Exact Mass: 439.2699
Exact Mass Matches: 439.2699
Found 455 metabolites which its exact mass value is equals to given mass value 439.2699
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Leukotriene E4
Leukotriene E4 (LTE4) is a cysteinyl leukotriene. Cysteinyl leukotrienes (CysLTs) are a family of potent inflammatory mediators that appear to contribute to the pathophysiologic features of allergic rhinitis. Nasal blockage induced by CysLTs is mainly due to dilatation of nasal blood vessels, which can be induced by the nitric oxide produced through CysLT1 receptor activation. LTE4 activates contractile and inflammatory processes via specific interaction with putative seven transmembrane-spanning receptors that couple to G proteins and subsequent intracellular signaling pathways. LTE4 is metabolized from leukotriene C4 in a reaction catalyzed by gamma-glutamyl transpeptidase and a particulate dipeptidase from kidney (PMID: 12607939, 12432945, 6311078). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent and are able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signaling pathways. Leukotriene E4 (LTE4) is a cysteinyl leukotriene. Cysteinyl leukotrienes (CysLTs) are a family of potent inflammatory mediators that appear to contribute to the pathophysiologic features of allergic rhinitis. Nasal blockage induced by CysLTs is mainly due to dilatation of nasal blood vessels, which can be induced by the nitric oxide produced through CysLT1 receptor activation. LTE4, activate contractile and inflammatory processes via specific interaction with putative seven transmembrane-spanning receptors that couple to G proteins and subsequent intracellular signaling pathways. LTE4 is metabolized from leukotriene C4 in a reaction catalyzed by gamma-glutamyl transpeptidase and a particulate dipeptidase from kidney. (PMID: 12607939, 12432945, 6311078)
LysoPE(15:0/0:0)
LysoPE(15:0/0:0) is a lysophosphatidylethanolamine or a lysophospholipid. The term lysophospholipid (LPL) refers to any phospholipid that is missing one of its two O-acyl chains. Thus, LPLs have a free alcohol in either the sn-1 or sn-2 position. The prefix lyso- comes from the fact that lysophospholipids were originally found to be hemolytic however it is now used to refer generally to phospholipids missing an acyl chain. LPLs are usually the result of phospholipase A-type enzymatic activity on regular phospholipids such as phosphatidylcholine or phosphatidic acid, although they can also be generated by the acylation of glycerophospholipids or the phosphorylation of monoacylglycerols. Some LPLs serve important signaling functions such as lysophosphatidic acid. Lysophosphatidylethanolamines (LPEs) can function as plant growth regulators with several diverse uses. (LPEs) are approved for outdoor agricultural use to accelerate ripening and improve the quality of fresh produce. They are also approved for indoor use to preserve stored crops and commercial cut flowers. As a breakdown product of phosphatidylethanolamine (PE), LPE is present in cells of all organisms. [HMDB] LysoPE(15:0/0:0) is a lysophosphatidylethanolamine or a lysophospholipid. The term lysophospholipid (LPL) refers to any phospholipid that is missing one of its two O-acyl chains. Thus, LPLs have a free alcohol in either the sn-1 or sn-2 position. The prefix lyso- comes from the fact that lysophospholipids were originally found to be hemolytic however it is now used to refer generally to phospholipids missing an acyl chain. LPLs are usually the result of phospholipase A-type enzymatic activity on regular phospholipids such as phosphatidylcholine or phosphatidic acid, although they can also be generated by the acylation of glycerophospholipids or the phosphorylation of monoacylglycerols. Some LPLs serve important signaling functions such as lysophosphatidic acid. Lysophosphatidylethanolamines (LPEs) can function as plant growth regulators with several diverse uses. (LPEs) are approved for outdoor agricultural use to accelerate ripening and improve the quality of fresh produce. They are also approved for indoor use to preserve stored crops and commercial cut flowers. As a breakdown product of phosphatidylethanolamine (PE), LPE is present in cells of all organisms.
LysoPE(0:0/15:0)
LysoPE(0:0/15:0) is a lysophosphatidylethanolamine or a lysophospholipid. The term lysophospholipid (LPL) refers to any phospholipid that is missing one of its two O-acyl chains. Thus, LPLs have a free alcohol in either the sn-1 or sn-2 position. The prefix lyso- comes from the fact that lysophospholipids were originally found to be hemolytic however it is now used to refer generally to phospholipids missing an acyl chain. LPLs are usually the result of phospholipase A-type enzymatic activity on regular phospholipids such as phosphatidylcholine or phosphatidic acid, although they can also be generated by the acylation of glycerophospholipids or the phosphorylation of monoacylglycerols. Some LPLs serve important signaling functions such as lysophosphatidic acid. Lysophosphatidylethanolamines (LPEs) can function as plant growth regulators with several diverse uses. (LPEs) are approved for outdoor agricultural use to accelerate ripening and improve the quality of fresh produce. They are also approved for indoor use to preserve stored crops and commercial cut flowers. As a breakdown product of phosphatidylethanolamine (PE), LPE is present in cells of all organisms. [HMDB] LysoPE(0:0/15:0) is a lysophosphatidylethanolamine or a lysophospholipid. The term lysophospholipid (LPL) refers to any phospholipid that is missing one of its two O-acyl chains. Thus, LPLs have a free alcohol in either the sn-1 or sn-2 position. The prefix lyso- comes from the fact that lysophospholipids were originally found to be hemolytic however it is now used to refer generally to phospholipids missing an acyl chain. LPLs are usually the result of phospholipase A-type enzymatic activity on regular phospholipids such as phosphatidylcholine or phosphatidic acid, although they can also be generated by the acylation of glycerophospholipids or the phosphorylation of monoacylglycerols. Some LPLs serve important signaling functions such as lysophosphatidic acid. Lysophosphatidylethanolamines (LPEs) can function as plant growth regulators with several diverse uses. (LPEs) are approved for outdoor agricultural use to accelerate ripening and improve the quality of fresh produce. They are also approved for indoor use to preserve stored crops and commercial cut flowers. As a breakdown product of phosphatidylethanolamine (PE), LPE is present in cells of all organisms.
O-Desmethylvenlafaxine glucuronide
O-Desmethylvenlafaxine glucuronide is a metabolite of venlafaxine (brand name: Effexor or Efexor). Venlafaxine is a bicyclic antidepressant and is usually categorized as a serotonin-norepinephrine reuptake inhibitor (SNRI), but it has been referred to as a serotonin-norepinephrine-dopamine reuptake inhibitor. It works by blocking the transporter reuptake proteins for key neurotransmitters affecting mood, thereby leaving more active neurotransmitters in the synapse.
11-trans-LTE4
11-trans-LTE4 is also known as 11-trans-Leukotriene e4 or 11t-LTE4. 11-trans-LTE4 is considered to be practically insoluble (in water) and acidic. 11-trans-LTE4 is an eicosanoid lipid molecule
Dodecanoyl-sn-glycero-3-phosphocholine (isomer 1) (LPC(12:0) i1) † ‡
Dodecanoyl-sn-glycero-3-phosphocholine
N-Eicosapentaenoyl Histidine
N-eicosapentaenoyl histidine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is an Eicosapentaenoic acid amide of Histidine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Eicosapentaenoyl Histidine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Eicosapentaenoyl Histidine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
N-[2-(3,4-Dihydroxyphenyl)ethyl]icosa-5,8,11,14-tetraenamide
(5S,6R,7E,9E,11Z,14Z)-6-((R)-2-Amino-2-carboxyethylthio)-5-hydroxyicosa-7,9,11,14-tetraenoic acid
(S)-3-(6-Methoxypyridin-3-yl)-3-(2-oxo-3-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl)imidazolidin-1-yl)propanoic acid
Nvp-aew541
(E,E)-Numismine|1,29-Seco-lunarin|1,29-seco-lunarine|Numismin|numismine
18-demethyl-14-deacetylpubescenine|18-O-demethyl-14-O-deacetylpubescenine
11-[2-amino-3-(4'-O-methyl-alpha-ribopyranosyloxy)phenyl]undecanoic acid
NVP-AEW541
LPC 12:0
Acquisition and generation of the data is financially supported in part by CREST/JST.
1-lauroyl-sn-glycero-3-phosphocholine
A 1-O-acyl-sn-glycero-3-phosphocholine in which the acyl group is specified as lauroyl (dodecanoyl)
Ala Gly His Arg
Ala Gly Arg His
Ala His Gly Arg
Ala His Arg Gly
Ala Pro Pro Arg
Ala Pro Arg Pro
Ala Arg Gly His
Ala Arg His Gly
Ala Arg Pro Pro
Gly Ala His Arg
Gly Ala Arg His
Gly His Ala Arg
Gly His Lys Val
Gly His Arg Ala
Gly His Val Lys
Gly Lys His Val
Gly Lys Val His
Gly Arg Ala His
Gly Arg His Ala
Gly Val His Lys
Gly Val Lys His
His Ala Gly Arg
His Ala Arg Gly
His Gly Ala Arg
His Gly Lys Val
His Gly Arg Ala
His Gly Val Lys
His Lys Gly Val
His Lys Val Gly
His Arg Ala Gly
His Arg Gly Ala
His Val Gly Lys
His Val Lys Gly
Ile Asn Pro Pro
Ile Pro Asn Pro
Ile Pro Pro Asn
Lys Gly His Val
Lys Gly Val His
Lys His Gly Val
Lys His Val Gly
Lys Pro Pro Val
Lys Pro Val Pro
Lys Val Gly His
Lys Val His Gly
Lys Val Pro Pro
Leu Asn Pro Pro
Leu Pro Asn Pro
Leu Pro Pro Asn
Asn Ile Pro Pro
Asn Leu Pro Pro
Asn Pro Ile Pro
Asn Pro Leu Pro
Asn Pro Pro Ile
Asn Pro Pro Leu
Pro Ala Pro Arg
Pro Ala Arg Pro
Pro Ile Asn Pro
Pro Ile Pro Asn
Pro Lys Pro Val
Pro Lys Val Pro
Pro Leu Asn Pro
Pro Leu Pro Asn
Pro Asn Ile Pro
Pro Asn Leu Pro
Pro Asn Pro Ile
Pro Asn Pro Leu
Pro Pro Ala Arg
Pro Pro Ile Asn
Pro Pro Lys Val
Pro Pro Leu Asn
Pro Pro Asn Ile
Pro Pro Asn Leu
Pro Pro Gln Val
Pro Pro Arg Ala
Pro Pro Val Lys
Pro Pro Val Gln
Pro Gln Pro Val
Pro Gln Val Pro
Pro Arg Ala Pro
Pro Arg Pro Ala
Pro Val Lys Pro
Pro Val Pro Lys
Pro Val Pro Gln
Pro Val Gln Pro
Gln Pro Pro Val
Gln Pro Val Pro
Gln Val Pro Pro
Arg Ala Gly His
Arg Ala His Gly
Arg Ala Pro Pro
Arg Gly Ala His
Arg Gly His Ala
Arg His Ala Gly
Arg His Gly Ala
Arg Pro Ala Pro
Arg Pro Pro Ala
Val Gly His Lys
Val Gly Lys His
Val His Gly Lys
Val His Lys Gly
Val Lys Gly His
Val Lys His Gly
Val Lys Pro Pro
Val Pro Lys Pro
Val Pro Pro Lys
Val Pro Pro Gln
Val Pro Gln Pro
Val Gln Pro Pro
11-trans-LTE4
A leukotriene that is the 11-trans-isomer of leukotriene E4.
Platelet-activating factor
PC(O-6:0/6:0)[U]
PC(6:0/O-6:0)[U]
PC(O-12:0/O-1:0)
PC(O-12:0/O-1:0)[U]
1-Dodecanoyllysolecithin
PC(0:0/12:0)[U]
Leukotriene E
A leukotriene that is (7E,9E,11Z,14Z)-icosa-7,9,11,14-tetraenoic acid substituted by a hydroxy group at position 5 (5S) and an L-cystein-S-yl group at position 6 (6R).
(S)-2-[5-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1H-imidazol-2-y
tert-butyl N-[1-hydroxy-4-[[4-methoxy-3-(3-methoxypropoxy)phenyl]methyl]-5-methylhexan-2-yl]carbamate
(2S)-1-{[{2[(2S)-2-cyanopyrrolidin-1-yl]-2-oxoethyl}[(3-hydroxytricyclo[3.3.1.1(3,7)]dec-1-yl)amino]]acetyl}pyrrolidine-2-carbonitrile
Benzenemethanaminium,N-hexadecyl-N,N-dimethyl-, bromide (1:1)
2-tert-Butyl-4-[3-(dimethylvinylsilanyl)propoxy]-6-(5-methoxybenzotriazol-2-yl)-phenol
1-(1-([1,2,4]TRIAZOLO[1,5-A]PYRIDIN-6-YL)-1-((TERT-BUTYLDIMETHYLSILYL)OXY)PROPAN-2-YL)-3-(M-TOLYL)UREA
Propanedinitrile,[2-(2-propyl)-6-[2-(2,3,6,7-tetrahydro-2,2,7,7-tetramethyl-1H,5H-benzo[ij]quinolizin-9-yl)ethenyl]-4H-pyran
(1R,3S,4S)-3-[6-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-1H-BENZIMIDAZOL-2-YL]-2-AZABICYCLO[2.2.1]HEPTANE-2-CARBOXYLIC ACID 1,1-DIMETHYLETHYL ESTER
{1-[2-Oxo-2-({4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl}amino)ethyl]cyclopentyl}acetic acid hydrochloride (1:1)
1,5-diphenyl-2-[3-(4-pyridin-2-ylpiperazin-1-yl)propyl]pyrazol-3-one
Temiverine hydrochloride hydrate
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators
6-Amino-4-[3-ethoxy-4-[2-(4-morpholinyl)ethoxy]phenyl]-3-ethyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile
(1S)-1-{4-[(9AR)-Octahydro-2H-pyrido[1,2-A]pyrazin-2-YL]phenyl}-2-phenyl-1,2,3,4-tetrahydroisoquinolin-6-OL
N-(2-phenylphenyl)-8-(4-pyridin-3-yltriazol-1-yl)octanamide
[3-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] pentadecanoate
N-[2-(3,4-Dihydroxyphenyl)ethyl]icosa-5,8,11,14-tetraenamide
2-azaniumylethyl (2R)-3-(hexadecyloxy)-2-hydroxypropyl phosphate
2-dodecanoyl-sn-glycero-3-phosphocholine
A 2-acyl-sn-glycero-3-phosphocholine in which the acyl group is specified as dodecanoyl.
2-(3-ethoxypropylamino)-8-methyl-5-oxo-N-(2-oxolanylmethyl)-3-dipyrido[1,2-pyrimidinecarboxamide
7-[3-(1-Azetidinylmethyl)cyclobutyl]-5-(4-phenylmethoxyphenyl)-4-pyrrolo[2,3-d]pyrimidinamine
1-decyl-2-acetyl-sn-glycero-3-phosphocholine
A 2-acetyl-1-alkyl-sn-glycero-3-phosphocholine in which the alkyl group is specified as decyl.
N-[[(8S,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
N-[[(8S,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
N-[[(8R,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
N-[[(8R,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
N-[[(8S,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
N-[[(8R,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
N-[[(8R,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
N-[[(8S,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
N-[[(8R,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
N-[[(8S,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
N-[[(8S,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
(2s,3r)-2-Amino-(2-hydroxy-methyl)-12-oxo-3-(sulphooxy)octadecanoic acid
(5E,8E,11E,14E)-N-[(4-hydroxy-3-methoxyphenyl)methyl]icosa-5,8,11,14-tetraenamide
N-[[(8R,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
N-[[(8S,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
N-[[(8R,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
3-(4-fluorophenyl)-1-[(2R)-1-hydroxypropan-2-yl]-1-[(2S,3S)-3-methoxy-2-methyl-4-[methyl(4-oxanylmethyl)amino]butyl]urea
3-(4-fluorophenyl)-1-[(2R)-1-hydroxypropan-2-yl]-1-[(2S,3R)-3-methoxy-2-methyl-4-[methyl(oxan-4-ylmethyl)amino]butyl]urea
(2S,3S,3aR,9bR)-1-(cyclopropylmethyl)-7-(2-fluorophenyl)-3-(hydroxymethyl)-6-oxo-N-propyl-3,3a,4,9b-tetrahydro-2H-pyrrolo[2,3-a]indolizine-2-carboxamide
N-[(4S,7S,8R)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-2-phenylacetamide
3-(4-fluorophenyl)-1-[(2S)-1-hydroxypropan-2-yl]-1-[(2S,3R)-3-methoxy-2-methyl-4-[methyl(oxan-4-ylmethyl)amino]butyl]urea
3-(4-fluorophenyl)-1-[(2S)-1-hydroxypropan-2-yl]-1-[(2R,3R)-3-methoxy-2-methyl-4-[methyl(oxan-4-ylmethyl)amino]butyl]urea
(1R,9S,10S,11S)-N-(cyclopropylmethyl)-5-(3-fluorophenyl)-10-(hydroxymethyl)-6-oxo-12-propyl-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-diene-11-carboxamide
(1S,9R,10R,11R)-N-(cyclopropylmethyl)-5-(3-fluorophenyl)-10-(hydroxymethyl)-6-oxo-12-propyl-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-diene-11-carboxamide
(2S,3S,3aR,9bR)-1-ethyl-7-(3-fluorophenyl)-3-(hydroxymethyl)-2-(piperidine-1-carbonyl)-3,3a,4,9b-tetrahydro-2H-pyrrolo[2,3-a]indolizin-6-one
N-[(2S,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
N-[[(8S,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
N-[[(2S,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-8-[(E)-prop-1-enyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methylpyrazine-2-carboxamide
N-[(4S,7R,8S)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-2-phenylacetamide
N-[(4R,7S,8R)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-2-phenylacetamide
N-[(4R,7S,8S)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-2-phenylacetamide
N-[(4R,7R,8R)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
N-[(4R,7R,8S)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
N-[(5S,6S,9S)-5-methoxy-3,6,8,9-tetramethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
N-[(5R,6S,9S)-5-methoxy-3,6,8,9-tetramethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
N-[(5S,6R,9S)-5-methoxy-3,6,8,9-tetramethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
(2R,3R,3aS,9bS)-N-(cyclohexylmethyl)-7-(2-fluorophenyl)-3-(hydroxymethyl)-6-oxo-1,2,3,3a,4,9b-hexahydropyrrolo[2,3-a]indolizine-2-carboxamide
[(8S,9S,10R)-9-[4-[(E)-2-phenylethenyl]phenyl]-6-(pyridin-3-ylmethyl)-1,6-diazabicyclo[6.2.0]decan-10-yl]methanol
[(8R,9R,10S)-9-[4-[(E)-2-phenylethenyl]phenyl]-6-(pyridin-3-ylmethyl)-1,6-diazabicyclo[6.2.0]decan-10-yl]methanol
[(8S,9R,10R)-9-[4-[(E)-2-phenylethenyl]phenyl]-6-(pyridin-3-ylmethyl)-1,6-diazabicyclo[6.2.0]decan-10-yl]methanol
N,N-dimethyl-3-[4-[(1S,5R)-3-(1-oxo-2-phenylethyl)-3,6-diazabicyclo[3.1.1]heptan-7-yl]phenyl]benzamide
1-[(2S,3S)-1-[(4-fluorophenyl)methyl]-2-(hydroxymethyl)-3-phenyl-1,6-diazaspiro[3.3]heptan-6-yl]-2-(4-morpholinyl)ethanone
1-[(1R)-2-[cyclopentyl(oxo)methyl]-1-(hydroxymethyl)-7-methoxy-1-spiro[3,9-dihydro-1H-pyrido[3,4-b]indole-4,3-azetidine]yl]-1-butanone
(6S,7S,8R)-7-[4-(1-cyclohexenyl)phenyl]-8-(hydroxymethyl)-4-[2-(4-morpholinyl)-1-oxoethyl]-1,4-diazabicyclo[4.2.0]octan-2-one
N-[(2S,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
N-[(2S,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
N-[(2R,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
N-[(2R,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
N-[(2R,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
N-[(2R,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
N-[[(8R,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
N-[[(2R,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-8-[(E)-prop-1-enyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methylpyrazine-2-carboxamide
N-[[(2S,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-8-[(E)-prop-1-enyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methylpyrazine-2-carboxamide
N-[[(2R,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-8-[(E)-prop-1-enyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methylpyrazine-2-carboxamide
N-[[(2S,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-8-[(E)-prop-1-enyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methylpyrazine-2-carboxamide
N-[[(2S,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-8-[(E)-prop-1-enyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methylpyrazine-2-carboxamide
N-[[(2R,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-8-[(E)-prop-1-enyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methylpyrazine-2-carboxamide
N-[[(2R,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-8-[(E)-prop-1-enyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methylpyrazine-2-carboxamide
N-[(4R,7R,8R)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-2-phenylacetamide
N-[(4S,7R,8R)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-2-phenylacetamide
N-[(4S,7S,8S)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-2-phenylacetamide
N-[(4S,7S,8S)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
N-[(4S,7R,8R)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
N-[(4R,7S,8S)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
N-[(4S,7S,8R)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
N-[(4R,7S,8R)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
N-[(4S,7R,8S)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
N-[(5R,6R,9R)-5-methoxy-3,6,8,9-tetramethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
N-[(5R,6R,9S)-5-methoxy-3,6,8,9-tetramethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
N-[(5S,6S,9R)-5-methoxy-3,6,8,9-tetramethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
N-[(5R,6S,9R)-5-methoxy-3,6,8,9-tetramethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
3-(4-fluorophenyl)-1-[(2R)-1-hydroxypropan-2-yl]-1-[(2R,3S)-3-methoxy-2-methyl-4-[methyl(4-oxanylmethyl)amino]butyl]urea
3-(4-fluorophenyl)-1-[(2S)-1-hydroxypropan-2-yl]-1-[(2R,3S)-3-methoxy-2-methyl-4-[methyl(4-oxanylmethyl)amino]butyl]urea
3-(4-fluorophenyl)-1-[(2S)-1-hydroxypropan-2-yl]-1-[(2S,3S)-3-methoxy-2-methyl-4-[methyl(4-oxanylmethyl)amino]butyl]urea
3-(4-fluorophenyl)-1-[(2R)-1-hydroxypropan-2-yl]-1-[(2R,3R)-3-methoxy-2-methyl-4-[methyl(4-oxanylmethyl)amino]butyl]urea
(2R,3R,3aS,9bS)-1-(cyclopropylmethyl)-7-(2-fluorophenyl)-3-(hydroxymethyl)-6-oxo-N-propyl-3,3a,4,9b-tetrahydro-2H-pyrrolo[2,3-a]indolizine-2-carboxamide
(2R,3R,3aS,9bS)-1-ethyl-7-(3-fluorophenyl)-3-(hydroxymethyl)-2-[oxo(1-piperidinyl)methyl]-3,3a,4,9b-tetrahydro-2H-pyrrolo[2,3-a]indolizin-6-one
[(8R,9R,10R)-9-[4-[(E)-2-phenylethenyl]phenyl]-6-(pyridin-3-ylmethyl)-1,6-diazabicyclo[6.2.0]decan-10-yl]methanol
[(8R,9S,10R)-9-[4-[(E)-2-phenylethenyl]phenyl]-6-(pyridin-3-ylmethyl)-1,6-diazabicyclo[6.2.0]decan-10-yl]methanol
[(8R,9S,10S)-9-[4-[(E)-2-phenylethenyl]phenyl]-6-(pyridin-3-ylmethyl)-1,6-diazabicyclo[6.2.0]decan-10-yl]methanol
[(8S,9R,10S)-9-[4-[(E)-2-phenylethenyl]phenyl]-6-(pyridin-3-ylmethyl)-1,6-diazabicyclo[6.2.0]decan-10-yl]methanol
[(8S,9S,10S)-9-[4-[(E)-2-phenylethenyl]phenyl]-6-(pyridin-3-ylmethyl)-1,6-diazabicyclo[6.2.0]decan-10-yl]methanol
1-[(2S,3R)-1-[(4-fluorophenyl)methyl]-2-(hydroxymethyl)-3-phenyl-1,6-diazaspiro[3.3]heptan-6-yl]-2-(4-morpholinyl)ethanone
1-[(2R,3R)-1-[(4-fluorophenyl)methyl]-2-(hydroxymethyl)-3-phenyl-1,6-diazaspiro[3.3]heptan-6-yl]-2-(4-morpholinyl)ethanone
(2S,3S)-1-(cyclohexanecarbonyl)-2-(hydroxymethyl)-N-propan-2-yl-3-[4-[(E)-prop-1-enyl]phenyl]-1,6-diazaspiro[3.3]heptane-6-carboxamide
(2S)-N-{(2S)-1-[(3S)-3-carboxy-3,4-dihydroisoquinolin-2(1H)-yl]-1-oxopropan-2-yl}-1-ethoxy-1-oxo-4-phenylbutan-2-aminium
(1S,9R,10R,11R)-12-(cyclobutanecarbonyl)-10-(hydroxymethyl)-11-(piperidine-1-carbonyl)-5-[(E)-prop-1-enyl]-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-dien-6-one
[(2R)-3-dodecoxy-2-methoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
(1R,9S,10S,11S)-12-(cyclobutanecarbonyl)-10-(hydroxymethyl)-11-(piperidine-1-carbonyl)-5-[(E)-prop-1-enyl]-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-dien-6-one
(1S,9R,10R,11R)-N-[(4-fluorophenyl)methyl]-10-(hydroxymethyl)-6-oxo-5-[(E)-prop-1-enyl]-12-propyl-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-diene-11-carboxamide
(1R,9S,10S,11S)-N-[(4-fluorophenyl)methyl]-10-(hydroxymethyl)-6-oxo-5-[(E)-prop-1-enyl]-12-propyl-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-diene-11-carboxamide
(2R,3R,3aS,9bS)-1-[(3-fluorophenyl)methyl]-3-(hydroxymethyl)-6-oxo-7-[(Z)-prop-1-enyl]-N-propyl-3,3a,4,9b-tetrahydro-2H-pyrrolo[2,3-a]indolizine-2-carboxamide
(2-Acetyloxy-3-decoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(2-Hydroxy-3-tridecoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
[1-Acetyloxy-3-[2-aminoethoxy(hydroxy)phosphoryl]oxypropan-2-yl] dodecanoate
(2-Butanoyloxy-3-octoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-octoxypropan-2-yl] heptanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-nonoxypropan-2-yl] hexanoate
(3-Nonoxy-2-propanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] propanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] acetate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] butanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-decoxypropan-2-yl] pentanoate
[3-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-2-heptanoyloxypropyl] heptanoate
(2-Hexanoyloxy-3-pentanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(3-Acetyloxy-2-nonanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(2-Octanoyloxy-3-propanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-pentanoyloxypropan-2-yl] nonanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] octanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-propanoyloxypropan-2-yl] undecanoate
(3-Butanoyloxy-2-heptanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-butanoyloxypropan-2-yl] decanoate
2-[(2-Acetamido-3-hydroxytridecoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-(Hexanoylamino)-3-hydroxynonoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-(Butanoylamino)-3-hydroxyundecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[Hydroxy-[3-hydroxy-2-(pentanoylamino)decoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-(Heptanoylamino)-3-hydroxyoctoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[Hydroxy-[3-hydroxy-2-(propanoylamino)dodecoxy]phosphoryl]oxyethyl-trimethylazanium
eoxin E4
A leukotriene that is the 14R-(S-cysteinyl),15S-hydroxy derivative of (5Z,8Z,10E,12E)-icosa-7,9,11,14-tetraenoic acid.
1-(2-methoxy-6Z-tetradecenyl)-sn-glycero-3-phosphoethanolamine
MePC(10:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
CP-868388 (free base)
CP-868388 free base is a potent, selective and orally active PPARα agonist with a Ki value of 10.8 nM. CP-868388 free base has little or no affinity for PPARβ (Ki of 3.47 μM) and PPARγ. CP-868388 free base has hypolipidemic and anti-inflammatory actions[1].
Denifanstat
Denifanstat (TVB-2640) is an orally active and potent Fatty Acid Synthase (FASN) inhibitor with an IC50 of 0.052 μM and an EC50 of 0.072 μM. Denifanstat has the potential for fatty liver disease and cancer research[1][2].
11-{2-amino-3-[(3,4-dihydroxy-5-methoxyoxan-2-yl)oxy]phenyl}undecanoic acid
(1r,2r,3r,4r,5s,6r,8s,9r,10s,13r,16r,17r)-11-ethyl-16-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,5,6,8,17-pentol
9-ethyl-4,9-dihydroxy-8-methyl-4-(sec-butyl)-2,7,11-trioxa-16-azatricyclo[11.5.1.0¹⁶,¹⁹]nonadec-13-ene-3,6,10-trione
(6s,9s)-3-[(2s)-butan-2-yl]-13-(hexan-2-yl)-5,8,11-trihydroxy-9-isopropyl-6-methyl-1-oxa-4,7,10-triazacyclotrideca-4,7,10-trien-2-one
(1r,4s,8r,9r,14s,20r)-4-hydroxy-4,9-diisopropyl-8-methyl-2,7,12-trioxa-17-azatricyclo[12.5.1.0¹⁷,²⁰]icosane-3,6,11-trione
11-ethyl-18-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,6,8,9,16-pentol
(1s,10s,11r,13s,14s,15s)-14-hydroxy-15-methyl-6-azatetracyclo[8.6.0.0¹,⁶.0²,¹³]hexadec-2-en-11-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate
3'-acetylheliosupine
{"Ingredient_id": "HBIN007878","Ingredient_name": "3'-acetylheliosupine","Alias": "NA","Ingredient_formula": "C22H33NO8","Ingredient_Smile": "CC=C(C)C(=O)OC1CCN2C1C(=CC2)COC(=O)C(C(C)OC(=O)C)(C(C)(C)O)O","Ingredient_weight": "439.5 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "37193","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "6431047","DrugBank_id": "NA"}