hydroxybenzoic acid (see below) are used as food and cosmetic preservatives, mainly in their Na salt form, which makes them more water soluble. They are active at low concentrations and more pH-independent than the commonly used Benzoic acid
Isovitexin
3-Oxo-alpha-ionol
3-oxo-alpha-ionol is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. 3-oxo-alpha-ionol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 3-oxo-alpha-ionol is a spice tasting compound found in common grape, which makes 3-oxo-alpha-ionol a potential biomarker for the consumption of this food product. 3-oxo-alpha-ionol may be a unique S.cerevisiae (yeast) metabolite.
Drymaritin
C15H10N2O2 (250.07422400000002)
An indole alkaloid that is canthin-6-one substituted by a methoxy group at position 4. Isolated from the whole plants of Drymaria diandra, it exhibits anti-HIV activity.
4-hydroxybenzoate
4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.
Isovitexin
Isovitexin is a C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. It has a role as an EC 3.2.1.20 (alpha-glucosidase) inhibitor and a metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of an isovitexin-7-olate. Isovitexin is a natural product found in Carex fraseriana, Rauhiella, and other organisms with data available. See also: Fenugreek seed (part of); Acai (part of); Crataegus monogyna flowering top (part of). A C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. Isovitexin is a member of the class of compounds known as flavonoid c-glycosides. Flavonoid c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Isovitexin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isovitexin can be found in a number of food items such as common salsify, winged bean, flaxseed, and common buckwheat, which makes isovitexin a potential biomarker for the consumption of these food products. Isovitexin (or homovitexin, saponaretin) is a flavone. the apigenin-6-C-glucoside. It can be found in the passion flower, Cannabis, and the açaí palm . Constituent of Cucumis sativus (cucumber). Isovitexin 2-(6-p-coumaroylglucoside) 4-glucoside is found in cucumber and fruits. Constituent of young green barley leaves (Hordeum vulgare variety nudum). Isovitexin 7-(6-sinapoylglucoside) is found in barley and cereals and cereal products. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB.
p-Hydroxybenzaldehyde
p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.
p-Hydroxybenzoic acid
4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.
4-Hydroxybenzaldehyde
p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.
6-(4,5-dihydroxy-6-methyloxan-2-yl)-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one
(3s,6s,12s,15s,21s)-15-benzyl-5,14,17,20-tetrahydroxy-12-[(4-hydroxyphenyl)methyl]-3-(1h-indol-3-ylmethyl)-1,4,10,13,16,19-hexaazatricyclo[19.3.0.0⁶,¹⁰]tetracosa-4,13,16,19-tetraene-2,11-dione
C41H45N7O7 (747.3380300000001)
5,8,17,20-tetrahydroxy-3-[(4-hydroxyphenyl)methyl]-6-(1h-indol-3-ylmethyl)-1,4,7,13,16,19-hexaazatricyclo[19.3.0.0⁹,¹³]tetracosa-4,7,16,19-tetraene-2,14-dione
15,27,30-tribenzyl-17,20,23,26,29,32-hexahydroxy-24-isopropyl-18-methyl-21-(sec-butyl)-1,7,13,16,19,22,25,28,31-nonaazatetracyclo[31.3.0.0³,⁷.0⁹,¹³]hexatriaconta-16,19,22,25,28,31-hexaene-2,8,14-trione
C56H73N9O9 (1015.5530967999999)
6-[(2r,4r,5r,6r)-4,5-dihydroxy-6-methyloxan-2-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one
6-(4,5-dihydroxy-6-methyloxan-2-yl)-5-hydroxy-7-methoxy-2-(4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-4-one
(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5s)-2-{[(2r,3s,4r,5r,6r)-6-{[(3s,4r,4ar,6ar,6bs,8r,8as,14ar,14bs)-8-hydroxy-4,8a-bis(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,14a-dodecahydropicen-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-5-{[(2s,3r,4r,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-4-hydroxyoxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5s)-2-{[(3s,3as,4s,5ar,5br,7s,7ar,9s,11ar,11br,13ar,13br)-4-{[(2s,3r,4s,5s)-3,5-dihydroxy-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-5-hydroxy-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
3-methoxy-1,6-diazatetracyclo[7.6.1.0⁵,¹⁶.0¹⁰,¹⁵]hexadeca-2,5,7,9(16),10(15),11,13-heptaen-4-one
C15H10N2O2 (250.07422400000002)
(2s,3r,4s,5r)-2-{[(3s,3as,4s,5ar,5br,7s,7ar,9s,11ar,11br,13ar,13br)-9-{[(2s,3r,4s,5s)-3,5-dihydroxy-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-4-yl]oxy}oxane-3,4,5-triol
(1r,4r,5r,7r,9r,10s,13r,15s)-7,15-dihydroxy-9-methyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid
(2s,3r,4s,5r)-2-{[(3s,3as,4s,5ar,5br,7s,7ar,9s,11ar,11br,13ar,13br)-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-9-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-7-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-hexadecahydrocyclopenta[a]chrysen-4-yl]oxy}oxane-3,4,5-triol
15-benzyl-5,14,17,20-tetrahydroxy-12-[(4-hydroxyphenyl)methyl]-3-(1h-indol-3-ylmethyl)-1,4,10,13,16,19-hexaazatricyclo[19.3.0.0⁶,¹⁰]tetracosa-4,13,16,19-tetraene-2,11-dione
C41H45N7O7 (747.3380300000001)
2-{[1-(5-ethyl-6-methylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[(1e)-2-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}ethenyl]chromen-4-one
2-{[7-({3,5-dihydroxy-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-9-[(3,4,5-trihydroxyoxan-2-yl)oxy]-hexadecahydrocyclopenta[a]chrysen-4-yl]oxy}oxane-3,4,5-triol
C50H84O20 (1004.5555664000001)
(3r,6r,9r,21r)-5,8,17,20-tetrahydroxy-3-[(4-hydroxyphenyl)methyl]-6-(1h-indol-3-ylmethyl)-1,4,7,13,16,19-hexaazatricyclo[19.3.0.0⁹,¹³]tetracosa-4,7,16,19-tetraene-2,14-dione
5,14,17,20,23,26-hexahydroxy-18,21-bis(hydroxymethyl)-15-(1h-indol-3-ylmethyl)-3,12-bis(2-methylpropyl)-1,4,10,13,16,19,22,25-octaazatricyclo[25.3.0.0⁶,¹⁰]triaconta-4,13,16,19,22,25-hexaene-2,11-dione
6-benzyl-5,8,17,20-tetrahydroxy-3-[(4-hydroxyphenyl)methyl]-15-(2-methylpropyl)-1,4,7,13,16,19-hexaazatricyclo[19.3.0.0⁹,¹³]tetracosa-4,7,16,19-tetraene-2,14-dione
15-hydroxy-9-methyl-14-methylidene-7-oxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid
(2s,3r,4s,5r)-2-{[(2s,3r,4s,5r)-2-{[(3s,3as,4s,5ar,5br,7s,7ar,9s,11ar,11br,13ar,13br)-7,9-dihydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-4-yl]oxy}-3,5-dihydroxyoxan-4-yl]oxy}oxane-3,4,5-triol
(3s,9s,15s,18s,21s,24s,27s,30s,33s)-15,27,30-tribenzyl-21-[(2s)-butan-2-yl]-17,20,23,26,29,32-hexahydroxy-24-isopropyl-18-methyl-1,7,13,16,19,22,25,28,31-nonaazatetracyclo[31.3.0.0³,⁷.0⁹,¹³]hexatriaconta-16,19,22,25,28,31-hexaene-2,8,14-trione
C56H73N9O9 (1015.5530967999999)
(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5s)-2-{[(3s,3as,4s,5ar,5br,7s,7ar,9s,11ar,11br,13ar,13bs)-4-{[(2s,3r,4s,5s)-3,5-dihydroxy-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-5-hydroxy-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
5,7-dihydroxy-2-(4-hydroxyphenyl)-6-{2-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]ethenyl}chromen-4-one
(2s,3r,4s,5r)-2-{[(2s,3r,4s,5s)-2-{[(3s,3as,4s,5ar,5br,7s,7ar,9s,11ar,11br,13ar,13br)-7,9-dihydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-4-yl]oxy}-3,5-dihydroxyoxan-4-yl]oxy}oxane-3,4,5-triol
2-[(2-{[7,9-dihydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-4-yl]oxy}-3,5-dihydroxyoxan-4-yl)oxy]oxane-3,4,5-triol
(2s,3r,4s,5s)-2-{[(3s,3as,4s,5ar,5br,7s,7ar,9s,11ar,11br,13ar,13br)-9-{[(2s,3r,4s,5s)-3,5-dihydroxy-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-4-yl]oxy}oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5s)-2-{[(3s,3as,4s,5ar,5br,7s,7ar,9s,11ar,11br,13ar,13br)-4-{[(2s,3r,4s,5s)-3,5-dihydroxy-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-4,5-dihydroxyoxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
6-[(2r,4r,5r,6r)-4,5-dihydroxy-6-methyloxan-2-yl]-5-hydroxy-7-methoxy-2-{4-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]phenyl}chromen-4-one
(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5s)-2-{[(3s,3as,4s,5ar,5br,7s,7ar,9r,11ar,11br,13ar,13bs)-4-{[(2s,3r,4s,5r)-3,5-dihydroxy-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-4,5-dihydroxyoxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
6-[(2s,4r,5r,6r)-4,5-dihydroxy-6-methyloxan-2-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one
(2s,3r,4s,5r)-2-{[(3s,3as,4s,5ar,5br,7s,7ar,9s,11ar,11br,13ar,13br)-7-{[(2s,3r,4s,5s)-3,5-dihydroxy-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-9-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-hexadecahydrocyclopenta[a]chrysen-4-yl]oxy}oxane-3,4,5-triol
C50H84O20 (1004.5555664000001)