Gene Association: BPGM

UniProt Search: BPGM (PROTEIN_CODING)
Function Description: bisphosphoglycerate mutase

found 12 associated metabolites with current gene based on the text mining result from the pubmed database.

coniferylferulate

2-PROPENOIC ACID, 3-(4-HYDROXY-3-METHOXYPHENYL)-, 3-(4-HYDROXY-3-METHOXYPHENYL)-2-PROPEN-1-YL ESTER

C20H20O6 (356.126)


Coniferyl ferulate is a natural product found in Ligusticum striatum, Coreopsis venusta, and other organisms with data available. See also: Angelica sinensis root oil (part of). Coniferyl ferulate, a strong inhibitor of glutathione S-transferase (GST), reverses multidrug resistance and downregulates P-glycoprotein. Coniferyl ferulate shows strong inhibition of human placental GST with an IC50 of 0.3 μM. Coniferyl ferulate, a strong inhibitor of glutathione S-transferase (GST), reverses multidrug resistance and downregulates P-glycoprotein. Coniferyl ferulate shows strong inhibition of human placental GST with an IC50 of 0.3 μM.

   

Hexahydrocurcumin

(RS)-5-Hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-3-heptanone

C21H26O6 (374.1729)


Hexahydrocurcumin is a member of the class of compounds known as curcuminoids. Curcuminoids are aromatic compounds containing a curcumin moiety, which is composed of two aryl buten-2-one (feruloyl) chromophores joined by a methylene group. Hexahydrocurcumin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Hexahydrocurcumin can be found in ginger, which makes hexahydrocurcumin a potential biomarker for the consumption of this food product. Hexahydrocurcumin is a diarylheptanoid. Hexahydrocurcumin is a natural product found in Zingiber officinale with data available. [Raw Data] CBA88_Hexahydrocurcum_pos_40eV.txt [Raw Data] CBA88_Hexahydrocurcum_neg_20eV.txt [Raw Data] CBA88_Hexahydrocurcum_pos_10eV.txt [Raw Data] CBA88_Hexahydrocurcum_neg_10eV.txt [Raw Data] CBA88_Hexahydrocurcum_pos_20eV.txt [Raw Data] CBA88_Hexahydrocurcum_pos_50eV.txt [Raw Data] CBA88_Hexahydrocurcum_neg_40eV.txt [Raw Data] CBA88_Hexahydrocurcum_neg_30eV.txt [Raw Data] CBA88_Hexahydrocurcum_neg_50eV.txt [Raw Data] CBA88_Hexahydrocurcum_pos_30eV.txt Hexahydrocurcumin is one of the major metabolites of curcumin and a selective, orally active COX-2 inhibitor. Hexahydrocurcumin is inactive against COX-1. Hexahydrocurcumin has antioxidant, anticancer and anti-inflammatory activities[1][2]. Hexahydrocurcumin is one of the major metabolites of curcumin and a selective, orally active COX-2 inhibitor. Hexahydrocurcumin is inactive against COX-1. Hexahydrocurcumin has antioxidant, anticancer and anti-inflammatory activities[1][2].

   

D-Glycerate 3-phosphate

(2R)-2-Hydroxy-3-(phosphonatooxy)propanoic acid

C3H7O7P (185.9929)


3-phospho-d-glyceric acid, also known as 3-phosphoglycerate or D-glycerate 3-phosphate, belongs to sugar acids and derivatives class of compounds. Those are compounds containing a saccharide unit which bears a carboxylic acid group. 3-phospho-d-glyceric acid is soluble (in water) and a moderately acidic compound (based on its pKa). 3-phospho-d-glyceric acid can be found in a number of food items such as towel gourd, orange mint, guava, and mulberry, which makes 3-phospho-d-glyceric acid a potential biomarker for the consumption of these food products. 3-phospho-d-glyceric acid can be found primarily in saliva. 3-phospho-d-glyceric acid exists in all living species, ranging from bacteria to humans. (2R)-2-Hydroxy-3-(phosphonatooxy)propanoate, also known as 3-phospho-(R)-glycerate or D-glycerate 3-phosphate, belongs to the class of organic compounds known as sugar acids and derivatives. Sugar acids and derivatives are compounds containing a saccharide unit which bears a carboxylic acid group (2R)-2-Hydroxy-3-(phosphonatooxy)propanoate is a drug (2R)-2-hydroxy-3-(phosphonatooxy)propanoate has been detected, but not quantified, in several different foods, such as poppies, small-leaf lindens, lupines, pomegranates, and kombus. These are compounds containing a saccharide unit which bears a carboxylic acid group.

   

Glycerate

(2R)-2,3-dihydroxypropanoic acid

C3H6O4 (106.0266)


Glyceric acid is a colourless syrupy acid, obtained from oxidation of glycerol. It is a compound that is secreted excessively in the urine by patients suffering from D-glyceric aciduria, an inborn error of metabolism, and D-glycerate anemia. Deficiency of human glycerate kinase leads to D-glycerate acidemia/D-glyceric aciduria. Symptoms of the disease include progressive neurological impairment, hypotonia, seizures, failure to thrive, and metabolic acidosis. At sufficiently high levels, glyceric acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Glyceric acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated glyceric aciduria. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. Elevated values may also be due to microbial sources such as yeast (Aspergillus, Penicillium, probably Candida) or due to dietary sources containing glycerol (glycerine). Glyceric acid is isolated from various plants (e.g. brassicas, pulses, and Vicia faba). A colorless syrupy acid, obtained from oxidation of glycerol. It is a compound that is secreted excessively in the urine by patients suffering from D-glyceric aciduria and D-glycerate anemia. Deficiency of human glycerate kinase leads to D-glycerate acidemia/D-glyceric aciduria. Symptoms of the disease include progressive neurological impairment, hypotonia, seizures, failure to thrive and metabolic acidosis.; Glyceric acid is a natural three-carbon sugar acid. Salts and esters of glyceric acid are known as glycerates. Glyceric acid is found in many foods, some of which are peanut, common grape, garden tomato (variety), and french plantain. Glyceric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=473-81-4 (retrieved 2024-06-29) (CAS RN: 473-81-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

ORYZALIN

ORYZALIN

C12H18N4O6S (346.0947)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D000890 - Anti-Infective Agents > D013424 - Sulfanilamides D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 3099 CONFIDENCE standard compound; INTERNAL_ID 2333 CONFIDENCE standard compound; INTERNAL_ID 8465

   

Geranylfarnesyl diphosphate

{[hydroxy({[(2E,6E,10E,14E)-3,7,11,15,19-pentamethylicosa-2,6,10,14,18-pentaen-1-yl]oxy})phosphoryl]oxy}phosphonic acid

C25H44O7P2 (518.2562)


Geranylfarnesyl diphosphate reacts with isopentenyl diphosphate to produce all-trans-hexaprenyl diphosphate and diphosphate. The reaction is catalyzed by a all-trans-hexaprenyl-diphosphate synthase enzyme. [HMDB] Geranylfarnesyl diphosphate reacts with isopentenyl diphosphate to produce all-trans-hexaprenyl diphosphate and diphosphate. The reaction is catalyzed by a all-trans-hexaprenyl-diphosphate synthase enzyme.

   

3-phosphoglycerate

3-Phosphoglyceric acid

C3H7O7P (185.9929)


A monophosphoglyceric acid having the phospho group at the 3-position. It is an intermediate in metabolic pathways like glycolysis and calvin cycle.

   

3-Phosphoglyceric acid

3-Phospho-D-glyceric acid

C3H7O7P (185.9929)


The D-enantiomer of 3-phosphoglyceric acid

   

all-trans-pentaprenyl diphosphate

3,7,11,15,19-pentamethylicosa-2E,6E,10E,14E,18-pentaen-1-yl trihydrogen diphosphate

C25H44O7P2 (518.2562)


   

63644-62-2

(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid [(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enyl] ester

C20H20O6 (356.126)


Coniferyl ferulate, a strong inhibitor of glutathione S-transferase (GST), reverses multidrug resistance and downregulates P-glycoprotein. Coniferyl ferulate shows strong inhibition of human placental GST with an IC50 of 0.3 μM. Coniferyl ferulate, a strong inhibitor of glutathione S-transferase (GST), reverses multidrug resistance and downregulates P-glycoprotein. Coniferyl ferulate shows strong inhibition of human placental GST with an IC50 of 0.3 μM.

   

Hexahydrocurcumin

(RS)-5-Hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-3-heptanone

C21H26O6 (374.1729)


Hexahydrocurcumin is a diarylheptanoid. Hexahydrocurcumin is a natural product found in Zingiber officinale with data available. Hexahydrocurcumin is one of the major metabolites of curcumin and a selective, orally active COX-2 inhibitor. Hexahydrocurcumin is inactive against COX-1. Hexahydrocurcumin has antioxidant, anticancer and anti-inflammatory activities[1][2]. Hexahydrocurcumin is one of the major metabolites of curcumin and a selective, orally active COX-2 inhibitor. Hexahydrocurcumin is inactive against COX-1. Hexahydrocurcumin has antioxidant, anticancer and anti-inflammatory activities[1][2].

   

(2R)-2,3-Dihydroxypropanoic acid

(2R)-2,3-Dihydroxypropanoic acid

C3H6O4 (106.0266)