Gene Association: CYP4F22
UniProt Search:
CYP4F22 (PROTEIN_CODING)
Function Description: cytochrome P450 family 4 subfamily F member 22
found 12 associated metabolites with current gene based on the text mining result from the pubmed database.
11,12-Epoxyeicosatrienoic acid
11,12-Epoxyeicosatrienoic acid (CAS: 81276-02-0) is an epoxyeicosatrienoic acid (EET). Induction of CYP2C8 in native coronary artery endothelial cells by beta-naphthoflavone enhances the formation of 11,12-epoxyeicosatrienoic acid, as well as endothelium-derived hyperpolarizing factor-mediated hyperpolarization and relaxation. Transfection of coronary arteries with CYP2C8 antisense oligonucleotides resulted in decreased levels of CYP2C and attenuated the endothelium-derived hyperpolarizing factor-mediated vascular responses. Thus, a CYP-epoxygenase product is an essential component of the endothelium-derived hyperpolarizing factor-mediated relaxation in the porcine coronary artery, and CYP2C8 fulfills the criteria for the coronary endothelium-derived hyperpolarization factor synthase. The role of EETs in the regulation of the cerebral circulation has become more important since it was realized that EETs are produced in another specialized cell type of the brain, the astrocytes. It has become evident that EETs released from astrocytes may mediate cerebral functional hyperemia. Molecular and pharmacological evidence has shown that neurotransmitter release and spillover onto astrocytes can generate EETs. Since these EETs may reach the vasculature via astrocyte foot-processes, they have the same potential as their endothelial counterparts to hyperpolarize and dilate cerebral vessels. P450 enzymes contain heme in their catalytic domain and nitric oxide (NO) appears to bind to these heme moieties and block formation of P450 products, including EETs. Thus, there appears to be crosstalk between P450 enzymes and NO/NO synthase. The role of fatty acid metabolites and cerebral blood flow becomes even more complex in light of data demonstrating that cyclooxygenase products can act as substrates for P450 enzymes (PMID: 17494091, 17434916, 17406062, 17361113, 15581597, 11413051, 10519554). EETs function as autocrine and paracrine mediators. During inflammation, a large amount of arachidonic acid (AA) is released into the cellular milieu and cyclooxygenase enzymes convert this AA to prostaglandins that in turn sensitize pain pathways. However, AA is also converted into natural EETs by cytochrome P450 enzymes. Cytochrome P450 (CYP) epoxygenases convert arachidonic acid into four epoxyeicosatrienoic acid (EET) regioisomers, 5,6-, 8,9-, 11,12-, and 14,15-EET. EETs produce vascular relaxation by activating smooth muscle large-conductance Ca2+-activated K+ channels. In particular, 11,12-epoxy-5Z,8Z,14Z-eicosatrienoic acid has been shown to play a role in the recovery of depleted Ca2+ pools in cultured smooth muscle cells (PMID: 9368016). In addition, EETs have anti-inflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and the brain. EET levels are typically regulated by soluble epoxide hydrolase (sEH), the major enzyme degrading EETs. Specifically, soluble epoxide hydrolase (sEH) converts EETs into dihydroxyeicosatrienoic acids. 11,12-EpETrE or 11,12-epoxy-5Z,8Z,14Z-eicosatrienoic acid is an epoxyeicosatrienoic acid or an EET derived from arachadonic acid. EETs function as autacrine and paracrine mediators. During inflammation, a large amount of arachidonic acid (AA) is released into the cellular milieu and cyclooxygenase enzymes convert this AA to prostaglandins that in turn sensitize pain pathways. However, AA is also converted to natural epoxyeicosatrienoic acids (EETs) by cytochrome P450 enzymes. Cytochrome P450 (CYP) epoxygenases convert arachidonic acid to four epoxyeicosatrienoic acid (EET) regioisomers, 5,6-, 8,9-, 11,12-, and 14,15-EET. EETs produce vascular relaxation by activating smooth muscle large-conductance Ca2+-activated K+ channels. In particular, 11,12-epoxy-5Z,8Z,14Z-eicosatrienoic acid has been show to play a role in the recovery of depleted Ca2+ pools in cultured smooth muscle cells (PMID: 9368016). In addition, EETs have antiinflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and brain. EET levels are typically regulated by soluble epoxide hydrolase (sEH), the major enzyme degrading EETs. Specifically, soluble epoxide hydrolase (sEH) converts EETs to dihydroxyeicosatrienoic acids. [HMDB] D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
Ronilan
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000726 - Androgen Antagonists CONFIDENCE standard compound; EAWAG_UCHEM_ID 3119 D016573 - Agrochemicals D010575 - Pesticides
12(S)-HPETE
12-HPETE is one of the six monohydroperoxy fatty acids produced by the non-enzymatic oxidation of arachidonic acid (Leukotrienes). Reduction of the hydroperoxide yields the more stable hydroxyl fatty acid (+/-)12-HETE. A family of biologically active compounds derived from arachidonic acid by oxidative metabolism through the 5-lipoxygenase pathway. They participate in host defense reactions and pathophysiological conditions such as immediate hypersensitivity and inflammation. They have potent actions on many essential organs and systems, including the cardiovascular, pulmonary, and central nervous system as well as the gastrointestinal tract and the immune system. 12-HPETE is one of the six monohydroperoxy fatty acids produced by the non-enzymatic oxidation of arachidonic acid (Leukotrienes). Reduction of the hydroperoxide yields the more stable hydroxyl fatty acid (+/-)12-HETE. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents
8,9-Epoxyeicosatrienoic acid
8,9-Epoxyeicosatrienoic acid is an epoxyeicosatrienoic acid eicosanoid, a metabolite of arachidonic acid. The P450 epoxyeicosatrienoic acids (EETs) are endogenous lipid mediators produced by P450 epoxygenases and metabolized through multiple pathways including soluble epoxide hydrolase (sEH). The cytochrome P-450 (P450) monooxygenase pathway includes enzymes of the CYP1A, CYP2B, CYP2C, CYP2E, and CYP2J subfamilies that catalyze the formation of four regioisomeric products, 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. EETs are produced in brain and perform important biological functions, including protection from ischemic injury. Both light flashes and direct glial stimulation produce vasodilatation mediated by EETs. EETs may be involved in the development of hypertension and endothelial dysfunction in DOCA-salt rats, but not in excessive collagen deposition or electrophysiological abnormalities. EETs have vasodilator and natriuretic effect. Blockade of EET formation is associated with salt-sensitive hypertension. Four regioisomeric cis-EET are primary products of arachidonic acid metabolism by cytochrome P450 epoxygenases. Upon hydration by soluble epoxide hydrolase (sEH), EET are metabolized to dihydroxyeicosatrienoic acids (DHET). These hydration products are more stable and less biologically active than EETs. (PMID: 17494091, 17468203, 17434916, 17406062, 17361113, 15581597) [HMDB] 8,9-Epoxyeicosatrienoic acid is an epoxyeicosatrienoic acid eicosanoid, a metabolite of arachidonic acid. The P450 epoxyeicosatrienoic acids (EETs) are endogenous lipid mediators produced by P450 epoxygenases and metabolized through multiple pathways including soluble epoxide hydrolase (sEH). The cytochrome P-450 (P450) monooxygenase pathway includes enzymes of the CYP1A, CYP2B, CYP2C, CYP2E, and CYP2J subfamilies that catalyze the formation of four regioisomeric products, 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. EETs are produced in brain and perform important biological functions, including protection from ischemic injury. Both light flashes and direct glial stimulation produce vasodilatation mediated by EETs. EETs may be involved in the development of hypertension and endothelial dysfunction in DOCA-salt rats, but not in excessive collagen deposition or electrophysiological abnormalities. EETs have vasodilator and natriuretic effect. Blockade of EET formation is associated with salt-sensitive hypertension. Four regioisomeric cis-EET are primary products of arachidonic acid metabolism by cytochrome P450 epoxygenases. Upon hydration by soluble epoxide hydrolase (sEH), EET are metabolized to dihydroxyeicosatrienoic acids (DHET). These hydration products are more stable and less biologically active than EETs. (PMID: 17494091, 17468203, 17434916, 17406062, 17361113, 15581597). D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
15(S)-HPETE
15(S)-hydroperoxyeicosatetraenoic acid (15(S)-HPETE) is the corresponding hydroperoxide of 15(S)-HETE and undergoes homolytic decomposition to the DNA-reactive bifunctional electrophile 4-oxo-2(E)-nonenal, a precursor of heptanone-etheno-2-deoxyguanosine. Reactive oxygen species convert the omega-6 polyunsaturated fatty acid arachidonic acid into (15-HPETE); vitamin C mediates 15(S)-HPETE decomposition. 15(S)-HPETE initiates apoptosis in vascular smooth muscle cells. 15(S)-HPETE is a lipoxygenase metabolite that affects the expression of cell adhesion molecules (CAMs) involved in the adhesion of leukocytes and/or the accumulation of leukocytes in the vascular endothelium, these being the initial events in endothelial cell injury. 15(S)-HPETE induces a loss of cardiomyocytes membrane integrity. 15-(S)HPETE is a hydroperoxide that enhances the activity of the enzymes lipoxygenase [EC 1.13.11.12] and Na+, K+-ATPase [EC 3.6.3.9] of brain microvessels. Lipoxygenase(s) and Na+-K+-ATPase of brain microvessels may play a significant role in the occurrence of ischemic brain edema. (PMID: 15964853, 15723435, 8655602, 8595608, 2662983). D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides
15(S)-HPETE
D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides The (S)-enantiomer of 15-HPETE. 15(S)-hydroperoxyeicosatetraenoic acid (15(S)-HPETE) is the corresponding hydroperoxide of 15(S)-HETE and undergoes homolytic decomposition to the DNA-reactive bifunctional electrophile 4-oxo-2(E)-nonenal, a precursor of heptanone-etheno-2-deoxyguanosine. Reactive oxygen species convert the omega-6 polyunsaturated fatty acid arachidonic acid into (15-HPETE); vitamin C mediates 15(S)-HPETE decomposition. 15(S)-HPETE initiates apoptosis in vascular smooth muscle cells. 15(S)-HPETE is a lipoxygenase metabolite that affects the expression of cell adhesion molecules (CAMs) involved in the adhesion of leukocytes and/or the accumulation of leukocytes in the vascular endothelium, these being the initial events in endothelial cell injury. 15(S)-HPETE induces a loss of cardiomyocytes membrane integrity. 15-(S)HPETE is a hydroperoxide that enhances the activity of the enzymes lipoxygenase [EC 1.13.11.12] and Na+, K+-ATPase [EC 3.6.3.9] of brain microvessels. Lipoxygenase(s) and Na+-K+-ATPase of brain microvessels may play a significant role in the occurrence of ischemic brain edema. (PMID: 15964853, 15723435, 8655602, 8595608, 2662983) [HMDB]
12(S)-HPETE
D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents The (S)-enantiomer of 12-HPETE.
Vinclozoline
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000726 - Androgen Antagonists D016573 - Agrochemicals D010575 - Pesticides