Exact Mass: 93.034
Exact Mass Matches: 93.034
Found 75 metabolites which its exact mass value is equals to given mass value 93.034
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
2-Methylpyridine
2-methylpyridine, also known as 2-picoline or 2-mepy, is a member of the class of compounds known as methylpyridines. Methylpyridines are organic compounds containing a pyridine ring substituted at one or more positions by a methyl group. 2-methylpyridine is soluble (in water) and a very strong basic compound (based on its pKa). 2-methylpyridine is a bitter and sweat tasting compound found in tea, which makes 2-methylpyridine a potential biomarker for the consumption of this food product. 2-methylpyridine can be found primarily in saliva. 2-methylpyridine exists in all eukaryotes, ranging from yeast to humans. 2-Methylpyridine, or 2-picoline, is the compound described with formula C6H7N. 2-Picoline is a colorless liquid that has an unpleasant odor similar to pyridine. It is mainly used to make vinylpyridine and the agrichemical nitrapyrin . 2-Methylpyridine, or 2-picoline, is the compound described with formula C6H7N. 2-Picoline is a colorless liquid that has an unpleasant odor similar to pyridine. Pyridines including 2-picoline are most crudely prepared by the reaction of acetylene and hydrogen cyanide.
Aniline
Aniline is a weak base. Aromatic amines such as aniline are, in general, much weaker bases than aliphatic amines. Aniline reacts with strong acids to form anilinium (or phenylammonium) ion (C6H5-NH3+). The sulfate forms beautiful white plates. Although aniline is weakly basic, it precipitates zinc, aluminium, and ferric salts, and, on warming, expels ammonia from its salts. The weak basicity is due to a negative inductive effect as the lone pair on the nitrogen is partially delocalised into the pi system of the benzene ring.; Aniline is an organic chemical compound, specifically a primary aromatic amine. It consists of a benzene ring attached to an amino group. Aniline is oily and, although colorless, it can be slowly oxidized and resinified in air to form impurities which can give it a red-brown tint. Its boiling point is 184 degree centigrade and its melting point is -6 degree centegrade. It is a liquid at room temperature. Like most volatile amines, it possesses a somewhat unpleasant odour of rotten fish, and also has a burning aromatic taste; Aniline was first isolated from the destructive distillation of indigo in 1826 by Otto Unverdorben , who named it crystalline. In 1834, Friedrich Runge (Pogg. Ann., 1834, 31, p. 65; 32, p. 331) isolated from coal tar a substance that produced a beautiful blue colour on treatment with chloride of lime, which he named kyanol or cyanol. In 1841, C. J. Fritzsche showed that, by treating indigo with caustic potash, it yielded an oil, which he named aniline, from the specific name of one of the indigo-yielding plants, Indigofera anil, anil being derived from the Sanskrit n?la, dark-blue, and n?l?, the indigo plant. About the same time N. N. Zinin found that, on reducing nitrobenzene, a base was formed, which he named benzidam. August Wilhelm von Hofmann investigated these variously-prepared substances, and proved them to be identical (1855), and thenceforth they took their place as one body, under the name aniline or phenylamine.; Aniline, phenylamine or aminobenzene is an organic compound with the formula C6H7N. It is the simplest and one of the most important aromatic amines, being used as a precursor to more complex chemicals. Its main application is in the manufacture of polyurethane. Like most volatile amines, it possesses the somewhat unpleasant odour of rotten fish and also has a burning aromatic taste; it is a highly-acrid poison. It ignites readily, burning with a smoky flame.; Like phenols, aniline derivatives are highly susceptible to electrophilic substitution reactions. For example, reaction of aniline with sulfuric acid at 180 °C produces sulfanilic acid, NH2C6H4SO3H, which can be converted to sulfanilamide. Sulfanilamide is one of the sulfa drugs that were widely used as antibacterials in the early 20th century.; The great commercial value of aniline was due to the readiness with which it yields, directly or indirectly, dyestuffs. The discovery of mauve in 1856 by William Henry Perkin was the first of a series of an enormous range of dyestuffs, such as fuchsine, safranine and induline. In addition to its use as a precursor to dyestuffs, it is a starting-product for the manufacture of many drugs, such as paracetamol (acetaminophen, Tylenol).; it is a highly acrid poison. It ignites readily, burning with a large smoky flame. Aniline reacts with strong acids to form salts containing the anilinium (or phenylammonium) ion (C6H5-NH3+), and reacts with acyl halides (such as acetyl chloride (ethanoyl chloride), CH3COCl) to form amides. The amides formed from aniline are sometimes called anilides, for example CH3-CO-NH-C6H5 is acetanilide, for which the modern name is N-phenyl ethanamide. Like phenols, aniline derivatives are highly reactive in electrophilic substitution reactions. For example, sulfonation of aniline produces sulfanilic acid, which can be converted to sulfanilamide. Sulfanilamide is one of the sulfa drugs which were widely used as antibacterial in the early 20th cent... Aniline is an organic chemical compound, specifically a primary aromatic amine. It consists of a benzene ring attached to an amino group. Aniline is oily and, although colorless, it can be slowly oxidized and resinified in air to form impurities which can give it a red-brown tint. Its boiling point is 184 degree centigrade and its melting point is -6 degree centegrade. It is a liquid at room temperature. Like most volatile amines, it possesses a somewhat unpleasant odour of rotten fish, and also has a burning aromatic taste; it is a highly acrid poison. It ignites readily, burning with a large smoky flame. Aniline reacts with strong acids to form salts containing the anilinium (or phenylammonium) ion (C6H5-NH3+), and reacts with acyl halides (such as acetyl chloride (ethanoyl chloride), CH3COCl) to form amides. The amides formed from aniline are sometimes called anilides, for example CH3-CO-NH-C6H5 is acetanilide, for which the modern name is N-phenyl ethanamide. Like phenols, aniline derivatives are highly reactive in electrophilic substitution reactions. For example, sulfonation of aniline produces sulfanilic acid, which can be converted to sulfanilamide. Sulfanilamide is one of the sulfa drugs which were widely used as antibacterial in the early 20th century. Aniline was first isolated from the destructive distillation of indigo in 1826 by Otto Unverdorben. In 1834, Friedrich Runge isolated from coal tar a substance which produced a beautiful blue color on treatment with chloride of lime; this he named kyanol or cyanol. In 1841, C. J. Fritzsche showed that by treating indigo with caustic potash it yielded an oil, which he named aniline, from the specific name of one of the indigo-yielding plants, Indigofera anil, anil being derived from the Sanskrit, dark-blue. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 8060 D009676 - Noxae > D002273 - Carcinogens KEIO_ID A054 KEIO_ID A162
3-Methylpyridine
3-methylpyridine, also known as 3-picoline or 3-mepy, is a member of the class of compounds known as methylpyridines. Methylpyridines are organic compounds containing a pyridine ring substituted at one or more positions by a methyl group. 3-methylpyridine is soluble (in water) and a very strong basic compound (based on its pKa). 3-methylpyridine can be found in sweet orange and tea, which makes 3-methylpyridine a potential biomarker for the consumption of these food products. 3-methylpyridine can be found primarily in saliva. 3-Methylpyridine or 3-picoline, is an organic compound with formula 3-CH3C5H4N. It is one of three positional isomers of methylpyridine, whose structures vary according to where the methyl group is attached around the pyridine ring. This colorless liquid is a precursor to pyridine derivatives that have applications in the pharmaceutical and agricultural industries. Like pyridine, 3-methylpyridine is a colorless liquid with a strong odor and is classified as a weak base . 3-Methylpyridine, or 3-picoline, is the organic compound with formula 3-CH3C5H4N. It is one of the three isomers of methylpyridine. This colorless liquid is a precursor to pyridine derivatives that have applications in the pharmaceutical and agricultural industries. Like pyridine, 3-methylpyridine is a colourless liquid with a strong odor. It is classified as a weak base.
2-Chloroacetamide
2-Chloroacetamide is a preservative and is a herbicide for both uplands and paddy fields. 2-Chloroacetamide is a biocide in agriculture, glues, paints and coatings. 2-Chloroacetamide inhibits very-long-chain fatty acid elongase[1][2][3].
4-Methylpyridine
4-methylpyridine, also known as 4-mepy or 4-picoline, is a member of the class of compounds known as methylpyridines. Methylpyridines are organic compounds containing a pyridine ring substituted at one or more positions by a methyl group. 4-methylpyridine is soluble (in water) and a very strong basic compound (based on its pKa). 4-methylpyridine can be found in fig and tea, which makes 4-methylpyridine a potential biomarker for the consumption of these food products. 4-methylpyridine is the organic compound with the formula CH3C5H4N. It is one of the three isomers of methylpyridine. This pungent Liquid is a building block for the synthesis of other heterocyclic compounds. Its conjugate acid, the 4-methylpyridinium ion, has a pKa of 5.98, about 0.7 units above that of pyridine itself .
2,3,4,5-tetradeuterio-6-(trideuteriomethyl)pyridine
Alanine-2,3,3,3-d4
A deuterated compound that is alanine in which each of the four hydrogens attached to carbon atoms have been replaced by deuterium.
L-alanine-2,3,3,3-d4
A deuterated compound that is L-alanine in which the alpha-hydrogen and the three methyl hydrogens are replaced by deuterium.