Gene Association: SLC35G5

UniProt Search: SLC35G5 (PROTEIN_CODING)
Function Description: solute carrier family 35 member G5

found 12 associated metabolites with current gene based on the text mining result from the pubmed database.

5-Aminopentanoic acid

5-Aminovaleric acid hydrochloride

C5H11NO2 (117.079)


5-Aminopentanoic acid (or 5-aminovalerate) is a lysine degradation product. It can be produced both endogenously or through bacterial catabolism of lysine. 5-aminovalerate is formed via the following multi-step reaction: L-lysine leads to cadverine leads to L-piperideine leads 5-aminovalerate (PMID:405455). In other words it is a metabolite of cadaverine which is formed via the intermediate, 1-piperideine (PMID:6436440). Cadaverine is a foul-smelling diamine compound produced by protein hydrolysis during putrefaction of animal tissue. High levels of 5-aminovalerate in biofluids may indicate bacterial overgrowth or endogenous tissue necrosis. In most cases endogenous 5-aminovalerate is thought to be primarily a microbial metabolite produced by the gut or oral microflora, although it can be produced endogenously. 5-aminovalerate is a normal metabolite present in human saliva, with a tendency to elevated concentration in patients with chronic periodontitis. Bacterial contamination and decomposition of salivary proteins is primarily responsible for elevated salivary levels (PMID 3481959). Beyond being a general waste product, 5-aminovalerate is also believed to act as a methylene homologue of gamma-aminobutyric acid (GABA) and functions as a weak GABA agonist (PMID:4031870). It is also known as an antifibrinolytic amino acid analog and so it functions as a weak inhibitor of the blood clotting pathway (PMID:6703712). 5- aminovalerate is an in vivo substrate of 4-aminobutyrate:2-oxoglutarate aminotransferase (PMID:4031870). It can be found in Corynebacterium (PMID:27717386). 5-aminopentanoic acid is a normal metabolite present in human saliva, with a tendency to elevated concentration in patients with chronic periodontitis. Bacterial contamination and decomposition of salivary proteins is responsible for the elevated salivary levels (PMID 3481959) [HMDB] 5-Aminovaleric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=660-88-8 (retrieved 2024-07-17) (CAS RN: 660-88-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 5-Aminovaleric acid is believed to act as a methylene homologue of gamma-aminobutyric acid (GABA) and functions as a weak GABA agonist.

   

Pipecolic acid

Pipecolic acid, 14C-labeled CPD, (+,-)-isomer

C6H11NO2 (129.079)


Pipecolic acid is a metabolite of lysine found in human physiological fluids such as urine, plasma and CSF. However, it is uncertain if pipecolic acid originates directly from food intake or from mammalian or intestinal bacterial enzyme metabolism. Recent studies suggest that plasma pipecolic acid, particularly the D-isomer, originates mainly from the catabolism of dietary lysine by intestinal bacteria rather than by direct food intake. In classic Zellweger syndrome (a cerebro-hepato-renal genetic disorder, OMIM 214100) pipecolic acid accumulate in the plasma of the patients. It is known that plasma pipecolic acid levels are also elevated in patients with chronic liver diseases. Pipecolic acid is moderately elevated in patients with pyridoxine-dependent seizures and might therefore be a possible biochemical marker for selecting candidates for pyridoxine therapy (Plecko et al 2000). Pipecolic acid was also elevated in CSF in these vitamin B6-responsive patients (PMID 12705501). Pipecolic acid is found to be associated with adrenoleukodystrophy, infantile Refsum disease, and peroxisomal biogenesis defect, which are also inborn errors of metabolism. Pipecolic acid is a biomarker for the consumption of dried and cooked beans. Pipecolic acid is a metabolite of lysine found in human physiological fluids such as urine, plasma and CSF. However, it is uncertain if pipecolic acid originates directly from food intake or from mammalian or intestinal bacterial enzyme metabolism. Recent studies suggest that plasma pipecolic acid, particularly the D-isomer, originates mainly from the catabolism of dietary lysine by intestinal bacteria rather than by direct food intake. In classic Zellweger syndrome (a cerebro-hepato-renal genetic disorder, OMIM 214100) pipecolic acid accumulate in the plasma of the patients. It is known that plasma pipecolic acid levels are also elevated in patients with chronic liver diseases. Pipecolic acid is moderately elevated in patients with pyridoxine-dependent seizures and might therefore be a possible biochemical marker for selecting candidates for pyridoxine therapy (Plecko et al 2000). Pipecolic acid was also elevated in CSF in these vitamin B6-responsive patients. (PMID 12705501) [HMDB]. Pipecolic acid is a biomarker for the consumption of dried and cooked beans. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P048 L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2]. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2].

   

3,4-Dihydroxymandelic acid

2-(3,4-dihydroxyphenyl)-2-hydroxyacetic acid

C8H8O5 (184.0372)


3,4-Dihydroxymandelic acid, also known as DOMA or 3,4-dihydroxyphenylglycolate, belongs to the class of organic compounds known as catechols. Catechols are compounds containing a 1,2-benzenediol moiety. 3,4-Dihydroxymandelic acid exists in all living organisms, ranging from bacteria to humans. Within humans, 3,4-dihydroxymandelic acid participates in a number of enzymatic reactions. In particular, 3,4-dihydroxymandelic acid can be biosynthesized from 3,4-dihydroxymandelaldehyde through its interaction with the enzyme aldehyde dehydrogenase, dimeric nadp-preferring. In addition, 3,4-dihydroxymandelic acid and guaiacol can be converted into vanillylmandelic acid and pyrocatechol through the action of the enzyme catechol O-methyltransferase. In humans, 3,4-dihydroxymandelic acid is involved in the metabolic disorder called tyrosinemia type I. Outside of the human body, 3,4-Dihydroxymandelic acid has been detected, but not quantified in several different foods, such as yellow wax beans, soy beans, pomegranates, cucurbita (gourd), and daikon radish. 3,4-dihydroxymandelic acid, also known as 3,4-dihydroxyphenylglycolate or (3,4-dihydroxyphenyl)(hydroxy)acetic acid, is a member of the class of compounds known as catechols. Catechols are compounds containing a 1,2-benzenediol moiety. 3,4-dihydroxymandelic acid is soluble (in water) and a moderately acidic compound (based on its pKa). 3,4-dihydroxymandelic acid can be found in a number of food items such as lime, pitanga, sapodilla, and persimmon, which makes 3,4-dihydroxymandelic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxymandelic acid can be found primarily in blood and urine, as well as in human nerve cells tissue. In humans, 3,4-dihydroxymandelic acid is involved in a couple of metabolic pathways, which include disulfiram action pathway and tyrosine metabolism. 3,4-dihydroxymandelic acid is also involved in several metabolic disorders, some of which include hawkinsinuria, alkaptonuria, dopamine beta-hydroxylase deficiency, and tyrosinemia, transient, of the newborn. D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID D066 3,4-Dihydroxymandelic acid is a metabolite of norepinephrine.

   

1-Piperideine-2-carboxylic acid

3,4,5,6-Tetrahydro-2-pyridinecarboxylic acid

C6H9NO2 (127.0633)


1-Piperideine-2-carboxylic acid (P2C), also known as Δ1-pipecolic acid, is classified as a member of the tetrahydropyridines. Tetrahydropyridines are derivatives of pyridine in which two double bonds in the pyridine moiety are reduced by adding four hydrogen atoms. 1-Piperideine-2-carboxylic acid is considered to be slightly soluble (in water) and acidic. 1-Piperideine-2-carboxylic acid is an intermediate of the L-lysine metabolic pathway in the brain; the uptake of P2C into the synaptosome of the cerebral cortex was Na+ and temperature-dependent (PMID: 7654748). delta 1-Piperidine-2-carboxylic acid (P2C), an intermediate of the L-lysine metabolic pathway in the brain; the uptake of P2C into the synaptosome of the cerebral cortex was Na+ and temperature-dependent (PMID 7654748 ) [HMDB]

   

2-Aminoacridone

2-amino-9,10-dihydroacridin-9-one

C13H10N2O (210.0793)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes

   

L-Pipecolic acid

Pipecolic acid, 14C-labeled CPD, (+,-)-isomer

C6H11NO2 (129.079)


L-pipecolic acid is a normal human metabolite present in human blood, where is present as the primary enantiomer of pipecolic acid. L-pipecolic acid is a cyclic imino acid (contains both imino (>C=NH) and carboxyl (-C(=O)-OH) functional groups) produced during the degradation of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, including Zellweger syndrome (OMIM 214100), neonatal adrenoleukodystrophy (OMIM 202370), and infantile Refsum disease (OMIM 266510). L-pipecolic acid levels are also elevated in patients with chronic liver diseases. L-pipecolic acid is the substrate of delta1-piperideine-2-carboxylate reductase (EC 1.5.1.21) in the pathway of lysine degradation (PMID: 2717271, 8305590, 1050990). Present in beans and other legumes, and in lesser quantities in other plants including barley, hops, malt and mushrooms. L-Pipecolic acid is found in many foods, some of which are macadamia nut (m. tetraphylla), linden, tinda, and cumin. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2]. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2].

   

Pipecolic acid

L(-)-Pipecolinic acid

C6H11NO2 (129.079)


L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy.

   

L-Pipecolic acid

L(-)-Pipecolinic acid

C6H11NO2 (129.079)


The L-enantiomer of pipecolic acid. It is a metabolite of lysine. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; HXEACLLIILLPRG-YFKPBYRVSA-N_STSL_0204_L-pipecolic Acid_0500fmol_180831_S2_L02M02_19; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy.

   

5-Aminovaleric acid

5-Aminopentanoic acid

C5H11NO2 (117.079)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; JJMDCOVWQOJGCB-UHFFFAOYSA-N_STSL_0196_5-Aminovaleric acid_0500fmol_180831_S2_L02M02_26; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 5-Aminovaleric acid is believed to act as a methylene homologue of gamma-aminobutyric acid (GABA) and functions as a weak GABA agonist.

   

3,4-Dihydroxymandelic acid

dl-3,4-dihydroxymandelic acid

C8H8O5 (184.0372)


D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids A catechol that is the 3,4-dihydroxy derivative of mandelic acid; a metabolite of L-dopa. 3,4-Dihydroxymandelic acid is a metabolite of norepinephrine.

   

3,4,5,6-tetrahydropyridine-2-carboxylic acid

3,4,5,6-tetrahydropyridine-2-carboxylic acid

C6H9NO2 (127.0633)


   

2-aminoacridone

2-aminoacridone

C13H10N2O (210.0793)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes