Gene Association: TPGS2
UniProt Search:
TPGS2 (PROTEIN_CODING)
Function Description: tubulin polyglutamylase complex subunit 2
found 8 associated metabolites with current gene based on the text mining result from the pubmed database.
Dihomo-gamma-linolenic acid
8,11,14-Eicosatrienoic acid is a 20-carbon-chain omega-6 fatty acid, unsaturated at positions 8, 11, and 14. It differs from arachidonic acid (5,8,11,14-eicosatetraenoic acid) only at position 5. 8,11,14-Eicosatrienoic acid is also known as Dihomo-gamma-linolenic acid (DGLA). In physiological literature, it is given the name 20:3(n-6). DGLA is the elongation product of the 18 carbon gamma-linolenic acid (GLA). DGLA can be converted into prostaglandin E1 (PGE1). PGE1 inhibits platelet aggregation and also exerts a vasodilatory effect. DGLA competes with arachadonic acid for COX and lipoxygenase, inhibiting the production of arachadonic acids eicosanoids [HMDB] 8,11,14-Eicosatrienoic acid is a 20-carbon-chain omega-6 fatty acid, unsaturated at positions 8, 11, and 14. It differs from arachidonic acid (5,8,11,14-eicosatetraenoic acid) only at position 5. 8,11,14-Eicosatrienoic acid is also known as Dihomo-gamma-linolenic acid (DGLA). In physiological literature, it is given the name 20:3(n-6). DGLA is the elongation product of the 18 carbon gamma-linolenic acid (GLA). DGLA can be converted into prostaglandin E1 (PGE1). PGE1 inhibits platelet aggregation and also exerts a vasodilatory effect. DGLA competes with arachadonic acid for COX and lipoxygenase, inhibiting the production of arachadonic acids eicosanoids. Dihomo-γ-linolenic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1783-84-2 (retrieved 2024-07-01) (CAS RN: 1783-84-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Prostaglandin A1
Prostaglandin A1 (PGA1, a prostaglandin characterized by a cyclopentenone structure) has a fundamental structure common to punaglandin and clavulone, the antitumor eicosanoids discovered in marine organisms such as corals. It is well established that PGA1, which exert potent antiviral activity in several DNA and RNA virus models, induce heat shock protein (hsp)70 syntheses through cycloheximide sensitive activation of heat shock transcription factor. Antitumor prostaglandins are actively incorporated through cell membrane and control gene expression. P53 (protein 53, is a transcription factor that regulates the cell cycle and functions as a tumor suppressor) independent expression of p21 (also known as cyclin-dependent kinase inhibitor 1A or CDKN1A, is a human gene on chromosome 6 (location 6p21.2), that encodes a cyclin-dependent kinase) and gadd 45 (growth arrest and DNA-damage-inducible, alpha 45, a major breast cancer (BRCA1) target is the DNA damage-responsive gene GADD45) activation of peroxisome proliferative activated receptor gamma (PPARgamma) are involved in antitumor mechanism of these prostaglandins. At the low concentration, these prostaglandins exhibit physiological or pathological activity such as osteoblast calcification, promotion of colon cancer cell proliferation. One of the mechanisms of anti-cancer activity of prostaglandins, has been believed to be that these prostaglandins might have p53 like effect in cells lacking p53. (PMID: 7988663, 11104898)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin A1 (PGA1, a prostaglandin characterized by a cyclopentenone structure) has a fundamental structure common to punaglandin and clavulone, the antitumor eicosanoids discovered in marine organisms such as corals. It is well established that PGA1, which exert potent antiviral activity in several DNA and RNA virus models, induce heat shock protein (hsp)70 syntheses through cycloheximide sensitive activation of heat shock transcription factor. Antitumor prostaglandins are actively incorporated through cell membrane and control gene expression. P53 (protein 53, is a transcription factor that regulates the cell cycle and functions as a tumor suppressor) independent expression of p21 (also known as cyclin-dependent kinase inhibitor 1A or CDKN1A, is a human gene on chromosome 6 (location 6p21.2), that encodes a cyclin-dependent kinase) and gadd 45 (growth arrest and DNA-damage-inducible, alpha 45, a major breast cancer (BRCA1) target is the DNA damage-responsive gene GADD45) activation of peroxisome proliferative activated receptor gamma (PPARgamma) are involved in antitumor mechanism of these prostaglandins. At the low concentration, these prostaglandins exhibit physiological or pathological activity such as osteoblast calcification, promotion of colon cancer cell proliferation. One of the mechanisms of anti-cancer activity of prostaglandins, has been believed to be that these prostaglandins might have p53 like effect in cells lacking p53. (PMID: 7988663, 11104898) D000890 - Anti-Infective Agents > D000998 - Antiviral Agents
Prostaglandin A2
Produced by the seminal vesicles, prostaglandins are a group of lipid compounds that are derived enzymatically from fatty acids. Technically hormones, the prostanoid class of fatty acid derivatives is a subclass of eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signaling pathways. Prostaglandin A is a cyclopentenone and is an endogenous metabolite derived from arachidonic acid. It exhibits potent cellular anti-proliferative activity in vivo and in vitro. Excess PGA2 causes an accumulation in both S and G2/M, and a marked decrease in G1. There is also an increase in DNA content preceeding the G0/G1 peak (indicative of apoptotic body formation) mediated by changes in expression levels of Bax and Bcl-2. Produced by the seminal vessicals: Prostaglandins are a group of lipid compounds that are derived enzymatically from fattyacids. Technically a hormone, the prostanoid class of fatty acid derivatives is a subclass of eicosanoids. Prostaglandin A is cyclopentenone and endogenous metabolite derived from arachidonic acid. Exhibits potent cellular anti-proliferative activity in vivo and in vitro. Excess PGA2 causes an accumulation in both S and G2/M, and a marked decrease in G1. As well there is an increase in DNA content preceeding the G0/G1 peak (indicative of apoptic body formation) mediated by changes in expression levels of Bax and Bcl-2.
Prostaglandin A1
Prostaglandin A1 is a prostaglandins A. It is a conjugate acid of a prostaglandin A1(1-).
dihomo-gamma-linolenic acid
COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS