Exact Mass: 576.3331862
Exact Mass Matches: 576.3331862
Found 418 metabolites which its exact mass value is equals to given mass value 576.3331862
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Collettiside I
Diosgenin 3-O-beta-D-glucoside is a sterol 3-beta-D-glucoside having diosgenin as the sterol component. It has a role as a metabolite. It is a sterol 3-beta-D-glucoside, a monosaccharide derivative, a hexacyclic triterpenoid and a spiroketal. It is functionally related to a diosgenin. It derives from a hydride of a spirostan. Disogluside is a natural product found in Allium rotundum, Allium narcissiflorum, and other organisms with data available. Capsicoside A3 is found in herbs and spices. Capsicoside A3 is a constituent of Capsicum annuum roots. C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent Diosgenin glucoside, a saponin compound extracted from Trillium tschonoskii, provides neuroprotection by regulating microglial M1 polarization. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis [1][2]. Diosgenin glucoside, a saponin compound extracted from Trillium tschonoskii, provides neuroprotection by regulating microglial M1 polarization. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis [1][2].
Oleandrin
Oleandrin is a steroid saponin that consists of oleandrigenin having a 2,6-dideoxy-3-O-methyl-alpha-L-arabino-hexopyranosyl residue attached to the oxygen function at position 3. It is a cardenolide glycoside, a 14beta-hydroxy steroid, a steroid ester and a steroid saponin. It is functionally related to an oleandrigenin. Oleandrin has been used in trials studying the treatment of Lung Cancer and Chemotherapeutic Agent Toxicity. Oleandrin is a natural product found in Daphnis nerii, Plumeria, and other organisms with data available. Oleandrin is a lipid soluble cardiac glycoside with potential antineoplastic activity. Upon administration, oleandrin specifically binds to and inhibits the alpha3 subunit of the Na/K-ATPase pump in human cancer cells. This may inhibit the phosphorylation of Akt, upregulate MAPK, inhibit NF-kb activation and inhibit FGF-2 export and may downregulate mTOR thereby inhibiting p70S6K and S6 protein expression. All of this may lead to an induction of apoptosis. As cancer cells with relatively higher expression of the alpha3 subunit and with limited expression of the alpha1 subunit are more sensitive to oleandrin, one may predict the tumor response to treatment with lipid-soluble cardiac glycosides such as oleandrin based on the tumors Na/K-ATPase pump protein subunit expression. Overexpression of the alpha3 subunit in tumor cells correlates with tumor proliferation. See also: Nerium oleander leaf (part of). A steroid saponin that consists of oleandrigenin having a 2,6-dideoxy-3-O-methyl-alpha-L-arabino-hexopyranosyl residue attached to the oxygen function at position 3. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2262 Oleandrin (PBI-05204) inhibits the Na+, K+-ATPase activity with an IC50 of 620 nM. Oleandrin (PBI-05204) inhibits the Na+, K+-ATPase activity with an IC50 of 620 nM.
Cerberin
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides A cardenolide glycoside that is the 2-acetyl derivative of neriifolin.
Etiopurpurin
Foliandrin
PA(8:0/18:1(12Z)-O(9S,10R))
PA(8:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:1(12Z)-O(9S,10R)/8:0)
PA(18:1(12Z)-O(9S,10R)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-O(9S,10R)/8:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(8:0/18:1(9Z)-O(12,13))
PA(8:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:1(9Z)-O(12,13)/8:0)
PA(18:1(9Z)-O(12,13)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)-O(12,13)/8:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
Caseargrewiin C
A diterpenoid of the clerodane group isolated from the bark of Casearia grewiifolia and has been shown to exhibit antimalarial and antimycobacterial activity.
methyl-ent-15alpha-acetoxy-1alpha-(2-methyl-2,3-epoxybutyryloxy)-9alpha-hydroxy-7alpha-propionylyloxykaur-16-en-19-oate|methyl-ent-15alpha-acetoxy-1alpha-<2-methyl-2,3-epoxybutyryloxy>-9alpha-hydroxy-7alpha-propionylyloxykaur-16-en-19-oate
methyl-ent-1alpha7alpha-di<2-methyl-2,3-epoxybutyryloxy>-9alpha,15alpha-dihydroxykaur-16-en-19-oate|methyl-ent-1alpha7alpha-di[2-methyl-2,3-epoxybutyryloxy]-9alpha,15alpha-dihydroxykaur-16-en-19-oate
(1S,3aR,5S,6R,7S,7aR)-1-(1-acetoxyethyl)octahydro-4-methylidene-7-[(2S)-2-methyloxyran-2-yl]-6-[(3-methylpentanoyl)oxy]-2-oxo-1H-inden-5-yl (2E)-4-acetoxy-3-methylpent-2-enoate
rel-18(S),19(R)-diacetoxy-18,19-epoxy-6(R)-hydroxy-2(S)-(3xi-hydroxyoctanoyloxy)-5(R),8(S),9(S),10(R)-cleroda-3,13(16),14-triene
Methyl-2alpha-benzoyloxy-3beta-hydroxy-urs-12-en-28-oat
3beta-hydroxy-27-benzoyloxylup-20(29)-en-28-oic acid
2alpha-hydroxyzuelanin-6beta-n-(3-hydroxy)octanoate
2,3-dihydro-3beta-methoxy-4beta-hydroxywithanolide E monoacetate
methyl 3-beta-acetoxy-2alpha,11alpha,19alpha,28-tetrahydroxyurs-12-en-24-oate
6-O-[(7Z,10Z)-hexadeca-7,10-dienoyl]-beta-D-fructofuranosyl-(2->1)-alpha-D-glucopyranoside
(25S)-3-oxo-5alpha-spirostan-6alpha-yl-O-beta-D-xylopyranoside
30-(4-hydroxybenzoyloxy)-11alpha-hydroxylupane-20(29)-en-3-one
cimicifugoside H-4|foetidinol-3-O-beta-D-xylopyranoside|foetidinol-3-O-beta-xyloside|neocimiside
cholest-8-ene-3beta,5alpha,6alpha,7alpha,10alpha-pentol 3,6,7-triacetate
(25S)-6alpha-hydroxy-5alpha-spirostan-3-one 6-O-(beta-D-quinovopyranoside)|solagenin 6-O-(beta-D-quinovopyranoside)
Phe Val Arg Arg
C32H48O9_beta-D-Xylopyranoside, 3,17-dihydroxyspirosta-5,25(27)-dien-1-yl
C32H48O9_Card-20(22)-enolide, 16-(acetyloxy)-3-[(2,6-dideoxy-3-O-methylhexopyranosyl)oxy]-14-hydroxy-, (3beta,5beta,8xi,9xi,16beta)
Cys Ile Arg Trp
Cys Ile Trp Arg
Cys Leu Arg Trp
Cys Leu Trp Arg
Cys Arg Ile Trp
Cys Arg Leu Trp
Cys Arg Trp Ile
Cys Arg Trp Leu
Cys Trp Ile Arg
Cys Trp Leu Arg
Cys Trp Arg Ile
Cys Trp Arg Leu
Phe Lys Pro Trp
Phe Lys Trp Pro
Phe Pro Lys Trp
Phe Pro Trp Lys
Phe Arg Arg Val
Phe Arg Val Arg
Phe Trp Lys Pro
Phe Trp Pro Lys
His His Lys Arg
His His Gln Arg
His His Arg Lys
His His Arg Gln
His Lys His Arg
His Lys Arg His
His Gln His Arg
His Gln Arg His
His Arg His Lys
His Arg His Gln
His Arg Lys His
His Arg Gln His
Ile Cys Arg Trp
Ile Cys Trp Arg
Ile Lys Met Trp
Ile Lys Trp Met
Ile Met Lys Trp
Ile Met Trp Lys
Ile Arg Cys Trp
Ile Arg Trp Cys
Ile Trp Cys Arg
Ile Trp Lys Met
Ile Trp Met Lys
Ile Trp Arg Cys
Lys Phe Pro Trp
Lys Phe Trp Pro
Lys His His Arg
Lys His Arg His
Lys Ile Met Trp
Lys Ile Trp Met
Lys Leu Met Trp
Lys Leu Trp Met
Lys Met Ile Trp
Lys Met Leu Trp
Lys Met Trp Ile
Lys Met Trp Leu
Lys Pro Phe Trp
Lys Pro Trp Phe
Lys Arg His His
Lys Trp Phe Pro
Lys Trp Ile Met
Lys Trp Leu Met
Lys Trp Met Ile
Lys Trp Met Leu
Lys Trp Pro Phe
Leu Cys Arg Trp
Leu Cys Trp Arg
Leu Lys Met Trp
Leu Lys Trp Met
Leu Met Lys Trp
Leu Met Trp Lys
Leu Arg Cys Trp
Leu Arg Trp Cys
Leu Trp Cys Arg
Leu Trp Lys Met
Leu Trp Met Lys
Leu Trp Arg Cys
Met Ile Lys Trp
Met Ile Trp Lys
Met Lys Ile Trp
Met Lys Leu Trp
Met Lys Trp Ile
Met Lys Trp Leu
Met Leu Lys Trp
Met Leu Trp Lys
Met Trp Ile Lys
Met Trp Lys Ile
Met Trp Lys Leu
Met Trp Leu Lys
Pro Phe Lys Trp
Pro Phe Trp Lys
Pro Lys Phe Trp
Pro Lys Trp Phe
Pro Trp Phe Lys
Pro Trp Lys Phe
Gln His His Arg
Gln His Arg His
Gln Arg His His
Arg Cys Ile Trp
Arg Cys Leu Trp
Arg Cys Trp Ile
Arg Cys Trp Leu
Arg Phe Arg Val
Arg Phe Val Arg
Arg His His Lys
Arg His His Gln
Arg His Lys His
Arg His Gln His
Arg Ile Cys Trp
Arg Ile Trp Cys
Arg Lys His His
Arg Leu Cys Trp
Arg Leu Trp Cys
Arg Gln His His
Arg Arg Phe Val
Arg Arg Val Phe
Arg Val Phe Arg
Arg Val Arg Phe
Arg Trp Cys Ile
Arg Trp Cys Leu
Arg Trp Ile Cys
Arg Trp Leu Cys
Val Phe Arg Arg
Val Arg Phe Arg
Val Arg Arg Phe
Trp Cys Ile Arg
Trp Cys Leu Arg
Trp Cys Arg Ile
Trp Cys Arg Leu
Trp Phe Lys Pro
Trp Phe Pro Lys
Trp Ile Cys Arg
Trp Ile Lys Met
Trp Ile Met Lys
Trp Ile Arg Cys
Trp Lys Phe Pro
Trp Lys Ile Met
Trp Lys Leu Met
Trp Lys Met Ile
Trp Lys Met Leu
Trp Lys Pro Phe
Trp Leu Cys Arg
Trp Leu Lys Met
Trp Leu Met Lys
Trp Leu Arg Cys
Trp Met Ile Lys
Trp Met Lys Ile
Trp Met Lys Leu
Trp Met Leu Lys
Trp Pro Phe Lys
Trp Pro Lys Phe
Trp Arg Cys Ile
Trp Arg Cys Leu
Trp Arg Ile Cys
Trp Arg Leu Cys
1-Hydroxyvitamin D3 3-D-glucopyranoside
D018977 - Micronutrients > D014815 - Vitamins > D006887 - Hydroxycholecalciferols
Superecdysone E
3beta,15alpha,16alpha,24alpha-tetrahydroxy25,26,27-trinor-16,24-cyclo-cycloart-7-en-23-one-3-O-beta-D-xylopyranoside
ST 27:2;O2;GlcA
N,N-dimethyl-4-[2-(1-octadecylpyridin-1-ium-2-yl)ethenyl]aniline,perchlorate
2,2-bis[4,4-cyclohexylidenebis(4-hydroxyphenyl)]propane
methyl 1-{(2S)-2-cyclohexyl-2-[(N-methyl-L-alanyl)amino]acetyl}-L-prolyl-beta-phenyl-L-phenylalaninate
Collettiside I
Constituent of Trigonella foenum-graecum (fenugreek). Collettiside I is found in herbs and spices and fenugreek. Diosgenin glucoside, a saponin compound extracted from Trillium tschonoskii, provides neuroprotection by regulating microglial M1 polarization. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis [1][2]. Diosgenin glucoside, a saponin compound extracted from Trillium tschonoskii, provides neuroprotection by regulating microglial M1 polarization. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis [1][2].
(6R)-6-[(1R,3aS,4E,7aR)-4-{(2Z)-2-[(5S)-5-hydroxy-2-methylidenecyclohexylidene]ethylidene}-7a-methyloctahydro-1H-inden-1-yl]-2-methylheptan-2-yl beta-D-glucopyranosiduronic acid
2,3-O-methyl-rhamnosyl tetracyclic spinosyn pseudoaglycone
3-[(21S,22S)-16-ethenyl-26-ethyl-4-hydroxy-12,17,21-trimethyl-11-(2-methylpropyl)-7,23,24,25-tetrazahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,3,5,8(26),9,11,13(25),14,16,18(24),19-undecaen-22-yl]propanoic acid
[(2R)-1-octanoyloxy-3-phosphonooxypropan-2-yl] (Z)-11-(3-pentyloxiran-2-yl)undec-9-enoate
[(2R)-2-octanoyloxy-3-phosphonooxypropyl] (Z)-11-(3-pentyloxiran-2-yl)undec-9-enoate
2-[[(2R)-3-acetyloxy-2-[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-2-acetyloxy-3-[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-acetyloxy-2-[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-2-acetyloxy-3-[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-acetyloxy-2-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-2-acetyloxy-3-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-acetyloxy-2-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-2-acetyloxy-3-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
3-ethyl-2-methoxy-5-methyl-6-[(1E,5E,7E,11E)-3,7,9,11-tetramethyl-10-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytrideca-1,5,7,11-tetraenyl]pyran-4-one
N-[(3S,9R,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl(pyridin-4-ylmethyl)amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]methanesulfonamide
N-[(3R,9S,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl(pyridin-4-ylmethyl)amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]methanesulfonamide
N-[(3R,9R,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl(pyridin-4-ylmethyl)amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]methanesulfonamide
N-[(3S,9S,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl(pyridin-4-ylmethyl)amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]methanesulfonamide
N-[(3S,9R,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl(pyridin-4-ylmethyl)amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]methanesulfonamide
N-[(3R,9S,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl(pyridin-4-ylmethyl)amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]methanesulfonamide
N-[(3S,9S,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl(pyridin-4-ylmethyl)amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]methanesulfonamide
N-[(3R,9S,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl(pyridin-4-ylmethyl)amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]methanesulfonamide
N-[(3S,9R,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl(pyridin-4-ylmethyl)amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]methanesulfonamide
N-[(3R,9S,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl(pyridin-4-ylmethyl)amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]methanesulfonamide
1-[(3S,9R,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-(1-naphthalenyl)urea
1-[(3S,9R,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-(1-naphthalenyl)urea
1-[(3R,9S,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-(1-naphthalenyl)urea
1-[(3R,9S,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-(1-naphthalenyl)urea
1-[(3S,9R,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-(1-naphthalenyl)urea
1-[(3R,9R,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-(1-naphthalenyl)urea
1-[(3S,9S,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-(1-naphthalenyl)urea
N-[(2S,3R)-2-[[cyclohexylmethyl(methyl)amino]methyl]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-3,5-dimethyl-4-isoxazolesulfonamide
N-[(2S,3S)-2-[[cyclohexylmethyl(methyl)amino]methyl]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-3,5-dimethyl-4-isoxazolesulfonamide
N-[(2R,3R)-2-[[cyclohexylmethyl(methyl)amino]methyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-3,5-dimethyl-4-isoxazolesulfonamide
N-[(2R,3S)-2-[[cyclohexylmethyl(methyl)amino]methyl]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-3,5-dimethyl-4-isoxazolesulfonamide
N-[(2S,3R)-2-[[cyclohexylmethyl(methyl)amino]methyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-3,5-dimethyl-4-isoxazolesulfonamide
N-[(3R,9R,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl(pyridin-4-ylmethyl)amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]methanesulfonamide
N-[(3S,9S,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl(pyridin-4-ylmethyl)amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]methanesulfonamide
N-[(3R,9R,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl(pyridin-4-ylmethyl)amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]methanesulfonamide
N-[(3R,9R,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl(pyridin-4-ylmethyl)amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]methanesulfonamide
N-[(3S,9S,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl(pyridin-4-ylmethyl)amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]methanesulfonamide
1-[(3R,9S,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-(1-naphthalenyl)urea
1-[(3R,9R,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-(1-naphthalenyl)urea
1-[(3R,9S,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-(1-naphthalenyl)urea
1-[(3R,9R,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-(1-naphthalenyl)urea
N-[(3S,9R,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl(pyridin-4-ylmethyl)amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]methanesulfonamide
1-[(3S,9S,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-(1-naphthalenyl)urea
N-[(2R,3S)-2-[[cyclohexylmethyl(methyl)amino]methyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-3,5-dimethyl-4-isoxazolesulfonamide
N-[(2R,3R)-2-[[cyclohexylmethyl(methyl)amino]methyl]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-3,5-dimethyl-4-isoxazolesulfonamide
N-[(2S,3S)-2-[[cyclohexylmethyl(methyl)amino]methyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-3,5-dimethyl-4-isoxazolesulfonamide
[(3R)-2-tert-butylsulfinyl-4-[3-(3-cyclopentylprop-1-ynyl)phenyl]-3-(2-hydroxyethyl)-1,3-dihydropyrrolo[3,4-c]pyridin-6-yl]-(4-methyl-1-piperazinyl)methanone
[(3S)-2-tert-butylsulfinyl-4-[3-(3-cyclopentylprop-1-ynyl)phenyl]-3-(2-hydroxyethyl)-1,3-dihydropyrrolo[3,4-c]pyridin-6-yl]-(4-methyl-1-piperazinyl)methanone
2,3-dihydroxypropyl [2-hydroxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propyl] hydrogen phosphate
[1-[(2-hexanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-[(2-butanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
[1-[(2-acetyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
(1-pentanoyloxy-3-phosphonooxypropan-2-yl) (Z)-docos-13-enoate
(1-hexanoyloxy-3-phosphonooxypropan-2-yl) (Z)-henicos-11-enoate
[1-acetyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
(1-nonanoyloxy-3-phosphonooxypropan-2-yl) (Z)-octadec-9-enoate
[1-butanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
(1-octanoyloxy-3-phosphonooxypropan-2-yl) (Z)-nonadec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
(1-phosphonooxy-3-propanoyloxypropan-2-yl) (Z)-tetracos-13-enoate
(1-heptanoyloxy-3-phosphonooxypropan-2-yl) (Z)-icos-11-enoate
(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (Z)-tetradec-9-enoate
(1-phosphonooxy-3-undecanoyloxypropan-2-yl) (Z)-hexadec-9-enoate
[3-phosphonooxy-2-[(Z)-tridec-9-enoyl]oxypropyl] tetradecanoate
(1-dodecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-pentadec-9-enoate
(1-decanoyloxy-3-phosphonooxypropan-2-yl) (Z)-heptadec-9-enoate
[1-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate
[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoate
[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (E)-hexadec-7-enoate
[(2R)-2-decanoyloxy-3-phosphonooxypropyl] (E)-heptadec-9-enoate
[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (E)-tetradec-9-enoate
[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (E)-hexadec-9-enoate
[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (E)-pentadec-9-enoate
[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (E)-pentadec-9-enoate
[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (E)-hexadec-9-enoate
[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] (E)-heptadec-9-enoate
[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (E)-tetradec-9-enoate
[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (E)-hexadec-7-enoate
2-[[3-acetyloxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-propanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-butanoyloxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
Trillin
Diosgenin 3-O-beta-D-glucoside is a sterol 3-beta-D-glucoside having diosgenin as the sterol component. It has a role as a metabolite. It is a sterol 3-beta-D-glucoside, a monosaccharide derivative, a hexacyclic triterpenoid and a spiroketal. It is functionally related to a diosgenin. It derives from a hydride of a spirostan. Disogluside is a natural product found in Allium rotundum, Allium narcissiflorum, and other organisms with data available. C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent A sterol 3-beta-D-glucoside having diosgenin as the sterol component. Diosgenin glucoside, a saponin compound extracted from Trillium tschonoskii, provides neuroprotection by regulating microglial M1 polarization. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis [1][2]. Diosgenin glucoside, a saponin compound extracted from Trillium tschonoskii, provides neuroprotection by regulating microglial M1 polarization. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis [1][2].
calcidiol 3-O-(beta-D-glucuronide)
A steroid glucosiduronic acid that is calcidiol in which the hydroxy hydrogen at position 3 has been replaced by a beta-D-glucuronyl residue.
1-dodecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate
1-tridecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphate
1-(9Z-tetradecenoyl)-2-tridecanoyl-glycero-3-phosphate
1-(9Z-pentadecenoyl)-2-dodecanoyl-glycero-3-phosphate
calcidiol 25-O-(beta-D-glucuronide)
A steroid glucosiduronic acid that is calcidiol in which the hydroxy hydrogen at position 25 has been replaced by a beta-D-glucuronyl residue.