Gene Association: CDK8

UniProt Search: CDK8 (PROTEIN_CODING)
Function Description: cyclin dependent kinase 8

found 12 associated metabolites with current gene based on the text mining result from the pubmed database.

Cosmosiin

5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-4-one;Apigenin 7-Glucoside

C21H20O10 (432.1056)


Cosmosiin, also known as apigenin 7-O-glucoside or apigetrin, is a member of the class of compounds known as flavonoid-7-O-glycosides. Flavonoid-7-O-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Cosmosiin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cosmosiin can be found in a number of food items, such as common thyme, white lupine, common oregano, and orange mint. Cosmosiin can also be found in dandelion coffee and in Teucrium gnaphalodes (Wikipedia). Cosmosiin can also be found plants such as wild celery and anise. Cosmosiin has been shown to exhibit anti-platelet function (PMID: 21834233). Apigenin 7-O-beta-D-glucoside is a glycosyloxyflavone that is apigenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a non-steroidal anti-inflammatory drug, a metabolite and an antibacterial agent. It is a beta-D-glucoside, a dihydroxyflavone, a glycosyloxyflavone and a monosaccharide derivative. It is functionally related to an apigenin. It is a conjugate acid of an apigenin 7-O-beta-D-glucoside(1-). It is an enantiomer of an apigenin 7-O-beta-L-glucoside. Cosmosiin is a natural product found in Galeopsis tetrahit, Carex fraseriana, and other organisms with data available. See also: Chamomile (part of). Apiumetrin, also known as 7-O-beta-D-glucosyl-5,7,4-trihydroxyflavone or cosmosiin, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Apiumetrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Apiumetrin can be found in wild celery, which makes apiumetrin a potential biomarker for the consumption of this food product. Acquisition and generation of the data is financially supported in part by CREST/JST. Annotation level-1 Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2]. Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2].

   

Nα-Acetyl-L-lysine

(2S)-6-(Acetylamino)-2-aminohexanoic acid

C8H16N2O3 (188.1161)


N-epsilon-Acetyl-L-lysine also known as Nepsilon-Acetyllysine or N6-Acetyllysine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at one of its nitrogen atoms. N-epsilon-Acetyl-L-lysine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-epsilon-Acetyl-L-lysine is a biologically available sidechain, N-capped form of the proteinogenic alpha amino acid L-lysine. Unlike L-lysine, acetylated lysine derivatives such as N-epsilon-Acetyl-L-lysine are zwitterionic compounds. These are molecules that contains an equal number of positively- and negatively-charged functional groups. N-epsilon-Acetyl-L-lysine is found naturally in eukaryotes ranging from yeast to plants to humans. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins (often histones) by specific hydrolases. N-epsilon-Acetyl-L-lysine can be biosynthesized from L-lysine and acetyl-CoA via the enzyme known as Lysine N-acetyltransferase. Post-translational lysine-acetylation is one of two major modifications of lysine residues in various proteins – either N-terminal or N-alpha acetylation or N6 (sidechain) acetylation. Side-chain acetylation of specific lysine residues in the N-terminal domains of core histones is a biochemical marker of active genes. Acetylation is now known to play a major role in eukaryotic transcription. Specifically, acetyltransferase enzymes that act on particular lysine side chains of histones and other proteins are intimately involved in transcriptional activation. By modifying chromatin proteins and transcription-related factors, these acetylases are believed to regulate the transcription of many genes. The best-characterized mechanism is acetylation, catalyzed by histone acetyltransferase (HAT) enzymes. HATs function enzymatically by transferring an acetyl group from acetyl-coenzyme A (acetyl-CoA) to the amino group of certain lysine side chains within a histones basic N-terminal tail region. Within a histone octamer, these regions extend out from the associated globular domains, and in the context of a nucleosome, they are believed to bind the DNA through charge interactions (positively charged histone tails associated with negatively charged DNA) or mediate interactions between nucleosomes. Lysine acetylation, which neutralizes part of a tail regions positive charge, is postulated to weaken histone-DNA or nucleosome-nucleosome interactions and/or signal a conformational change, thereby destabilizing nucleosome structure or arrangement and giving other nuclear factors, such as the transcription complex, more access to a genetic locus. In agreement with this is the fact that acetylated chromatin has long been associated with states of transcriptional activation. Specific recognition of N6-acetyl-L-lysine is a conserved function of all bromodomains found in different proteins, recognized as an emerging intracellular signalling mechanism that plays critical roles in regulating gene transcription, cell-cycle progression, apoptosis, DNA repair, and cytoskeletal organization (PMID: 9169194 , 10827952 , 17340003 , 16247734 , 9478947 , 10839822 ). N-acetylated amino acids, such as N-epsilon-Acetyl-L-lysine can be released by an N-acylpeptide hydrolase from histones going through proteolytic degradation (PMID: 16465618). Many N-acetylamino acids are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). Isolated from sugarbeet (Beta vulgaris) KEIO_ID A174 Nepsilon-Acetyl-L-lysine is a derivative of the amino acid lysine.

   

Indolin-2-one

1,3-dihydro-(2H)-indol-2-One

C8H7NO (133.0528)


1,3-Dihydro-(2H)-indol-2-one, also known as 2-oxindole or 2-indolinone, belongs to the class of organic compounds known as indolines. Indolines are compounds containing an indole moiety, which consists of pyrrolidine ring fused to benzene to form 2,3-dihydroindole. CONFIDENCE standard compound; INTERNAL_ID 2508 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oxindole (Indolin-2-one) is an aromatic heterocyclic building block. 2-indolinone derivatives have become lead compounds in the research of kinase inhibitors. Oxindole (Indolin-2-one) is an aromatic heterocyclic building block. 2-indolinone derivatives have become lead compounds in the research of kinase inhibitors.

   

Maltol

3-Hydroxy-2-methyl-4-pyrone; 3-Hydroxy-2-methyl-pyran-4-one; Maltol; Deferiprone Impurity B

C6H6O3 (126.0317)


Maltol, also known as E636 or fema 2656, belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Some synthetic derivatives of maltol, developed at the University of Urbino, showed limited in vitro antiproliferative activity towards cancer cells lines, perhaps inducing apoptosis in these cells. Maltol is a sweet, baked, and bread tasting compound. Maltol has been detected, but not quantified, in several different foods, such as milk and milk products, nuts, soy beans, pepper (c. annuum), and coffee and coffee products. Maltols sweetness adds to the odor of freshly baked bread, and is used as a flavor enhancer (INS Number 636) in breads and cakes. Related to this property, maltol has been reported to greatly increase aluminum uptake in the body and to increase the oral bioavailability of gallium and iron. Maltol is a naturally occurring organic compound that is used primarily as a flavor enhancer. It is a white crystalline powder that is soluble in hot water, chloroform, and other polar solvents. Maltol is registered as a flavor component in the EU. Maltol, like related 3-hydroxy-4-pyrones such as kojic acid, binds to hard metal centers such as Fe3+, Ga3+, Al3+, and VO2+. It is known in the European E number food additive series as E636. Because it has the odor of cotton candy and caramel, maltol is used to impart a sweet aroma to fragrances. Maltol is a white crystalline powder with a fragrant caramel-butterscotch odor. pH (5\\\\% aqueous solution) 5.3. (NTP, 1992) 3-hydroxy-2-methyl-4-pyrone is a member of 4-pyranones. It has a role as a metabolite. Maltol is a natural product found in Cercidiphyllum japonicum, Coffea arabica, and other organisms with data available. 3-Hydroxy-2-methyl-4-pyrone is a metabolite found in or produced by Saccharomyces cerevisiae. Found in chicory, roasted malt, breads, milk, heated butter, uncured smoked pork, cocoa, coffee, roasted barley, roasted peanuts, roasted filbert, soybean etc. Flavour enhancer and flavouring agent C1907 - Drug, Natural Product > C28269 - Phytochemical Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1]. Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1].

   

Isoquinoline

Isoquinoline conjugate acid

C9H7N (129.0578)


Isoquinoline is a flavouring agent Being an analog of pyridine, isoquinoline is a weak base, with a pKb of 8.6. It protonates to form salts upon treatment with strong acids, such as HCl. It forms adducts with Lewis acids, such as BF3. Isoquinoline is a colorless hygroscopic liquid at room temperature with a penetrating, unpleasant odor. Impure samples can appear brownish, as is typical for nitrogen heterocycles. It crystallizes platelets that have a low solubility in water but dissolve well in ethanol, acetone, diethyl ether, carbon disulfide, and other common organic solvents. It is also soluble in dilute acids as the protonated derivative. Isoquinoline is a heterocyclic aromatic organic compound. It is a structural isomer of quinoline. Isoquinoline and quinoline are benzopyridines, which are composed of a benzene ring fused to a pyridine ring. In a broader sense, the term isoquinoline is used to make reference to isoquinoline derivatives. 1-Benzylisoquinoline is the structural backbone in naturally occurring alkaloids including papaverine and morphine. The isoquinoline ring in these natural compound derives from the aromatic amino acid tyrosine Flavouring agent KEIO_ID I067

   

Prostaglandin D1

7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoic acid

C20H34O5 (354.2406)


Prostaglandin D1 is a prostanoid that elicits contractile and relaxant on isolated human pial arteries with small potency. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 6091419, 16986207)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin D1 is a prostanoid that elicits contractile and relaxant on isolated human pial arteries with small potency. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 6091419, 16986207)

   

Indolin-2-one

InChI=1/C8H7NO/c10-8-5-6-3-1-2-4-7(6)9-8/h1-4H,5H2,(H,9,10

C8H7NO (133.0528)


1,3-Dihydro-(2H)-indol-2-one, also known as 2-oxindole or 2-indolinone, belongs to the class of organic compounds known as indolines. Indolines are compounds containing an indole moiety, which consists of pyrrolidine ring fused to benzene to form 2,3-dihydroindole. Indolin-2-one is an indolinone carrying an oxo group at position 2. It is an indolinone and a gamma-lactam. Oxindole is a natural product found in Penicillium with data available. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oxindole (Indolin-2-one) is an aromatic heterocyclic building block. 2-indolinone derivatives have become lead compounds in the research of kinase inhibitors. Oxindole (Indolin-2-one) is an aromatic heterocyclic building block. 2-indolinone derivatives have become lead compounds in the research of kinase inhibitors.

   

N6-acetyl-L-lysine

N(6)-acetyl-L-lysine

C8H16N2O3 (188.1161)


An N(6)-acyl-L-lysine where the N(6)-acyl group is specified as acetyl. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; DTERQYGMUDWYAZ-ZETCQYMHSA-N_STSL_0232_N-epsilon-Acetyl-L-lysine (N6)_8000fmol_190114_S2_LC02MS02_018; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Nepsilon-Acetyl-L-lysine is a derivative of the amino acid lysine.

   

Prostaglandin D1

9S,15S-dihydroxy-11-oxo-13E-prostaenoic acid

C20H34O5 (354.2406)


   

cosmetin

5-hydroxy-2-(4-hydroxyphenyl)-7-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O10 (432.1056)


Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2]. Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2].

   

Vetol

5-18-01-00114 (Beilstein Handbook Reference)

C6H6O3 (126.0317)


C1907 - Drug, Natural Product > C28269 - Phytochemical Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1]. Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1].

   

ISOQUINOLINE

ISOQUINOLINE

C9H7N (129.0578)