Gene Association: PRPS1

UniProt Search: PRPS1 (PROTEIN_CODING)
Function Description: phosphoribosyl pyrophosphate synthetase 1

found 9 associated metabolites with current gene based on the text mining result from the pubmed database.

Phosphoribosyl pyrophosphate

[({[(2R,3R,4S,5R)-3,4-dihydroxy-5-[(phosphonooxy)methyl]oxolan-2-yl]oxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C5H13O14P3 (389.9518)


Phosphoribosyl pyrophosphate, also known as PRPP or PRib-PP, belongs to the class of organic compounds known as pentose phosphates. These are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. Phosphoribosyl pyrophosphate is an extremely weak basic (essentially neutral) compound (based on its pKa). Phosphoribosyl pyrophosphate exists in all living species, ranging from bacteria to humans. Within humans, phosphoribosyl pyrophosphate participates in a number of enzymatic reactions. In particular, guanine and phosphoribosyl pyrophosphate can be biosynthesized from guanosine monophosphate through its interaction with the enzyme adenine phosphoribosyltransferase. In addition, guanine and phosphoribosyl pyrophosphate can be biosynthesized from guanosine monophosphate; which is catalyzed by the enzyme hypoxanthine-guanine phosphoribosyltransferase. In humans, phosphoribosyl pyrophosphate is involved in adenosine deaminase deficiency. Phosphoribosyl pyrophosphate is a pentosephosphate and it is the key substance in the biosynthesis of histidine, tryptophan, and purine and pyrimidine nucleotides. It is formed from ribose 5-phosphate by the enzyme ribose-phosphate diphosphokinase. It plays a role in transferring phosphate groups in several reactions. Phosphoribosyl pyrophosphate (PRPP) is a pentosephosphate. The key substance in the biosynthesis of histidine, tryptophan, and purine and pyrimidine nucleotides. COVID info from COVID-19 Disease Map KEIO_ID P023 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Purine

{7h-imidazo[4,} 5-D]pyrimidine

C5H4N4 (120.0436)


Purine, also known as purine base or 1H-purine, belongs to the class of organic compounds known as purines and purine derivatives. These are aromatic heterocyclic compounds containing a purine moiety, which is formed a pyrimidine-ring ring fused to an imidazole ring. Two of the bases in nucleic acids, adenine and guanine, are purines. Purines from food (or from tissue turnover) are metabolised by several enzymes, including xanthine oxidase, into uric acid. Purine exists in all living species, ranging from bacteria to humans. High levels of uric acid can predispose to gout when the acid crystalises in joints; this phenomenon only happens in humans and some animal species (e.g. dogs) that lack an intrinsic uricase enzyme that can further degrade uric acid. In humans, purine is involved in thioguanine action pathway. Outside of the human body, purine is found, on average, in the highest concentration within cocoa beans. Purine has also been detected, but not quantified in several different foods, such as rapinis, plains prickly pears, blackcurrants, radish, and parsley. This could make purine a potential biomarker for the consumption of these foods. Purine is a heterocyclic aromatic organic compound, consisting of a pyrimidine ring fused to an imidazole ring. A purine is a heterocyclic aromatic organic compound, consisting of a pyrimidine ring fused to an imidazole ring. Purines, including substituted purines and their tautomers, are the most widely distributed kind of nitrogen-containing heterocycle in nature. Purine is found in many foods, some of which are triticale, chickpea, japanese persimmon, and wild carrot. KEIO_ID P049 Purine is an endogenous metabolite. Purine is an endogenous metabolite.

   

Deoxyinosine

9-(2-Deoxy-beta-delta-erythro-pentofuranosyl)-1,9-dihydro-6H-purin-6-one

C10H12N4O4 (252.0859)


Deoxyinosine is a nucleoside that is formed when hypoxanthine is attached to a deoxyribose ring (also known as a ribofuranose) via a beta-N9-glycosidic bond. Deoxyinosine is found in DNA while inosine is found in RNA. Inosine is a nucleic acid important for RNA editing. Adenosine deaminase (ADA) catalyzes the conversion of adenosine and deoxyadenosine to inosine and deoxyinosine, respectively. ADA-deficient individuals suffer from severe combined immunodeficiency (SCID) and are unable to produce significant numbers of mature T or B lymphocytes. This occurs as a consequence of the accumulation of ADA substrates or their metabolites. Inosine is also an intermediate in a chain of purine nucleotides reactions required for muscle movements. Moreover, deoxyinosine is found to be associated with purine nucleoside phosphorylase (PNP) deficiency, which is an inborn error of metabolism. Isolated from Phaseolus vulgaris (kidney bean). 2-Deoxyinosine is found in pulses, yellow wax bean, and green bean. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency. 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency.

   

Asiaticoside

6-({[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl 10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C48H78O19 (958.5137)


Constituent of Centella asiatica (Asiatic pennywort). Asiaticoside is found in herbs and spices and green vegetables. Asiaticoside is found in green vegetables. Asiaticoside is a constituent of Centella asiatica (Asiatic pennywort) D000890 - Anti-Infective Agents Same as: D07576 Asiaticoside, a trisaccaride triterpene from Centella asiatica, suppresses TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts; Asiaticoside shows antioxidant, anti-inflammatory, and anti-ulcer properties. Asiaticoside, a trisaccaride triterpene from Centella asiatica, suppresses TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts; Asiaticoside shows antioxidant, anti-inflammatory, and anti-ulcer properties.

   

Nicotinamide riboside

3-carbamoyl-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1lambda5-pyridin-1-ylium

C11H15N2O5+ (255.0981)


Nicotinamide riboside is involved in nicotinate and nicotinamide metabolism. Nicotinamide riboside was originally identified as a nutrient in milk. It is a useful compound for the elevation of NAD+ levels in humans. Nicotinamide riboside has recently been discovered to be an NAD(+) precursor that is converted into nicotinamide mononucleotide by specific nicotinamide riboside kinases, Nrk1 and Nrk2. It has been shown that exogenous nicotinamide riboside promotes Sir2-dependent repression of recombination, improves gene silencing, and extends the lifespan of certain animal models without calorie restriction (PMID: 17482543). Supplementation in mammalian cells and mouse tissues increases NAD(+) levels and activates SIRT1 and SIRT3, culminating in enhanced oxidative metabolism and protection against high-fat diet-induced metabolic abnormalities (PMID: 22682224). Recent data suggest that nicotinamide riboside may be the only vitamin precursor that supports neuronal NAD+ synthesis (PMID: 18429699). Nicotinamide riboside kinase has an essential role in the phosphorylation of nicotinamide riboside and the cancer drug tiazofurin (PMID: 15137942). Nicotinamide riboside is involved in nicotinate and nicotinamide metabolism. Nicotinamide riboside has been identified as a nutrient in milk. It is a useful compound for elevation of NAD+ levels in humans. Recent data suggest that nicotinamide riboside may be the only vitamin precursor that supports neuronal NAD+ synthesis (PMID: 18429699). Nicotinamide riboside kinase has an essential role for phosphorylation of nicotinamide riboside and the cancer drug tiazofurin (PMID 15137942). [HMDB] COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map C26170 - Protective Agent > C275 - Antioxidant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Purine

InChI=1\C5H4N4\c1-4-5(8-2-6-1)9-3-7-4\h1-3H,(H,6,7,8,9

C5H4N4 (120.0436)


Purine is an endogenous metabolite. Purine is an endogenous metabolite.

   

Phosphoribosyl pyrophosphate

ALPHA-PHOSPHORIBOSYLPYROphosphORIC ACID

C5H13O14P3 (389.9518)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2-Deoxyinosine

2-Deoxyinosine

C10H12N4O4 (252.0859)


A purine 2-deoxyribonucleoside that is inosine in which the hydroxy group at position 2 is replaced by a hydrogen. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency. 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency.

   

Nicotinamide riboside

Nicotinamide riboside

C11H15N2O5+ (255.0981)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map C26170 - Protective Agent > C275 - Antioxidant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS