Gene Association: NKX2-2

UniProt Search: NKX2-2 (PROTEIN_CODING)
Function Description: NK2 homeobox 2

found 6 associated metabolites with current gene based on the text mining result from the pubmed database.

25d20E

(2S,3R,5R,9R,10R,13R,14S,17S)-17-((2R,3R)-2,3-dihydroxy-6-methylheptan-2-yl)-2,3,14-trihydroxy-10,13-dimethyl-2,3,4,5,9,11,12,13,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6(10H)-one

C27H44O6 (464.3138)


Ponasterone A is a 2beta-hydroxy steroid, a 3beta-hydroxy steroid, a 14alpha-hydroxy steroid, a 20-hydroxy steroid, a 22-hydroxy steroid, a 6-oxo steroid and a phytoecdysteroid. Ponasterone A is a natural product found in Zoanthus, Lomaridium contiguum, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Ponasterone A (25-Deoxyecdysterone), an ecdysteroid, has strong affinity for the ecdysone receptor. Ponasterone A is a potent regulator of gene expression in cells and transgenic animals, enabling reporter genes to be turned on and off rapidly[1][2].

   

Chlorpropham

(3-Chlorophenyl)carbamic acid, 1-methylethyl ester

C10H12ClNO2 (213.0557)


D006133 - Growth Substances > D010937 - Plant Growth Regulators CONFIDENCE standard compound; INTERNAL_ID 2623 CONFIDENCE standard compound; INTERNAL_ID 8450 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Phycocyanobilin

(2R,3Z)-Phycocyanobilin

C33H38N4O6 (586.2791)


Phycocyanobilin is a linear, open-chain tetrapyrrole pigment that belongs to the family of bilins. It serves as a chromophore in various phytochrome photoreceptors found in cyanobacteria, as well as in the chlorosomes of green sulfur bacteria. Phycocyanobilin is a key component of phycobiliproteins, which are water-soluble pigments involved in light harvesting during photosynthesis. **Chemical Structure:** Phycocyanobilin has a molecular formula of C33H36N4O6 and a molecular weight of approximately 596.67 g/mol. Structurally, it consists of a porphyrin backbone with four pyrrole rings connected by methine bridges. The pyrrole rings contain nitrogen atoms that coordinate a central magnesium ion in phycobiliproteins. Unlike chlorophyll, phycocyanobilin has an open-chain structure due to the presence of a double bond between the C-20 and C-21 positions of the macrocyclic ring, which prevents it from forming a fully circular porphyrin ring. **Properties:** - **Color:** Phycocyanobilin imparts a blue color to the phycobiliproteins in which it is bound. The specific color is due to the electronic structure of the phycocyanobilin molecule, which allows it to absorb light in the red region of the visible spectrum, typically around 620-630 nm. - **Solubility:** Unlike many other pigments, phycocyanobilin is water-soluble due to its binding to phycobiliproteins, which enhances its functionality in the thylakoid membranes of cyanobacteria. - **Chemical Reactivity:** Phycocyanobilin can be isomerized and oxidized to form other bilins, such as phycoerythrobilin and phycourobilin, which have different spectral properties and can be found in different phycobiliproteins. **Biological Role:** Phycocyanobilin plays a critical role in the photosynthetic process of cyanobacteria and certain green sulfur bacteria. Its primary functions include: - **Light Harvesting:** In phycobiliproteins like phycocyanin, phycocyanobilin serves as a light-harvesting antenna. It absorbs light energy and transfers it to the photosynthetic reaction centers, where it is used to drive the synthesis of ATP and NADPH. - **Photoregulation:** In cyanobacteria, phycocyanobilin is also involved in the regulation of photosynthesis through the action of phytochrome-like photoreceptors. These photoreceptors can switch between a Pr (red-absorbing) and a Pfr (far-red-absorbing) form in response to light, regulating gene expression and various metabolic processes. **Synthesis:** Phycocyanobilin is synthesized from the amino acid L-arginine through a series of enzymatic reactions that include the production of 5-aminolevulinic acid (ALA), which is then transformed into protoporphyrin IX. The protoporphyrin IX is subsequently modified to form phycocyanobilin, a process that involves the removal of the macrocyclic ring and the introduction of the double bond at the C-20 and C-21 positions. In summary, phycocyanobilin is an essential pigment for the photosynthetic apparatus of certain photosynthetic organisms, contributing to their ability to capture and utilize light energy for the production of organic compounds. Its unique structure and properties allow it to perform a variety of functions that are critical to the survival and ecological success of these organisms.

   

(2R,3Z)-Phycocyanobilin

3-(2-{[3-(2-carboxyethyl)-5-[(3-ethylidene-4-methyl-5-oxopyrrolidin-2-ylidene)methyl]-4-methyl-1H-pyrrol-2-yl]methylidene}-5-[(3-ethyl-4-methyl-2-oxo-2H-pyrrol-5-yl)methylidene]-4-methyl-2,5-dihydro-1H-pyrrol-3-yl)propanoic acid

C33H38N4O6 (586.2791)


   

chlorpropham

N-3-Chlorophenylisopropylcarbamate

C10H12ClNO2 (213.0557)


D006133 - Growth Substances > D010937 - Plant Growth Regulators D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

(2R,3Z)-Phycocyanobilin

(2R,3Z)-Phycocyanobilin

C33H38N4O6 (586.2791)