Exact Mass: 933.18336
Exact Mass Matches: 933.18336
Found 46 metabolites which its exact mass value is equals to given mass value 933.18336
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
3-Oxoheptanoyl-CoA
C31H50N7O18P3S (933.2145790000001)
3-Oxoheptanoyl-CoA is also known as (3S)-3-Isopropenyl-6-oxoenanthoyl-CoA. 3-Oxoheptanoyl-CoA is considered to be slightly soluble (in water) and acidic. 3-Oxoheptanoyl-CoA is a fatty ester lipid molecule
2,6-Dimethyl-5-methylene-3-oxo-heptanoyl-CoA
C31H50N7O18P3S (933.2145790000001)
cobalt(2+);3-[(2S,3S,7S,8S)-7,13,17-tris(2-carboxyethyl)-3,8,12,18-tetrakis(carboxymethyl)-3,8,10-trimethyl-2,7-dihydroporphyrin-21,23-diid-2-yl]propanoic acid
C43H46CoN4O16 (933.2240655999999)
α-D-GlcNAc3S-(1→4)-β-D-GlcA(1→3)-β-D-Gal(1→3)-β-D-Gal(1→4)-D-Xyl
C31H51NO29S (933.2267356000001)
GlcNAc3S(alpha1-4)GlcA(beta1-3)Gal(beta1-3)Gal(beta1-4)Xyl is a pentasaccharide comprised of an N-acetylated galactosamine residue sulfated on O-3, a glucuronic acid residue, and two galactose residues linked to a xylose residue at the reducing end.
3,4-dimethylideneheptanedioyl-CoA
C30H46N7O19P3S (933.1781956000001)
3,4-dimethylideneheptanedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3_4-dimethylideneheptanedioic acid thioester of coenzyme A. 3,4-dimethylideneheptanedioyl-coa is an acyl-CoA with 7 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3,4-dimethylideneheptanedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3,4-dimethylideneheptanedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3,4-dimethylideneheptanedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3,4-dimethylideneheptanedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3,4-dimethylideneheptanedioyl-CoA into 3_4-dimethylideneheptanedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3_4-dimethylideneheptanedioylcarnitine is converted back to 3,4-dimethylideneheptanedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3,4-dimethylideneheptanedioyl-CoA occurs in four steps. First, since 3,4-dimethylideneheptanedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3,4-dimethylideneheptanedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-C...
(4E,6Z)-3-Hydroxydeca-4,6-dienoyl-CoA
C31H50N7O18P3S (933.2145790000001)
(4e,6z)-3-hydroxydeca-4,6-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (4E_6Z)-3-hydroxydeca-4_6-dienoic acid thioester of coenzyme A. (4e,6z)-3-hydroxydeca-4,6-dienoyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (4e,6z)-3-hydroxydeca-4,6-dienoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (4e,6z)-3-hydroxydeca-4,6-dienoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (4E,6Z)-3-Hydroxydeca-4,6-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (4E,6Z)-3-Hydroxydeca-4,6-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (4E,6Z)-3-Hydroxydeca-4,6-dienoyl-CoA into (4E_6Z)-3-Hydroxydeca-4_6-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (4E_6Z)-3-Hydroxydeca-4_6-dienoylcarnitine is converted back to (4E,6Z)-3-Hydroxydeca-4,6-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (4E,6Z)-3-Hydroxydeca-4,6-dienoyl-CoA occurs in four steps. First, since (4E,6Z)-3-Hydroxydeca-4,6-dienoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (4E,6Z)-3-Hydroxydeca-4,6-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD ...
(6Z,8E)-3-Hydroxydeca-6,8-dienoyl-CoA
C31H50N7O18P3S (933.2145790000001)
(6z,8e)-3-hydroxydeca-6,8-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (6Z_8E)-3-hydroxydeca-6_8-dienoic acid thioester of coenzyme A. (6z,8e)-3-hydroxydeca-6,8-dienoyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (6z,8e)-3-hydroxydeca-6,8-dienoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (6z,8e)-3-hydroxydeca-6,8-dienoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (6Z,8E)-3-Hydroxydeca-6,8-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (6Z,8E)-3-Hydroxydeca-6,8-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (6Z,8E)-3-Hydroxydeca-6,8-dienoyl-CoA into (6Z_8E)-3-Hydroxydeca-6_8-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (6Z_8E)-3-Hydroxydeca-6_8-dienoylcarnitine is converted back to (6Z,8E)-3-Hydroxydeca-6,8-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (6Z,8E)-3-Hydroxydeca-6,8-dienoyl-CoA occurs in four steps. First, since (6Z,8E)-3-Hydroxydeca-6,8-dienoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (6Z,8E)-3-Hydroxydeca-6,8-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD ...
(4E,7E)-3-Hydroxydeca-4,7-dienoyl-CoA
C31H50N7O18P3S (933.2145790000001)
(4e,7e)-3-hydroxydeca-4,7-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (4E_7E)-3-hydroxydeca-4_7-dienoic acid thioester of coenzyme A. (4e,7e)-3-hydroxydeca-4,7-dienoyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (4e,7e)-3-hydroxydeca-4,7-dienoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (4e,7e)-3-hydroxydeca-4,7-dienoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (4E,7E)-3-Hydroxydeca-4,7-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (4E,7E)-3-Hydroxydeca-4,7-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (4E,7E)-3-Hydroxydeca-4,7-dienoyl-CoA into (4E_7E)-3-Hydroxydeca-4_7-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (4E_7E)-3-Hydroxydeca-4_7-dienoylcarnitine is converted back to (4E,7E)-3-Hydroxydeca-4,7-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (4E,7E)-3-Hydroxydeca-4,7-dienoyl-CoA occurs in four steps. First, since (4E,7E)-3-Hydroxydeca-4,7-dienoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (4E,7E)-3-Hydroxydeca-4,7-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD ...
(5Z,7E)-3-Hydroxydeca-5,7-dienoyl-CoA
C31H50N7O18P3S (933.2145790000001)
(5z,7e)-3-hydroxydeca-5,7-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (5Z_7E)-3-hydroxydeca-5_7-dienoic acid thioester of coenzyme A. (5z,7e)-3-hydroxydeca-5,7-dienoyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (5z,7e)-3-hydroxydeca-5,7-dienoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (5z,7e)-3-hydroxydeca-5,7-dienoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (5Z,7E)-3-Hydroxydeca-5,7-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (5Z,7E)-3-Hydroxydeca-5,7-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (5Z,7E)-3-Hydroxydeca-5,7-dienoyl-CoA into (5Z_7E)-3-Hydroxydeca-5_7-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (5Z_7E)-3-Hydroxydeca-5_7-dienoylcarnitine is converted back to (5Z,7E)-3-Hydroxydeca-5,7-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (5Z,7E)-3-Hydroxydeca-5,7-dienoyl-CoA occurs in four steps. First, since (5Z,7E)-3-Hydroxydeca-5,7-dienoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (5Z,7E)-3-Hydroxydeca-5,7-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD ...
nona-2,5-dienedioyl-CoA
C30H46N7O19P3S (933.1781956000001)
Nona-2,5-dienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a nona-2_5-dienedioic acid thioester of coenzyme A. Nona-2,5-dienedioyl-coa is an acyl-CoA with 9 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Nona-2,5-dienedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Nona-2,5-dienedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, nona-2,5-dienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of nona-2,5-dienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts nona-2,5-dienedioyl-CoA into nona-2_5-dienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, nona-2_5-dienedioylcarnitine is converted back to nona-2,5-dienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of nona-2,5-dienedioyl-CoA occurs in four steps. First, since nona-2,5-dienedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of nona-2,5-dienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase ox...
nona-2,6-dienedioyl-CoA
C30H46N7O19P3S (933.1781956000001)
Nona-2,6-dienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a nona-2_6-dienedioic acid thioester of coenzyme A. Nona-2,6-dienedioyl-coa is an acyl-CoA with 9 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Nona-2,6-dienedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Nona-2,6-dienedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, nona-2,6-dienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of nona-2,6-dienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts nona-2,6-dienedioyl-CoA into nona-2_6-dienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, nona-2_6-dienedioylcarnitine is converted back to nona-2,6-dienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of nona-2,6-dienedioyl-CoA occurs in four steps. First, since nona-2,6-dienedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of nona-2,6-dienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase ox...
nona-3,5-dienedioyl-CoA
C30H46N7O19P3S (933.1781956000001)
Nona-3,5-dienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a nona-3_5-dienedioic acid thioester of coenzyme A. Nona-3,5-dienedioyl-coa is an acyl-CoA with 9 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Nona-3,5-dienedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Nona-3,5-dienedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, nona-3,5-dienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of nona-3,5-dienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts nona-3,5-dienedioyl-CoA into nona-3_5-dienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, nona-3_5-dienedioylcarnitine is converted back to nona-3,5-dienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of nona-3,5-dienedioyl-CoA occurs in four steps. First, since nona-3,5-dienedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of nona-3,5-dienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase ox...
(2E,7E)-nona-2,7-dienedioyl-CoA
C30H46N7O19P3S (933.1781956000001)
(2e,7e)-nona-2,7-dienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (2E_7E)-nona-2_7-dienedioic acid thioester of coenzyme A. (2e,7e)-nona-2,7-dienedioyl-coa is an acyl-CoA with 9 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (2e,7e)-nona-2,7-dienedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (2e,7e)-nona-2,7-dienedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (2E,7E)-nona-2,7-dienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (2E,7E)-nona-2,7-dienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (2E,7E)-nona-2,7-dienedioyl-CoA into (2E_7E)-nona-2_7-dienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (2E_7E)-nona-2_7-dienedioylcarnitine is converted back to (2E,7E)-nona-2,7-dienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (2E,7E)-nona-2,7-dienedioyl-CoA occurs in four steps. First, since (2E,7E)-nona-2,7-dienedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (2E,7E)-nona-2,7-dienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the add...
nona-3,6-dienedioyl-CoA
C30H46N7O19P3S (933.1781956000001)
Nona-3,6-dienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a nona-3_6-dienedioic acid thioester of coenzyme A. Nona-3,6-dienedioyl-coa is an acyl-CoA with 9 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Nona-3,6-dienedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Nona-3,6-dienedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, nona-3,6-dienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of nona-3,6-dienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts nona-3,6-dienedioyl-CoA into nona-3_6-dienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, nona-3_6-dienedioylcarnitine is converted back to nona-3,6-dienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of nona-3,6-dienedioyl-CoA occurs in four steps. First, since nona-3,6-dienedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of nona-3,6-dienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase ox...
nona-2,4-dienedioyl-CoA
C30H46N7O19P3S (933.1781956000001)
Nona-2,4-dienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a nona-2_4-dienedioic acid thioester of coenzyme A. Nona-2,4-dienedioyl-coa is an acyl-CoA with 9 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Nona-2,4-dienedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Nona-2,4-dienedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, nona-2,4-dienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of nona-2,4-dienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts nona-2,4-dienedioyl-CoA into nona-2_4-dienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, nona-2_4-dienedioylcarnitine is converted back to nona-2,4-dienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of nona-2,4-dienedioyl-CoA occurs in four steps. First, since nona-2,4-dienedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of nona-2,4-dienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase ox...
CoA 10:2;O
C31H50N7O18P3S (933.2145790000001)
An oxo-fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxylic acid group of (3S)-3-isopropenyl-6-oxoheptanoic acid. An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxylic acid group of 3-isopropenyl-6-oxoheptanoic acid. A 3-hydroxyacyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 2-hydroxy-4-isopropenylcyclohexane-1-carboxylic acid.
3,4-dimethylideneheptanedioyl-CoA
C30H46N7O19P3S (933.1781956000001)
(4E,6Z)-3-Hydroxydeca-4,6-dienoyl-CoA
C31H50N7O18P3S (933.2145790000001)
(6Z,8E)-3-Hydroxydeca-6,8-dienoyl-CoA
C31H50N7O18P3S (933.2145790000001)
(4E,7E)-3-Hydroxydeca-4,7-dienoyl-CoA
C31H50N7O18P3S (933.2145790000001)
(5Z,7E)-3-Hydroxydeca-5,7-dienoyl-CoA
C31H50N7O18P3S (933.2145790000001)
alpha-D-GlcNAc3S-(1-->4)-beta-D-GlcA(1-->3)-beta-D-Gal(1-->3)-beta-D-Gal(1-->4)-D-Xyl
C31H51NO29S (933.2267356000001)
3-O-[3-O-(5-Cytidylyl)-5-cytidylyl]-5-cytidylic acid
(3R)-3-Isopropenyl-6-oxoheptanoyl-CoA; (Acyl-CoA); [M+H]+
C31H50N7O18P3S (933.2145790000001)
(R)-3-hydroxydecanoyl-CoA(4-)
C31H50N7O18P3S (933.2145790000001)
A 3-hydroxy fatty acyl-CoA(4-) obtained by deprotonation of the phosphate and diphosphate OH groups of (R)-3-hydroxydecanoyl-CoA.
3-hydroxydecanoyl-CoA(4-)
C31H50N7O18P3S (933.2145790000001)
A 3-hydroxy fatty acyl-CoA(4-) arising from deprotonation of the phosphate and diphosphate OH groups of 3-hydroxydecanoyl-CoA; major species at pH 7.3.
(S)-3-hydroxydecanoyl-CoA(4-)
C31H50N7O18P3S (933.2145790000001)
An (S)-3-hydroxyacyl-CoA(4-) arising from deprotonation of the phosphate and diphosphate OH groups of (S)-3-hydroxydecanoyl-CoA; major species at pH 7.3.