Exact Mass: 410.3064

Exact Mass Matches: 410.3064

Found 500 metabolites which its exact mass value is equals to given mass value 410.3064, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

gamma-Tocotrienol

(2R)-3,4-Dihydro-2,7,8-trimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrien-1-yl]-2H-1-benzopyran-6-ol

C28H42O2 (410.3185)


gamma-Tocotrienol, also known as 7,8-dimethyltocotrienol, belongs to the class of organic compounds known as tocotrienols. These are vitamin E derivatives containing an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain attached to the C6 atom of a benzopyran ring system. They differ from tocopherols that contain a saturated trimethyltridecyl chain. Thus, gamma-tocotrienol is considered to be a quinone lipid molecule. gamma-Tocotrienol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. gamma-Tocotrienol targets cancer cells by inhibiting Id1, a key cancer-promoting protein. gamma-Tocotrienol was shown to trigger cell apoptosis and well as anti-proliferation of cancer cells. This mechanism was also observed in separate prostate cancer and melanoma cell line studies. Constituent of palm oil. Nutriceutical with anticancer props. and a positive influence on the blood lipid profile. gamma-Tocotrienol is found in many foods, some of which are rye, corn, rosemary, and common grape. Acquisition and generation of the data is financially supported in part by CREST/JST. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3]. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3].

   

beta-tocotrienol

(2R)-2,5,8-Trimethyl-2-[(3E,7E)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-2H-1-benzopyran-6-ol

C28H42O2 (410.3185)


   

Sterol 3-beta-D-glucoside

Sterol 3-beta-D-glucoside

C23H38O6 (410.2668)


   

4,4-Dimethylcholesta-8,14,24-trienol

(2S,5S,7R,14R,15R)-2,6,6,15-tetramethyl-14-[(2R)-6-methylhept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-1(10),11-dien-5-ol

C29H46O (410.3548)


4,4-Dimethylcholesta-8,14,24-trienol is a product of the enzyme delta14-sterol reductase [EC 1.3.1.70] (KEGG). It is involved in the biosynthesis of steroids and is involved in the conversion of lanosterol to zymosterol. In particular, lanosterol 14-alpha-demethylase, catalyzes the C-14 demethylation of lanosterol to form 4,4-Dimethylcholesta-8,14,24-trienol in the ergosterol biosynthesis pathway. It is thought to be a meiosis activating sterol. [HMDB] 4,4-Dimethylcholesta-8,14,24-trienol is a product of the enzyme delta14-sterol reductase [EC 1.3.1.70] (KEGG). It is involved in the biosynthesis of steroids and is involved in the conversion of lanosterol to zymosterol. In particular, lanosterol 14-alpha-demethylase, catalyzes the C-14 demethylation of lanosterol to form 4,4-Dimethylcholesta-8,14,24-trienol in the ergosterol biosynthesis pathway. It is thought to be a meiosis activating sterol.

   

delta8,14-Sterol

(2S,5S,6S,7S,14R,15R)-2,6,15-trimethyl-14-[(2R)-6-methyl-5-methylideneheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-1(10),11-dien-5-ol

C29H46O (410.3548)


delta8,14-Sterol, also known as 4alpha-methyl-5alpha-ergosta-8,14,24(28)-trien-3beta-ol, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, delta8,14-sterol is considered to be a sterol lipid molecule. delta8,14-Sterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. delta8,14-Sterol is an intermediate in the biosynthesis of steroids and is converted from O-butusifoliol via the enzyme cytochrome P450, family 51, subfamily A (sterol 14-demethylase) (EC 1.14.13.70). It is then converted into 4-alpha-methylfecosterol via the enzyme delta14-sterol reductase (EC 1.3.1.70). Constituent of wheat germ oil (Triticum aestivum)

   

Norethindrone enanthate

Norethindrone enanthate; Norethisterone enanthate; 17alpha-Ethynyl-17beta-heptanoyloxy-4-estren-3-one

C27H38O3 (410.2821)


D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents Same as: D08285

   

2,3-dimethyl-6-geranylgeranyl-1,4-benzoquinol

2,3-dimethyl-6-geranylgeranyl-1,4-benzoquinol

C28H42O2 (410.3185)


   

5-Dehydroavenasterol

(1S,2R,5S,11R,14R,15R)-2,15-dimethyl-14-[(2R,5Z)-5-(propan-2-yl)hept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-7,9-dien-5-ol

C29H46O (410.3548)


5-Dehydroavenasterol belongs to the class of organic compounds known as stigmastanes and derivatives. These are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, 5-dehydroavenasterol is considered to be a sterol lipid molecule. 5-Dehydroavenasterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 5-Dehydroavenasterol is an intermediate in the biosynthesis of steroids. It is the third to last step in the synthesis of stigmasterol and is converted from delta 7-avenasterol via the enzyme lathosterol oxidase (EC 1.14.21.6). It is then converted into Isofucosterol via the enzyme 7-dehydrocholesterol reductase (EC 1.3.1.21). 5-Dehydroavenasterol is an intermediate in the biosynthesis of steroids (KEGG ID C15783). It is the third to last step in the synthesis of Stigmasterol and is converted from delta 7-Avenasterol via the enzyme lathosterol oxidase [EC:1.14.21.6]. It is then converted to Isofucosterol via the enzyme 7-dehydrocholesterol reductase [EC:1.3.1.21]. [HMDB]. 5-Dehydroavenasterol is found in many foods, some of which are daikon radish, nance, skunk currant, and jujube.

   

avenastenone

avenastenone

C29H46O (410.3548)


   

epsilon-Tocopherol

(2R)-3,4-dihydro-2,5,8-trimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrienyl]-2H-1-benzopyran-6-ol

C28H42O2 (410.3185)


Isolated from wheat bran oil. epsilon-Tocopherol is found in many foods, some of which are rye, coconut, rosemary, and fennel. epsilon-Tocopherol is found in american cranberry. epsilon-Tocopherol is isolated from wheat bran oi

   

28-Norcyclomusalenone

15-(5,6-dimethylhept-6-en-2-yl)-12,16-dimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-one

C29H46O (410.3548)


28-Norcyclomusalenone is found in fruits. 28-Norcyclomusalenone is a constituent of Musa sapientum (banana). Constituent of Musa sapientum (banana). 28-Norcyclomusalenone is found in fruits.

   

(3beta,22E,24R)-3-Hydroxyergosta-5,8,22-trien-7-one

14-[(3E)-5,6-dimethylhept-3-en-2-yl]-5-hydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-1(10),7-dien-9-one

C28H42O2 (410.3185)


(3beta,22E,24R)-3-Hydroxyergosta-5,8,22-trien-7-one is found in mushrooms. (3beta,22E,24R)-3-Hydroxyergosta-5,8,22-trien-7-one is a constituent of Grifola frondosa (maitake) Constituent of Grifola frondosa (maitake). (3beta,22E,24R)-3-Hydroxyergosta-5,8,22-trien-7-one is found in mushrooms.

   

Corbisterol

14-[(3Z)-5-ethyl-6-methylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-7,9-dien-5-ol

C29H46O (410.3548)


Constituent of boiled chicken and seed oils. Corbisterol is found in many foods, some of which are animal foods, oat, fats and oils, and arabica coffee. Corbisterol is found in animal foods. Corbisterol is a constituent of boiled chicken and seed oils.

   

(3beta,22E,24R)-23-Methylergosta-5,7,22-trien-3-ol

2,15-dimethyl-14-[(3E)-4,5,6-trimethylhept-3-en-2-yl]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-7,9-dien-5-ol

C29H46O (410.3548)


(3beta,22E,24R)-23-Methylergosta-5,7,22-trien-3-ol is found in mushrooms. (3beta,22E,24R)-23-Methylergosta-5,7,22-trien-3-ol is a constituent of Lentinula edodes (shiitake) Constituent of Lentinula edodes (shiitake). 23-Methylergosterol is found in mushrooms.

   

22-Dehydroclerosterol

14-[(3E)-5-ethyl-6-methylhepta-3,6-dien-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-ol

C29H46O (410.3548)


22-Dehydroclerosterol is found in green vegetables. 22-Dehydroclerosterol is a constituent of pumpkin (leaves). Constituent of pumpkin (leaves). 22-Dehydroclerosterol is found in green vegetables.

   

5,8-Epoxy-5,8-dihydro-10'-apo-b,y-carotene-3,10'-diol

2-[(2Z,4E,6E,8E,10E,12E)-14-hydroxy-6,11-dimethyltetradeca-2,4,6,8,10,12-hexaen-2-yl]-4,4,7a-trimethyl-2,4,5,6,7,7a-hexahydro-1-benzofuran-6-ol

C27H38O3 (410.2821)


5,8-Epoxy-5,8-dihydro-10-apo-b,y-carotene-3,10-diol is found in citrus. 5,8-Epoxy-5,8-dihydro-10-apo-b,y-carotene-3,10-diol is isolated from Persea americana (avocado) and from Valencia orange juice. Isolated from Persea americana (avocado) and from Valencia orange juice. 5,8-Epoxy-5,8-dihydro-10-apo-b,y-carotene-3,10-diol is found in citrus and fruits.

   

5,6-Epoxy-5,6-dihydro-10'-apo-b,y-carotene-3,10'-diol

6-[(1E,3Z,5E,7E,9E,11Z,13Z)-15-hydroxy-3,7,12-trimethylpentadeca-1,3,5,7,9,11,13-heptaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C27H38O3 (410.2821)


5,6-Epoxy-5,6-dihydro-10-apo-b,y-carotene-3,10-diol is found in pomes. 5,6-Epoxy-5,6-dihydro-10-apo-b,y-carotene-3,10-diol is isolated from the peel of the ripe Golden Delicious apple. 5,6-Epoxy-5,6-dihydro-10-apo-b,y-carotene-3,10-diol isa metabolite of JVG-51D in the mature fruit. Isolated from the peel of the ripe Golden Delicious apple. Prob. a metabolite of JVG-51D in the mature fruit. 5,6-Epoxy-5,6-dihydro-10-apo-b,y-carotene-3,10-diol is found in pomes.

   

(3beta,5alpha,22E,24S)-Stigmasta-7,22,25-trien-3-ol

14-[(3E)-5-ethyl-6-methylhepta-3,6-dien-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-9-en-5-ol

C29H46O (410.3548)


(3beta,5alpha,22E,24S)-Stigmasta-7,22,25-trien-3-ol is found in bitter gourd. (3beta,5alpha,22E,24S)-Stigmasta-7,22,25-trien-3-ol is a constituent of Momordica charantia (bitter melon). Constituent of Momordica charantia (bitter melon). (3b,5a,22E,24S)-Stigmasta-7,22,25-trien-3-ol is found in many foods, some of which are cucumber, bitter gourd, fruits, and watermelon.

   

(4alpha,5alpha)-4,14-Dimethyl-9,19-cyclocholest-20-en-3-one

7,12,16-trimethyl-15-(6-methylhept-1-en-2-yl)pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-one

C29H46O (410.3548)


(4alpha,5alpha)-4,14-Dimethyl-9,19-cyclocholest-20-en-3-one is found in fruits. (4alpha,5alpha)-4,14-Dimethyl-9,19-cyclocholest-20-en-3-one is a constituent of Musa paradisiaca (banana).

   

Stigmasta-4,6-dien-3-one

14-(5-ethyl-6-methylheptan-2-yl)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-6,8-dien-5-one

C29H46O (410.3548)


Stigmasta-4,6-dien-3-one is found in root vegetables. Stigmasta-4,6-dien-3-one is a constituent of a stress metabolite of Manihot esculenta (cassava). Constituent of a stress metabolite of Manihot esculenta (cassava). Stigmasta-4,6-dien-3-one is found in soy bean and root vegetables.

   

MG(0:0/22:2(13Z,16Z)/0:0)

1,3-dihydroxypropan-2-yl (13Z,16Z)-docosa-13,16-dienoate

C25H46O4 (410.3396)


MG(0:0/22:2(13Z,16Z)/0:0) is a monoacylglyceride. A monoglyceride, more correctly known as a monoacylglycerol, is a glyceride consisting of one fatty acid chain covalently bonded to a glycerol molecule through an ester linkage. Monoacylglycerol can be broadly divided into two groups; 1-monoacylglycerols (or 3-monoacylglycerols) and 2-monoacylglycerols, depending on the position of the ester bond on the glycerol moiety. Normally the 1-/3-isomers are not distinguished from each other and are termed alpha-monoacylglycerols, while the 2-isomers are beta-monoacylglycerols. Monoacylglycerols are formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase or hormone sensitive lipase. Monoacylglycerols are broken down by monoacylglycerol lipase. They tend to be minor components only of most plant and animal tissues, and indeed would not be expected to accumulate because their strong detergent properties would have a disruptive effect on membranes. 2-Monoacylglycerols are a major end product of the intestinal digestion of dietary fats in animals via the enzyme pancreatic lipase. They are taken up directly by the intestinal cells and converted to triacylglycerols via the monoacylglycerol pathway before being transported in lymph to the liver. Mono- and Diglycerides are commonly added to commercial food products in small quantities. They act as emulsifiers, helping to mix ingredients such as oil and water that would not otherwise blend well. [HMDB] MG(0:0/22:2(13Z,16Z)/0:0) is a monoacylglyceride. A monoglyceride, more correctly known as a monoacylglycerol, is a glyceride consisting of one fatty acid chain covalently bonded to a glycerol molecule through an ester linkage. Monoacylglycerol can be broadly divided into two groups; 1-monoacylglycerols (or 3-monoacylglycerols) and 2-monoacylglycerols, depending on the position of the ester bond on the glycerol moiety. Normally the 1-/3-isomers are not distinguished from each other and are termed alpha-monoacylglycerols, while the 2-isomers are beta-monoacylglycerols. Monoacylglycerols are formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase or hormone sensitive lipase. Monoacylglycerols are broken down by monoacylglycerol lipase. They tend to be minor components only of most plant and animal tissues, and indeed would not be expected to accumulate because their strong detergent properties would have a disruptive effect on membranes. 2-Monoacylglycerols are a major end product of the intestinal digestion of dietary fats in animals via the enzyme pancreatic lipase. They are taken up directly by the intestinal cells and converted to triacylglycerols via the monoacylglycerol pathway before being transported in lymph to the liver. Mono- and Diglycerides are commonly added to commercial food products in small quantities. They act as emulsifiers, helping to mix ingredients such as oil and water that would not otherwise blend well.

   

MG(22:2(13Z,16Z)/0:0/0:0)

(2S)-2,3-Dihydroxypropyl (13Z,16Z)-docosa-13,16-dienoic acid

C25H46O4 (410.3396)


MG(22:2(13Z,16Z)/0:0/0:0) is a monoacylglyceride. A monoglyceride, more correctly known as a monoacylglycerol, is a glyceride consisting of one fatty acid chain covalently bonded to a glycerol molecule through an ester linkage. Monoacylglycerol can be broadly divided into two groups; 1-monoacylglycerols (or 3-monoacylglycerols) and 2-monoacylglycerols, depending on the position of the ester bond on the glycerol moiety. Normally the 1-/3-isomers are not distinguished from each other and are termed alpha-monoacylglycerols, while the 2-isomers are beta-monoacylglycerols. Monoacylglycerols are formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase or hormone sensitive lipase. Monoacylglycerols are broken down by monoacylglycerol lipase. They tend to be minor components only of most plant and animal tissues, and indeed would not be expected to accumulate because their strong detergent properties would have a disruptive effect on membranes. 2-Monoacylglycerols are a major end product of the intestinal digestion of dietary fats in animals via the enzyme pancreatic lipase. They are taken up directly by the intestinal cells and converted to triacylglycerols via the monoacylglycerol pathway before being transported in lymph to the liver. Mono- and Diglycerides are commonly added to commercial food products in small quantities. They act as emulsifiers, helping to mix ingredients such as oil and water that would not otherwise blend well. [HMDB] MG(22:2(13Z,16Z)/0:0/0:0) is a monoacylglyceride. A monoglyceride, more correctly known as a monoacylglycerol, is a glyceride consisting of one fatty acid chain covalently bonded to a glycerol molecule through an ester linkage. Monoacylglycerol can be broadly divided into two groups; 1-monoacylglycerols (or 3-monoacylglycerols) and 2-monoacylglycerols, depending on the position of the ester bond on the glycerol moiety. Normally the 1-/3-isomers are not distinguished from each other and are termed alpha-monoacylglycerols, while the 2-isomers are beta-monoacylglycerols. Monoacylglycerols are formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase or hormone sensitive lipase. Monoacylglycerols are broken down by monoacylglycerol lipase. They tend to be minor components only of most plant and animal tissues, and indeed would not be expected to accumulate because their strong detergent properties would have a disruptive effect on membranes. 2-Monoacylglycerols are a major end product of the intestinal digestion of dietary fats in animals via the enzyme pancreatic lipase. They are taken up directly by the intestinal cells and converted to triacylglycerols via the monoacylglycerol pathway before being transported in lymph to the liver. Mono- and Diglycerides are commonly added to commercial food products in small quantities. They act as emulsifiers, helping to mix ingredients such as oil and water that would not otherwise blend well.

   

(6alpha,22E)-6-Hydroxy-4,7,22-ergostatrien-3-one

14-[(3E)-5,6-dimethylhept-3-en-2-yl]-8-hydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-6,9-dien-5-one

C28H42O2 (410.3185)


(6beta,22E)-6-Hydroxy-4,7,22-ergostatrien-3-one is found in mushrooms. (6beta,22E)-6-Hydroxy-4,7,22-ergostatrien-3-one is a metabolite of Ganoderma lucidum (reishi).

   

N-Oleoyl Glutamine

4-(C-Hydroxycarbonimidoyl)-2-[(1-hydroxyoctadec-9-en-1-ylidene)amino]butanoate

C23H42N2O4 (410.3144)


N-oleoyl glutamine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is an Oleic acid amide of Glutamine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Oleoyl Glutamine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Oleoyl Glutamine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

(2R)-2,5,8-Trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trienyl)-3,4-dihydrochromen-6-ol

2,5,8-trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-3,4-dihydro-2H-1-benzopyran-6-ol

C28H42O2 (410.3185)


   

(2R)-2,7,8-Trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trienyl)-3,4-dihydrochromen-6-ol

2,7,8-trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-3,4-dihydro-2H-1-benzopyran-6-ol

C28H42O2 (410.3185)


   

2-Pyridinemethanamine, N-((4-(1,4,8,11-tetraazacyclotetradec-1-ylmethyl)phenyl)methyl)-

[(pyridin-2-yl)methyl]({4-[(1,4,8,11-tetraazacyclotetradecan-1-yl)methyl]phenyl}methyl)amine

C24H38N6 (410.3158)


   

Arlacel A

6-hydroxy-hexahydrofuro[3,2-b]furan-3-yl octadec-9-enoate

C24H42O5 (410.3032)


   

Norethisterone enanthate

14-ethynyl-15-methyl-5-oxotetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-14-yl heptanoate

C27H38O3 (410.2821)


   

1,25-Dihydroxy-16-ene-23-yne-vitamin D3

5-{2-[3-(6-hydroxy-6-methylhept-4-yn-2-yl)-3a-methyl-3a,4,5,6,7,7a-hexahydro-1H-inden-7-ylidene]ethylidene}-4-methylidenecyclohexane-1,3-diol

C27H38O3 (410.2821)


   

MG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/0:0)

(2S)-2,3-Dihydroxypropyl (5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoic acid

C23H38O6 (410.2668)


MG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/0:0)

(2S)-2,3-Dihydroxypropyl (5R,6E,8Z,11Z,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoic acid

C23H38O6 (410.2668)


MG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/0:0)

(2S)-2,3-Dihydroxypropyl (5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoic acid

C23H38O6 (410.2668)


MG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0)

1,3-Dihydroxypropan-2-yl (5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoic acid

C23H38O6 (410.2668)


MG(0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0)

1,3-Dihydroxypropan-2-yl (5S,6E,8Z,11Z,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoic acid

C23H38O6 (410.2668)


MG(0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0)

1,3-Dihydroxypropan-2-yl (5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoic acid

C23H38O6 (410.2668)


MG(0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

DG(2:0/18:2(10E,12Z)+=O(9)/0:0)

(2S)-1-(Acetyloxy)-3-hydroxypropan-2-yl (10E,12Z)-9-oxooctadeca-10,12-dienoic acid

C23H38O6 (410.2668)


DG(2:0/18:2(10E,12Z)+=O(9)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(2:0/18:2(10E,12Z)+=O(9)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(18:2(10E,12Z)+=O(9)/2:0/0:0)

(2S)-2-(Acetyloxy)-3-hydroxypropyl (10E,12Z)-9-oxooctadeca-10,12-dienoic acid

C23H38O6 (410.2668)


DG(18:2(10E,12Z)+=O(9)/2:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:2(10E,12Z)+=O(9)/2:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(2:0/0:0/18:2(10E,12Z)+=O(9))

(2R)-3-(Acetyloxy)-2-hydroxypropyl (10E,12Z)-9-oxooctadeca-10,12-dienoic acid

C23H38O6 (410.2668)


DG(2:0/0:0/18:2(10E,12Z)+=O(9)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(18:2(10E,12Z)+=O(9)/0:0/2:0)

(2S)-3-(Acetyloxy)-2-hydroxypropyl (10E,12Z)-9-oxooctadeca-10,12-dienoic acid

C23H38O6 (410.2668)


DG(18:2(10E,12Z)+=O(9)/0:0/2:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(2:0/18:2(9Z,11E)+=O(13)/0:0)

(2S)-1-(Acetyloxy)-3-hydroxypropan-2-yl (9Z,11E)-13-oxooctadeca-9,11-dienoic acid

C23H38O6 (410.2668)


DG(2:0/18:2(9Z,11E)+=O(13)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(2:0/18:2(9Z,11E)+=O(13)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(18:2(9Z,11E)+=O(13)/2:0/0:0)

(2S)-2-(Acetyloxy)-3-hydroxypropyl (9Z,11E)-13-oxooctadeca-9,11-dienoic acid

C23H38O6 (410.2668)


DG(18:2(9Z,11E)+=O(13)/2:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:2(9Z,11E)+=O(13)/2:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(2:0/0:0/18:2(9Z,11E)+=O(13))

(2R)-3-(Acetyloxy)-2-hydroxypropyl (9Z,11E)-13-oxooctadeca-9,11-dienoic acid

C23H38O6 (410.2668)


DG(2:0/0:0/18:2(9Z,11E)+=O(13)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(18:2(9Z,11E)+=O(13)/0:0/2:0)

(2S)-3-(Acetyloxy)-2-hydroxypropyl (9Z,11E)-13-oxooctadeca-9,11-dienoic acid

C23H38O6 (410.2668)


DG(18:2(9Z,11E)+=O(13)/0:0/2:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(2:0/18:3(10,12,15)-OH(9)/0:0)

(2S)-1-(Acetyloxy)-3-hydroxypropan-2-yl (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoic acid

C23H38O6 (410.2668)


DG(2:0/18:3(10,12,15)-OH(9)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(2:0/18:3(10,12,15)-OH(9)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(18:3(10,12,15)-OH(9)/2:0/0:0)

(2S)-2-(Acetyloxy)-3-hydroxypropyl (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoic acid

C23H38O6 (410.2668)


DG(18:3(10,12,15)-OH(9)/2:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:3(10,12,15)-OH(9)/2:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(2:0/0:0/18:3(10,12,15)-OH(9))

(2R)-3-(Acetyloxy)-2-hydroxypropyl (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoic acid

C23H38O6 (410.2668)


DG(2:0/0:0/18:3(10,12,15)-OH(9)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(18:3(10,12,15)-OH(9)/0:0/2:0)

(2S)-3-(Acetyloxy)-2-hydroxypropyl (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoic acid

C23H38O6 (410.2668)


DG(18:3(10,12,15)-OH(9)/0:0/2:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(2:0/18:3(9,11,15)-OH(13)/0:0)

(2S)-1-(Acetyloxy)-3-hydroxypropan-2-yl (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoic acid

C23H38O6 (410.2668)


DG(2:0/18:3(9,11,15)-OH(13)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(2:0/18:3(9,11,15)-OH(13)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(18:3(9,11,15)-OH(13)/2:0/0:0)

(2S)-2-(Acetyloxy)-3-hydroxypropyl (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoic acid

C23H38O6 (410.2668)


DG(18:3(9,11,15)-OH(13)/2:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:3(9,11,15)-OH(13)/2:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(2:0/0:0/18:3(9,11,15)-OH(13))

(2R)-3-(Acetyloxy)-2-hydroxypropyl (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoic acid

C23H38O6 (410.2668)


DG(2:0/0:0/18:3(9,11,15)-OH(13)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(18:3(9,11,15)-OH(13)/0:0/2:0)

(2S)-3-(Acetyloxy)-2-hydroxypropyl (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoic acid

C23H38O6 (410.2668)


DG(18:3(9,11,15)-OH(13)/0:0/2:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

2,4-Methylene cholesterol

(2R,5S,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]-4,6-dimethylidenetetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-ol

C29H46O (410.3548)


2,4-methylene cholesterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 2,4-methylene cholesterol can be found in a number of food items such as cucumber, french plantain, muskmelon, and corn, which makes 2,4-methylene cholesterol a potential biomarker for the consumption of these food products.

   

25(27)-Dehydrochondrillasterol

(2S,5S,7S,14R,15R)-14-[(2R,3E,5S)-5-ethyl-6-methylhepta-3,6-dien-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-9-en-5-ol

C29H46O (410.3548)


25(27)-dehydrochondrillasterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 25(27)-dehydrochondrillasterol can be found in cucumber, muskmelon, and watermelon, which makes 25(27)-dehydrochondrillasterol a potential biomarker for the consumption of these food products.

   

25(27)-Dehydroporiferasterol

(2R,5S,15R)-14-[(2R,3E,5S)-5-ethyl-6-methylhepta-3,6-dien-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-ol

C29H46O (410.3548)


25(27)-dehydroporiferasterol belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. 25(27)-dehydroporiferasterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 25(27)-dehydroporiferasterol can be found in cucumber, muskmelon, and watermelon, which makes 25(27)-dehydroporiferasterol a potential biomarker for the consumption of these food products.

   

Sinensiaxanthin

6-[(1E,3E,5E,7E,9E,11E,13E)-15-hydroxy-3,7,12-trimethylpentadeca-1,3,5,7,9,11,13-heptaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C27H38O3 (410.2821)


Sinensiaxanthin is a member of the class of compounds known as sesterterpenoids. Sesterterpenoids are terpenes composed of five consecutive isoprene units. Sinensiaxanthin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Sinensiaxanthin can be found in apple and sweet orange, which makes sinensiaxanthin a potential biomarker for the consumption of these food products.

   

Stigmasta-4-22-dien-3-one

(1S,2R,10S,11S,14R,15R)-14-[(2R,3E,5S)-5-ethyl-6-methylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-one

C29H46O (410.3548)


Stigmasta-4-22-dien-3-one belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Stigmasta-4-22-dien-3-one is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Stigmasta-4-22-dien-3-one can be found in soy bean, which makes stigmasta-4-22-dien-3-one a potential biomarker for the consumption of this food product.

   

5alpha-Stigmasta-7,22,25-trien-3beta-ol

(2S,5S,7S,15R)-14-[(2R,3E,5R)-5-ethyl-6-methylhepta-3,6-dien-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-9-en-5-ol

C29H46O (410.3548)


5alpha-stigmasta-7,22,25-trien-3beta-ol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 5alpha-stigmasta-7,22,25-trien-3beta-ol can be found in bitter gourd, which makes 5alpha-stigmasta-7,22,25-trien-3beta-ol a potential biomarker for the consumption of this food product.

   

Elasterol

(1R,2S,5S,7S,11S,15S)-14-[(2R,5R)-5-ethyl-6-methylhept-6-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-9,13-dien-5-ol

C29H46O (410.3548)


Elasterol belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Elasterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Elasterol can be found in bitter gourd, which makes elasterol a potential biomarker for the consumption of this food product.

   

14-demethyllanosterol

2,6,6,15-tetramethyl-14-(6-methylhept-5-en-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-1(10),11-dien-5-ol

C29H46O (410.3548)


14-demethyllanosterol belongs to cholesterols and derivatives class of compounds. Those are compounds containing a 3-hydroxylated cholestane core. 14-demethyllanosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 14-demethyllanosterol can be found in a number of food items such as carrot, garland chrysanthemum, shea tree, and black elderberry, which makes 14-demethyllanosterol a potential biomarker for the consumption of these food products.

   

4alpha-methyl-5alpha-ergosta-8,14,24(28)-trien-3beta-ol

2,6,15-trimethyl-14-(6-methyl-5-methylideneheptan-2-yl)tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-1(10),11-dien-5-ol

C29H46O (410.3548)


4alpha-methyl-5alpha-ergosta-8,14,24(28)-trien-3beta-ol belongs to ergosterols and derivatives class of compounds. Those are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. 4alpha-methyl-5alpha-ergosta-8,14,24(28)-trien-3beta-ol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 4alpha-methyl-5alpha-ergosta-8,14,24(28)-trien-3beta-ol can be found in a number of food items such as loganberry, cardamom, pineapple, and sweet cherry, which makes 4alpha-methyl-5alpha-ergosta-8,14,24(28)-trien-3beta-ol a potential biomarker for the consumption of these food products.

   

avenastenone

2,15-dimethyl-14-[5-(propan-2-yl)hept-5-en-2-yl]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-9-en-5-one

C29H46O (410.3548)


Avenastenone belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Avenastenone is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Avenastenone can be found in a number of food items such as alaska blueberry, longan, feijoa, and giant butterbur, which makes avenastenone a potential biomarker for the consumption of these food products.

   

28-Demethyl-β-amyrone

(4Ar,6aR,6bS,8aR,12aR,14aR,14bR)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,4a,5,6,7,8,8a,9,10,12,12a,14,14a-tetradecahydropicen-3-one

C29H46O (410.3548)


28-Demethyl-beta-amyrone is a natural product found in Pistacia lentiscus with data available.

   

STIGMASTADIENONE

(8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-6,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3(2H)-one

C29H46O (410.3548)


Stigmasta-4,22-dien-3-one is a steroid. It derives from a hydride of a stigmastane. Stigmasta-4,22-dien-3-one is a natural product found in Magnolia kachirachirai, Conium maculatum, and other organisms with data available.

   
   

Azafrinal

(5R,6R)-5,6-Dihydro-5,6-dihydroxy-10-apo-beta,psi-carotenal

C27H38O3 (410.2821)


   

Cyclonervilasterol

Cyclonervilasterol

C29H46O (410.3548)


   

(22E,24S)-Stigmast-4,22-dien-3-one

(22E,24S)-Stigmast-4,22-dien-3-one

C29H46O (410.3548)


   

(+)-Isojaspic acid

(+)-Isojaspic acid

C27H38O3 (410.2821)


   

Sargachromanol N

Sargachromanol N

C27H38O3 (410.2821)


   

(+)-Makassaric acid

3-{[(14beta)-8,13-dimethylpodocarp-12-en-14-yl]methyl}-4-hydroxybenzoic acid

C27H38O3 (410.2821)


A meroterpenoid isolated from the marine sponge Acanthodendrilla sp. It exhibits inhibitory activity against the enzyme mitogen-activated protein kinase-activated protein kinase 2 (EC 2.7.11.1).

   

Betaenone F

Betaenone F

C23H38O6 (410.2668)


   

24-Methylenepollinastanone

24-Methylenepollinastanone

C29H46O (410.3548)


   

Suberiphenol

Suberiphenol

C27H38O3 (410.2821)


   

Flabellinone

Flabellinone

C27H38O3 (410.2821)


   

Topsentisterol E1

Topsentisterol E1

C28H42O2 (410.3185)


   

Cacospongin D

Cacospongin D

C27H38O3 (410.2821)


   

Nigrolineaquinone A

Nigrolineaquinone A

C27H38O3 (410.2821)


   

Asbestinin-25

Asbestinin-25

C23H38O6 (410.2668)


   

Chabrolobenzoquinone E

Chabrolobenzoquinone E

C27H38O3 (410.2821)


   

19-Norlanosta-5,24-dien-11-one

19-Norlanosta-5,24-dien-11-one

C29H46O (410.3548)


   

Chabrolobenzoquinone G

(+)-Chabrolobenzoquinone G

C27H38O3 (410.2821)


   

(+)-Subersic acid

4-hydroxy-3-{(2E)-3-methyl-5-[(4aS,8aS)-2,5,5,8a-tetramethyl-3,4,4a,5,6,7,8,8a-octahydronaphthalen-1-yl]pent-2-en-1-yl}benzoic acid

C27H38O3 (410.2821)


A meroterpenoid that is 4,4,7,8a-tetramethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalene substituted by a (3E)-5-(5-carboxy-2-hydroxyphenyl)-3-methylpent-3-en-1-yl moiety at position 8. It is isolated from the marine sponge Acanthodendrilla and exhibits inhibitory activity against the enzyme mitogen-activated protein kinase-activated protein kinase 2 (EC 2.7.11.1).

   

7-Dehydrofucosterol

(24R)24-Ethylcholesta-5,7,24(28)-trien-3beta-ol

C29H46O (410.3548)


   

Stigmasta-4,6-dien-3-one

14-(5-ethyl-6-methylheptan-2-yl)-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-6,8-dien-5-one

C29H46O (410.3548)


   

Boldenone Cypionate

Boldenone Cypionate

C27H38O3 (410.2821)


   

anhydroelaeodendrol

anhydroelaeodendrol

C29H46O (410.3548)


   

9(11)-dehydroergosterol peroxide

9(11)-dehydroergosterol peroxide

C28H42O2 (410.3185)


   

(22E,20S,24S)-Stigmasta-7,22-dien-3-one

(22E,20S,24S)-Stigmasta-7,22-dien-3-one

C29H46O (410.3548)


   

Nonactic-trihomononactic cyclic lactone

Nonactic-trihomononactic cyclic lactone

C23H38O6 (410.2668)


   

Australifunginol

Australifunginol

C23H38O6 (410.2668)


   

parvifoliol E

parvifoliol E

C28H42O2 (410.3185)


   

26-Nor-14-friedelen-3-one

26-Nor-14-friedelen-3-one

C29H46O (410.3548)


   

Haliclonasterol

Haliclonasterol

C29H46O (410.3548)


   

SCHEMBL6834503

SCHEMBL6834503

C27H38O3 (410.2821)


   

16-hydroxyprotylonolide

16-hydroxyprotylonolide

C23H38O6 (410.2668)


   

(+)-myelochroic acid

(+)-myelochroic acid

C23H38O6 (410.2668)


   

methyl-13S,15-dihydroxy-14R-acetoxy-1(10)-ent-halimen-18-oate

methyl-13S,15-dihydroxy-14R-acetoxy-1(10)-ent-halimen-18-oate

C23H38O6 (410.2668)


   

(22E,24R)-stigmasta-1,4-dien-3-one|24-ethylcholesta-1,4-dien-3-one|stigmast-1,4-dien-3-one

(22E,24R)-stigmasta-1,4-dien-3-one|24-ethylcholesta-1,4-dien-3-one|stigmast-1,4-dien-3-one

C29H46O (410.3548)


   

(2E,6E,10E)-2-(9-hydroxygeranylgeranyl)-6-methyl-1,4-benzoquinone|9-hydroxysargaquinone|Hydroxysargaquinone

(2E,6E,10E)-2-(9-hydroxygeranylgeranyl)-6-methyl-1,4-benzoquinone|9-hydroxysargaquinone|Hydroxysargaquinone

C27H38O3 (410.2821)


   

alpha-Spinasterone

alpha-Spinasterone

C29H46O (410.3548)


   

(24xi)-24-ethylcholesta-5,7,9(11)-trien-3beta-ol

(24xi)-24-ethylcholesta-5,7,9(11)-trien-3beta-ol

C29H46O (410.3548)


   

28-demethyl -EC-amyrone

28-demethyl -EC-amyrone

C29H46O (410.3548)


   
   

24-ethylcholesta-5,7,23Z-trien-3beta-ol

24-ethylcholesta-5,7,23Z-trien-3beta-ol

C29H46O (410.3548)


   

(Z)-p-coumaryl linolenate

(Z)-p-coumaryl linolenate

C27H38O3 (410.2821)


   

viridifloryl-alpha-4-O-acetyl-rhamnopyranoside

viridifloryl-alpha-4-O-acetyl-rhamnopyranoside

C23H38O6 (410.2668)


   

(28R)-calysterol|calysterol

(28R)-calysterol|calysterol

C29H46O (410.3548)


   
   

24-ethylcholesta-4,24(28)-dien-3-one|4,E-24(28)-Stigmastadien-3-on|E-Stigmasta-4,24(28)-dien-3-on

24-ethylcholesta-4,24(28)-dien-3-one|4,E-24(28)-Stigmastadien-3-on|E-Stigmasta-4,24(28)-dien-3-on

C29H46O (410.3548)


   

(2R)-9-oxo-delta-tocotrienol

(2R)-9-oxo-delta-tocotrienol

C27H38O3 (410.2821)


   

3-[5-(2,5,5,8a-tetramethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl)-3-methylpent-2-enyl]-4-hydroxybenzoic acid

3-[5-(2,5,5,8a-tetramethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl)-3-methylpent-2-enyl]-4-hydroxybenzoic acid

C27H38O3 (410.2821)


   

24,24-dimethyl-5alpha-cholest-7-en-22-yn-3beta-ol

24,24-dimethyl-5alpha-cholest-7-en-22-yn-3beta-ol

C29H46O (410.3548)


   

(3beta,5alpha,24Z)-form-Stigmasta-8,14,24(28)-trien-3-ol

(3beta,5alpha,24Z)-form-Stigmasta-8,14,24(28)-trien-3-ol

C29H46O (410.3548)


   

(6aS)-10t-Hydroxy-2.2.6ar.6bt.9.9.12at-heptamethyl-(8acH.12bcH)-Delta4a(14b).14-octadecahydro-picen|28-Nor-olean-12,17-dien-3beta-ol|28-nor-oleana-12,17-dien-3beta-ol|28-Nor-oleanadien-(12.17)-ol-(3beta)|28-Noroleana-12,17-dien-3beta-ol od. Aegiceradienol|aegiceradienol|Aegiceradienol, Genin A

(6aS)-10t-Hydroxy-2.2.6ar.6bt.9.9.12at-heptamethyl-(8acH.12bcH)-Delta4a(14b).14-octadecahydro-picen|28-Nor-olean-12,17-dien-3beta-ol|28-nor-oleana-12,17-dien-3beta-ol|28-Nor-oleanadien-(12.17)-ol-(3beta)|28-Noroleana-12,17-dien-3beta-ol od. Aegiceradienol|aegiceradienol|Aegiceradienol, Genin A

C29H46O (410.3548)


   

(22E,24R)-24,26-dimethylcholesta-5,22,25(27)-trien-3beta-ol

(22E,24R)-24,26-dimethylcholesta-5,22,25(27)-trien-3beta-ol

C29H46O (410.3548)


   

(23S)-23H-isocalysterol

(23S)-23H-isocalysterol

C29H46O (410.3548)


   

26-methylergosta-4,24(28)-dien-3-one, eydosterone

26-methylergosta-4,24(28)-dien-3-one, eydosterone

C29H46O (410.3548)


   
   

(6beta,22E)-6-Hydroxy-4,7,22-ergostatrien-3-one

(6beta,22E)-6-Hydroxy-4,7,22-ergostatrien-3-one

C28H42O2 (410.3185)


   

(24S)-24H-Isocalysterol|24H-Isocalysterol

(24S)-24H-Isocalysterol|24H-Isocalysterol

C29H46O (410.3548)


   

23-hydroxyprotylonolide

23-hydroxyprotylonolide

C23H38O6 (410.2668)


   

24-Ethyl-cholestadien-4,24-on-3|stigmasta-4,24(25)-dien-3-one|Stigmasta-4,24-dien-3-one,

24-Ethyl-cholestadien-4,24-on-3|stigmasta-4,24(25)-dien-3-one|Stigmasta-4,24-dien-3-one,

C29H46O (410.3548)


   
   

12beta-O-Acetyltomeutogenin

12beta-O-Acetyltomeutogenin

C23H38O6 (410.2668)


   

Stigmast-4-en-3-on

Stigmast-4-en-3-on

C29H46O (410.3548)


   

3-oxo-28-norlup-20(29)ene

3-oxo-28-norlup-20(29)ene

C29H46O (410.3548)


   

3-ketotaondiol

3-ketotaondiol

C27H38O3 (410.2821)


   

Lolanoquinon|Solanoquinone

Lolanoquinon|Solanoquinone

C28H42O2 (410.3185)


   

5-Dehydroavenasterol

(1S,2R,5S,11R,14R,15R)-2,15-dimethyl-14-[(2R,5Z)-5-(propan-2-yl)hept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-7,9-dien-5-ol

C29H46O (410.3548)


5-Dehydroavenasterol belongs to the class of organic compounds known as stigmastanes and derivatives. These are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, 5-dehydroavenasterol is considered to be a sterol lipid molecule. 5-Dehydroavenasterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 5-Dehydroavenasterol is an intermediate in the biosynthesis of steroids. It is the third to last step in the synthesis of stigmasterol and is converted from delta 7-avenasterol via the enzyme lathosterol oxidase (EC 1.14.21.6). It is then converted into Isofucosterol via the enzyme 7-dehydrocholesterol reductase (EC 1.3.1.21). 5-Dehydroavenasterol is an intermediate in the biosynthesis of steroids (KEGG ID C15783). It is the third to last step in the synthesis of Stigmasterol and is converted from delta 7-Avenasterol via the enzyme lathosterol oxidase [EC:1.14.21.6]. It is then converted to Isofucosterol via the enzyme 7-dehydrocholesterol reductase [EC:1.3.1.21]. [HMDB]. 5-Dehydroavenasterol is found in many foods, some of which are daikon radish, nance, skunk currant, and jujube.

   

Sargadiol-II

Sargadiol-II

C27H38O3 (410.2821)


   

Elasterol

Elasterol

C29H46O (410.3548)


   

methyl-2alpha-acetoxy-3alpha,9beta-dihydroxy-9-epi-labd-13(E)-en-15-oate

methyl-2alpha-acetoxy-3alpha,9beta-dihydroxy-9-epi-labd-13(E)-en-15-oate

C23H38O6 (410.2668)


   

Glutionon

Glutionon

C29H46O (410.3548)


   

(22E,24Z)-5alpha-stigmasta-7,22,24(24)-trien-3beta-ol|alpha-spinasterol

(22E,24Z)-5alpha-stigmasta-7,22,24(24)-trien-3beta-ol|alpha-spinasterol

C29H46O (410.3548)


   

(24R)-5alpha-stigmast-7-en-22-yn-3beta-ol

(24R)-5alpha-stigmast-7-en-22-yn-3beta-ol

C29H46O (410.3548)


   

Abscisterol C

Abscisterol C

C27H38O3 (410.2821)


   

minabeolide-4

minabeolide-4

C27H38O3 (410.2821)


   

Stigmasta-4,25-dien-3-one

Stigmasta-4,25-dien-3-one

C29H46O (410.3548)


   

22E-5alpha-ergost-7,9(11),22-trien-3alpha-ol

22E-5alpha-ergost-7,9(11),22-trien-3alpha-ol

C29H46O (410.3548)


   

24-exomethylenecalicoferol E|24-exomethylenwcalicoferol E|24-methylenecalicoferol E

24-exomethylenecalicoferol E|24-exomethylenwcalicoferol E|24-methylenecalicoferol E

C28H42O2 (410.3185)


   
   

(22E,24R)-ergosta-5,7,22E-trien-3beta-ol

(22E,24R)-ergosta-5,7,22E-trien-3beta-ol

C29H46O (410.3548)


   

calicoferol D

(22E)-(8S)-3-hydroxy-22-methyl-9,10-seco-1,3,5(10),22-cholestatetraen-9-one

C28H42O2 (410.3185)


   

paraminabic acid A

paraminabic acid A

C27H38O3 (410.2821)


   

4,7,10,13,16,19,22-octacosaheptaenoic acid

4,7,10,13,16,19,22-octacosaheptaenoic acid

C28H42O2 (410.3185)


   

paraminabic acid B

paraminabic acid B

C27H38O3 (410.2821)


   

(rel-3S,5S,8R,9R,10S,13S,15S,16R)-3-acetoxy-9,13; 15,16-diepoxy-15,16-dimethoxylabdane|vitextrifolin A

(rel-3S,5S,8R,9R,10S,13S,15S,16R)-3-acetoxy-9,13; 15,16-diepoxy-15,16-dimethoxylabdane|vitextrifolin A

C23H38O6 (410.2668)


   

(25R)-19-norspirosta-1,3,5(10)-triene-4-methyl-2-ol

(25R)-19-norspirosta-1,3,5(10)-triene-4-methyl-2-ol

C27H38O3 (410.2821)


   

CONICASTERONE

CONICASTERONE

C29H46O (410.3548)


   

19-hydroxyprotylonolide

19-hydroxyprotylonolide

C23H38O6 (410.2668)


   

(24S)-ethylcholesta-7,9(11),22(E)-triene-3beta-ol

(24S)-ethylcholesta-7,9(11),22(E)-triene-3beta-ol

C29H46O (410.3548)


   

(2E,2E)-4-hydroxy-3-(3,7-dimethylocta-2,6-dienyl)-5-(3,7-dimethylocta-2,6-dienyl)benzoic acid|3,5-digeranyl-4-hydroxybenzoic acid|myrsinoic acid E

(2E,2E)-4-hydroxy-3-(3,7-dimethylocta-2,6-dienyl)-5-(3,7-dimethylocta-2,6-dienyl)benzoic acid|3,5-digeranyl-4-hydroxybenzoic acid|myrsinoic acid E

C27H38O3 (410.2821)


   

24??-Ethylcholesta-5,9(11),22-trien-3??-ol

24??-Ethylcholesta-5,9(11),22-trien-3??-ol

C29H46O (410.3548)


   

Taraxerone

Taraxerone

C29H46O (410.3548)


   

Mycaperoxide B

Mycaperoxide B

C24H42O5 (410.3032)


   

3beta-form-Stigmasta-5,24(28),28-trien-3-ol

3beta-form-Stigmasta-5,24(28),28-trien-3-ol

C29H46O (410.3548)


   

Gerronemin D

Gerronemin D

C27H38O3 (410.2821)


   

(24R)-stigmasta-3,5-dien-7-one|3,5-stigmadien-7-one|7-Oxostigmast-3,5-diene|stigmasta-3,5-dien-7-one|Stigmastadien-(3.5)-on-(7)|stigmastadien-(3.5)-one-(7)|tremulone

(24R)-stigmasta-3,5-dien-7-one|3,5-stigmadien-7-one|7-Oxostigmast-3,5-diene|stigmasta-3,5-dien-7-one|Stigmastadien-(3.5)-on-(7)|stigmastadien-(3.5)-one-(7)|tremulone

C29H46O (410.3548)


   

methyl (22E)-3-oxo-24-norcholesta-1,4,22-trien-26-one

methyl (22E)-3-oxo-24-norcholesta-1,4,22-trien-26-one

C27H38O3 (410.2821)


   

4-demethyl-4-dehydrodinosterone

4-demethyl-4-dehydrodinosterone

C29H46O (410.3548)


   

cyathisterol

cyathisterol

C28H42O2 (410.3185)


   

4alpha-methylergosta-6,8(14),22E-trien-3beta-ol

4alpha-methylergosta-6,8(14),22E-trien-3beta-ol

C29H46O (410.3548)


   

(20S)-20-hydroxyergosta-1,4,24(28)-trien-3-one|methyl (20S)-20-hydroxyergosta-1,4,24(28)-trien-3-one

(20S)-20-hydroxyergosta-1,4,24(28)-trien-3-one|methyl (20S)-20-hydroxyergosta-1,4,24(28)-trien-3-one

C28H42O2 (410.3185)


   

(3S,5R,6S,9Z)-Sinensiaxanthin

(3S,5R,6S,9Z)-Sinensiaxanthin

C27H38O3 (410.2821)


   

Agauriasteron

Agauriasteron

C29H46O (410.3548)


   

Incaspitolide A

Incaspitolide A

C23H38O6 (410.2668)


   
   

dehydroconicasterol

dehydroconicasterol

C29H46O (410.3548)


   

DTXSID80840527

DTXSID80840527

C27H38O3 (410.2821)


   

26-nor-25-isopropyl-ergosta-5,7,22E-trien-3beta-ol

26-nor-25-isopropyl-ergosta-5,7,22E-trien-3beta-ol

C29H46O (410.3548)


   

1-(2-furyl)pentacosa-7,9-diyne|2-pentacosa-7,9-diynylfuran

1-(2-furyl)pentacosa-7,9-diyne|2-pentacosa-7,9-diynylfuran

C29H46O (410.3548)


   

(24R)-24-methylcholesta-4,22E-dien-3,6-dione

(24R)-24-methylcholesta-4,22E-dien-3,6-dione

C28H42O2 (410.3185)


   

(24R)-20,28-cyclo-stigmasta-5,9(11)-dien-3alpha-ol|3-epi-lappasterol

(24R)-20,28-cyclo-stigmasta-5,9(11)-dien-3alpha-ol|3-epi-lappasterol

C29H46O (410.3548)


   

14,16-Dioxopentacosanoic acid

14,16-Dioxopentacosanoic acid

C25H46O4 (410.3396)


   

(22E,24R)-ergosta-7,22-dien-3,6-dione|(22E,24R)-ergosta-7,22-diene-3,6-dione|cyathisterone

(22E,24R)-ergosta-7,22-dien-3,6-dione|(22E,24R)-ergosta-7,22-diene-3,6-dione|cyathisterone

C28H42O2 (410.3185)


   

1-(2-furyl)pentacosa-16,18-diyne

1-(2-furyl)pentacosa-16,18-diyne

C29H46O (410.3548)


   

Sargadiol-I

Sargadiol-I

C27H38O3 (410.2821)


   

Putron|Putrone

Putron|Putrone

C29H46O (410.3548)


   

beta-Amyron

beta-Amyron

C29H46O (410.3548)


   

(2E,6E,10E)-4-hydroxy-3-(3,7,11,15-tetramethyl-hexadeca-2,6,10,14-tetraenyl)-benzoic acid|(2E,6E,10E)-4-hydroxy-3-(3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenyl)benzoic acid|3-geranylgeranyl-4-hydroxybenzoic acid|4-Hydroxy-3-(3,7,11,15-tetramethyl-2,6,10,14-hexadecatetraenyl)benzoic acid|4-hydroxy-3-(E,E,E-3,7,11,15-tetramethyl-hexadeca-2,6,10,14-tetraenyl)benzoic acid|4-Hydroxy-3-tetraprenylbenzoesaeure|4-hydroxy-3-tetraprenylbenzoicacid

(2E,6E,10E)-4-hydroxy-3-(3,7,11,15-tetramethyl-hexadeca-2,6,10,14-tetraenyl)-benzoic acid|(2E,6E,10E)-4-hydroxy-3-(3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenyl)benzoic acid|3-geranylgeranyl-4-hydroxybenzoic acid|4-Hydroxy-3-(3,7,11,15-tetramethyl-2,6,10,14-hexadecatetraenyl)benzoic acid|4-hydroxy-3-(E,E,E-3,7,11,15-tetramethyl-hexadeca-2,6,10,14-tetraenyl)benzoic acid|4-Hydroxy-3-tetraprenylbenzoesaeure|4-hydroxy-3-tetraprenylbenzoicacid

C27H38O3 (410.2821)


   

1-(1-methylethyl)-4-methyl-3-cyclohexenyl 3,5-bis(3-methyl-2-butenyl)-4-hydroxybenzoate

1-(1-methylethyl)-4-methyl-3-cyclohexenyl 3,5-bis(3-methyl-2-butenyl)-4-hydroxybenzoate

C27H38O3 (410.2821)


   

mycaperoxide A

mycaperoxide A

C24H42O5 (410.3032)


   
   
   
   
   
   
   

4alpha,14alpha-dimethyl-9beta,19-cyclo-5alpha-cholest-24-en-3-one

4alpha,14alpha-dimethyl-9beta,19-cyclo-5alpha-cholest-24-en-3-one

C29H46O (410.3548)


   

4alpha-methyl ergosta-8,14,25(27)-trienol

4alpha-methyl ergosta-8,14,25(27)-trienol

C29H46O (410.3548)


   

gamma-Tocotrienol

2,7,8-TRIMETHYL-2-[(3E,7E,11E,15E,19E,23E,27E)-4,8,12,16,20,24,28,32-O CTAMETHYL-3,7,11,15,19,23,27,31-TRITRIACONTAOCTAENYL]-6-CHROMANOL

C28H42O2 (410.3185)


gamma-Tocotrienol, also known as 7,8-dimethyltocotrienol, belongs to the class of organic compounds known as tocotrienols. These are vitamin E derivatives containing an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain attached to the C6 atom of a benzopyran ring system. They differ from tocopherols that contain a saturated trimethyltridecyl chain. Thus, gamma-tocotrienol is considered to be a quinone lipid molecule. gamma-Tocotrienol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. gamma-Tocotrienol targets cancer cells by inhibiting Id1, a key cancer-promoting protein. gamma-Tocotrienol was shown to trigger cell apoptosis and well as anti-proliferation of cancer cells. This mechanism was also observed in separate prostate cancer and melanoma cell line studies. Gamma-tocotrienol is a tocotrienol that is chroman-6-ol substituted by methyl groups at positions 2, 7 and 8 and a farnesyl chain at position 2. A vitamin E family member that has potent anti-cancer properties against a wide-range of cancers. It has a role as an antioxidant, an antineoplastic agent, a plant metabolite, a radiation protective agent, an apoptosis inducer and a hepatoprotective agent. It is a tocotrienol and a vitamin E. gamma-Tocotrienol is a natural product found in Amaranthus cruentus, Triadica sebifera, and other organisms with data available. A tocotrienol that is chroman-6-ol substituted by methyl groups at positions 2, 7 and 8 and a farnesyl chain at position 2. A vitamin E family member that has potent anti-cancer properties against a wide-range of cancers. Constituent of palm oil. Nutriceutical with anticancer props. and a positive influence on the blood lipid profile. gamma-Tocotrienol is found in many foods, some of which are rye, corn, rosemary, and common grape. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3]. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3].

   

ST 29:3;O

(3S,5S,9R,10S,13R,14R,17R)-17-[(2R,3E,5R)-5-ethyl-6-methylhepta-3,6-dien-2-yl]-10,13-dimethyl-2,3,4,5,6,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H46O (410.3548)


A 3beta-sterol that is methyl-5alpha-ergosta-8,14,24(28)-trien-3beta-ol carrying an additional 4alpha-methyl substituent. Stigmasta-7,22E,25-trien-3beta-ol is a steroid. It derives from a hydride of a stigmastane.

   

γ-Tocotrienol

gamma-Tocotrienol

C28H42O2 (410.3185)


γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3]. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3].

   

Stigmasta-4,22-dien-3-one

Stigmasta-4,22-dien-3-one

C29H46O (410.3548)


   

4-hydroxy-3-tetratrenylbenzoic acid

4-hydroxy-3-tetratrenylbenzoic acid

C27H38O3 (410.2821)


   

2,2,6,6-Tetra-tert-butyl-4,4-biphenol

3,3,5,5-Tetra-tert-butyl-4,4-dihydroxybiphenyl

C28H42O2 (410.3185)


   

PGF2α-11-acetate methyl ester

methyl 9S,15S-dihydroxy-11R-acetoxy-5Z,13E-prostadienoate

C23H38O6 (410.2668)


   

stigmasta-5,22E,25-trien-3β-ol

stigmasta-5,22E,25-trien-3β-ol

C29H46O (410.3548)


   

stigmasta-7,22E,25-trien-3β-ol

stigmasta-7,22E,25-trien-3β-ol

C29H46O (410.3548)


   

Calysterol

23,28-cyclostigmasta-5,23(24)-dien-3beta-ol

C29H46O (410.3548)


   

(5Z,7E,22E)-(1S,3R)-1,3-dihydroxy-26,27-cyclo-9,10-seco-5,7,10(19),22-cholestatetraen-24-one

(22E)-1α-hydroxy-24-oxo-26,27-cyclo-22,23-didehydrovitamin D3 / (22E)-1α-hydroxy-24-oxo-26,27-cyclo-22,23-didehydrocholecalciferol

C27H38O3 (410.2821)


   

(5Z,7E)-(1S,3R)-24,25-epoxy-9,10-seco-5,7,10(19)-cholestatrien-22-yne-1,3-diol

24,25-epoxy-1α-hydroxy-22,22,23,23-tetradehydrovitamin D3 / 24,25-epoxy-1α-hydroxy-22,22,23,23-tetradehydrocholecalciferol

C27H38O3 (410.2821)


   

(5Z,7E)-(1S,3R)-25,26-epoxy-9,10-seco-5,7,10(19)-cholestatrien-23-yne-1,3-diol

25,26-epoxy-1α-hydroxy-23,23,24,24-tetradehydrovitamin D3 / 25,26-epoxy-1α-hydroxy-23,23,24,24-tetradehydrocholecalciferol

C27H38O3 (410.2821)


   

(5Z,7E)-(1S,3R,20S)-25,26-epoxy-9,10-seco-5,7,10(19)-cholestatrien-23-yne-1,3-diol

25,26-epoxy-1α-hydroxy-23,23,24,24-tetradehydro-20-epivitamin D3 / 25,26-epoxy-1α-hydroxy-23,23,24,24-tetradehydro-20-epicholecalciferol

C27H38O3 (410.2821)


   

(5Z,7E)-(1S,3R)-9,10-seco-5,7,10(19),16-cholestatetraen-23-yne-1,3,25-triol

1α,25-dihydroxy-16,17,23,23,24,24-hexadehydrovitamin D3 / 1α,25-dihydroxy-16,17,23,23,24,24-hexadehydrocholecalciferol

C27H38O3 (410.2821)


   

Vitamin D6

(5Z,7E,22E)-(3S,24R)-24-ethyl-9,10-seco-5,7,10(19),22-cholestatetraen-3-ol

C29H46O (410.3548)


   

Provitamin D6

(22E)-(3S,24R)-24-ethyl-5,7,22-cholestatrien-3-ol

C29H46O (410.3548)


   

MG(22:2)

1-(13Z,16Z-Docosadienoyl)-rac-glycerol

C25H46O4 (410.3396)


   

isopropyl ester

9,11,15S-trihydroxy-15-methyl-prosta-5Z,13E-dien-1-oic acid, isopropyl ester

C24H42O5 (410.3032)


   

N-oleoyl glutamine

N-(9Z-octadecenoyl)-glutamine

C23H42N2O4 (410.3144)


   

3beta-Hydroxy-(22E,24R)-ergosta-5,8,22-trien-7-one

14-[(3E)-5,6-dimethylhept-3-en-2-yl]-5-hydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-1(10),7-dien-9-one

C28H42O2 (410.3185)


   

28-Norcyclomusalenone

15-(5,6-dimethylhept-6-en-2-yl)-12,16-dimethylpentacyclo[9.7.0.0^{1,3}.0^{3,8}.0^{12,16}]octadecan-6-one

C29H46O (410.3548)


   

(4alpha,5alpha)-4,14-Dimethyl-9,19-cyclocholest-20-en-3-one

7,12,16-trimethyl-15-(6-methylhept-1-en-2-yl)pentacyclo[9.7.0.0^{1,3}.0^{3,8}.0^{12,16}]octadecan-6-one

C29H46O (410.3548)


   

ethylbenzylamine

14-[(3E)-5-ethyl-6-methylhepta-3,6-dien-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C29H46O (410.3548)


   

(3beta,5alpha,22E,24S)-Stigmasta-7,22,25-trien-3-ol

14-[(3E)-5-ethyl-6-methylhepta-3,6-dien-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-9-en-5-ol

C29H46O (410.3548)


   

(3beta,22E,24R)-23-Methylergosta-5,7,22-trien-3-ol

2,15-dimethyl-14-[(3E)-4,5,6-trimethylhept-3-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-7,9-dien-5-ol

C29H46O (410.3548)


   

(6alpha,22E)-6-Hydroxy-4,7,22-ergostatrien-3-one

14-[(3E)-5,6-dimethylhept-3-en-2-yl]-8-hydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-6,9-dien-5-one

C28H42O2 (410.3185)


   

5,8-Epoxy-5,8-dihydro-10'-apo-b,y-carotene-3,10'-diol

2-[(2Z,4E,6E,8E,10E,12E)-14-hydroxy-6,11-dimethyltetradeca-2,4,6,8,10,12-hexaen-2-yl]-4,4,7a-trimethyl-2,4,5,6,7,7a-hexahydro-1-benzofuran-6-ol

C27H38O3 (410.2821)


   

5,6-Epoxy-5,6-dihydro-10'-apo-b,y-carotene-3,10'-diol

6-[(1E,3Z,5E,7E,9E,11Z,13Z)-15-hydroxy-3,7,12-trimethylpentadeca-1,3,5,7,9,11,13-heptaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C27H38O3 (410.2821)


   

28:7(n-6)

4Z,7Z,10Z,13Z,16Z,19Z,22Z-octacosaheptaenoic acid

C28H42O2 (410.3185)


   

FA 28:7

4Z,7Z,10Z,13Z,16Z,19Z,22Z-octacosaheptaenoic acid

C28H42O2 (410.3185)


   

FA 23:4;O4

methyl 9S,15S-dihydroxy-11R-acetoxy-5Z,13E-prostadienoate

C23H38O6 (410.2668)


   

mLPA(O-16:0)

1-O-hexadecyl-sn-glycero-3-phosphoric acid methyl ester

C20H43O6P (410.2797)


   

Craterol A

4,24-dimethylene-cholest-5-en-3beta-ol

C29H46O (410.3548)


   

ST 28:4;O2

12alpha-hydroxyergosta-7,22,24(28)-triene-3-one

C28H42O2 (410.3185)


   

Corbisterol

Stigmasta-5,7,22E-trien-3beta-ol

C29H46O (410.3548)


   

ST 27:5;O3

28-nor-3-oxo-witha-1,4-dienolide

C27H38O3 (410.2821)


   

(22E)-1alpha-hydroxy-24-oxo-26,27-cyclo-22,23-didehydrovitamin D3

(5Z,7E,22E)-(1S,3R)-1,3-dihydroxy-26,27-cyclo-9,10-seco-5,7,10(19),22-cholestatetraen-24-one

C27H38O3 (410.2821)


   

24,25-epoxy-1alpha-hydroxy-22,22,23,23-tetradehydrovitamin D3

(5Z,7E)-(1S,3R)-24,25-epoxy-9,10-seco-5,7,10(19)-cholestatrien-22-yne-1,3-diol

C27H38O3 (410.2821)


   

25,26-epoxy-1alpha-hydroxy-23,23,24,24-tetradehydrovitamin D3

(5Z,7E)-(1S,3R)-25,26-epoxy-9,10-seco-5,7,10(19)-cholestatrien-23-yne-1,3-diol

C27H38O3 (410.2821)


   

25,26-epoxy-1alpha-hydroxy-23,23,24,24-tetradehydro-20-epivitamin D3

(5Z,7E)-(1S,3R,20S)-25,26-epoxy-9,10-seco-5,7,10(19)-cholestatrien-23-yne-1,3-diol

C27H38O3 (410.2821)


   

Chinensen B

2,5-dihydroxy-3-geranylgeranyl benzaldehyde

C27H38O3 (410.2821)


   

boc-d-cyclopropylalanine-dcha

boc-d-cyclopropylalanine-dcha

C23H42N2O4 (410.3144)


   

(5α,22E)-Stigmasta-7,22-dien-3-one

(5α,22E)-Stigmasta-7,22-dien-3-one

C29H46O (410.3548)


   

3,3,5,5-Tetra-tert-butyl-2,2-biphenyldiol

3,3,5,5-Tetra-tert-butyl-2,2-biphenyldiol

C28H42O2 (410.3185)


   

Pyridinium,1-[[(1-oxooctadecyl)amino]methyl]-, chloride (1:1)

Pyridinium,1-[[(1-oxooctadecyl)amino]methyl]-, chloride (1:1)

C24H43ClN2O (410.3064)


   

boc-4,5-dehydro-leu-oh dcha

boc-4,5-dehydro-leu-oh dcha

C23H42N2O4 (410.3144)


   

phenyl acetaldehyde digeranyl acetal

phenyl acetaldehyde digeranyl acetal

C28H42O2 (410.3185)


   

ornoprostil

ornoprostil

C23H38O6 (410.2668)


C78568 - Prostaglandin Analogue

   

methyl trimethyl-3-[(1-oxododecyl)amino]propylammonium sulphate

methyl trimethyl-3-[(1-oxododecyl)amino]propylammonium sulphate

C19H42N2O5S (410.2814)


   

1-Naphthyl stearate

1-Naphthyl stearate

C28H42O2 (410.3185)


   

1-(2-ethoxyethyl)-2-[[4-(4-pyrazol-1-ylbutyl)piperazin-1-yl]methyl]benzimidazole

1-(2-ethoxyethyl)-2-[[4-(4-pyrazol-1-ylbutyl)piperazin-1-yl]methyl]benzimidazole

C23H34N6O (410.2794)


   

Octadecanoic acid,2-naphthalenyl ester

Octadecanoic acid,2-naphthalenyl ester

C28H42O2 (410.3185)


   

1,1-Biphenyl, 4-[(trans,trans)-4-butyl[1,1-bicyclohexyl]-4-yl]-3,4-difluoro-

1,1-Biphenyl, 4-[(trans,trans)-4-butyl[1,1-bicyclohexyl]-4-yl]-3,4-difluoro-

C28H36F2 (410.2785)


   

Boc-L-Cyclopropylalanine-DCHA

Boc-L-Cyclopropylalanine-DCHA

C23H42N2O4 (410.3144)


   

(Z)-4-[3-(2-CHLORO-9H-THIOXANTHEN-9-YLIDENE)PROPYL]PIPERAZINE-1-ETHANOLDIHYDROCHLORIDE

(Z)-4-[3-(2-CHLORO-9H-THIOXANTHEN-9-YLIDENE)PROPYL]PIPERAZINE-1-ETHANOLDIHYDROCHLORIDE

C23H38O6 (410.2668)


   

Norethisterone enanthate

Norethisterone enanthate

C27H38O3 (410.2821)


D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents

   

CHEBI:33277

2H-1-Benzopyran-6-ol, 3,4-dihydro-2,7,8-trimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrienyl]-, (2R)- (9CI)

C28H42O2 (410.3185)


γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3]. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3].

   

4alpha-methyl-5alpha-ergosta-8,14,24(28)-trien-3beta-ol

2,6,15-trimethyl-14-(6-methyl-5-methylideneheptan-2-yl)tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-1(10),11-dien-5-ol

C29H46O (410.3548)


4alpha-methyl-5alpha-ergosta-8,14,24(28)-trien-3beta-ol belongs to ergosterols and derivatives class of compounds. Those are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. 4alpha-methyl-5alpha-ergosta-8,14,24(28)-trien-3beta-ol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 4alpha-methyl-5alpha-ergosta-8,14,24(28)-trien-3beta-ol can be found in a number of food items such as loganberry, cardamom, pineapple, and sweet cherry, which makes 4alpha-methyl-5alpha-ergosta-8,14,24(28)-trien-3beta-ol a potential biomarker for the consumption of these food products. 4α-methyl-5α-ergosta-8,14,24(28)-trien-3β-ol belongs to ergosterols and derivatives class of compounds. Those are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. 4α-methyl-5α-ergosta-8,14,24(28)-trien-3β-ol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 4α-methyl-5α-ergosta-8,14,24(28)-trien-3β-ol can be found in a number of food items such as loganberry, cardamom, pineapple, and sweet cherry, which makes 4α-methyl-5α-ergosta-8,14,24(28)-trien-3β-ol a potential biomarker for the consumption of these food products.

   

(2R)-2,7,8-Trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trienyl)-3,4-dihydrochromen-6-ol

2,7,8-trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-3,4-dihydro-2H-1-benzopyran-6-ol

C28H42O2 (410.3185)


   

4,22-Stigmastadiene-3-one

17-(5-Ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-one

C29H46O (410.3548)


   

Norethisterone enanthate

14-ethynyl-15-methyl-5-oxotetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-14-yl heptanoate

C27H38O3 (410.2821)


   

stigmasterone

stigmasterone

C29H46O (410.3548)


   

4beta,14alpha-Dimethyl-9beta,19-cyclo-5alpha-cholest-24-en-3-one

4beta,14alpha-Dimethyl-9beta,19-cyclo-5alpha-cholest-24-en-3-one

C29H46O (410.3548)


   

3,4-Dihydro-2,7,8-trimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrienyl]-2H-1-benzopyran-6-ol

3,4-Dihydro-2,7,8-trimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrienyl]-2H-1-benzopyran-6-ol

C28H42O2 (410.3185)


   

dianhydro-D-mannitol monooleate

dianhydro-D-mannitol monooleate

C24H42O5 (410.3032)


   

5-amino-2-[[(E)-octadec-9-enoyl]amino]-5-oxopentanoic acid

5-amino-2-[[(E)-octadec-9-enoyl]amino]-5-oxopentanoic acid

C23H42N2O4 (410.3144)


   

MG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/0:0)

MG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/0:0)

C23H38O6 (410.2668)


   

MG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/0:0)

MG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/0:0)

C23H38O6 (410.2668)


   

MG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/0:0)

MG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/0:0)

C23H38O6 (410.2668)


   

MG(0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0)

MG(0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0)

C23H38O6 (410.2668)


   

MG(0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0)

MG(0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0)

C23H38O6 (410.2668)


   

MG(0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0)

MG(0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0)

C23H38O6 (410.2668)


   

DG(2:0/18:2(10E,12Z)+=O(9)/0:0)

DG(2:0/18:2(10E,12Z)+=O(9)/0:0)

C23H38O6 (410.2668)


   

DG(18:2(10E,12Z)+=O(9)/2:0/0:0)

DG(18:2(10E,12Z)+=O(9)/2:0/0:0)

C23H38O6 (410.2668)


   

DG(2:0/0:0/18:2(10E,12Z)+=O(9))

DG(2:0/0:0/18:2(10E,12Z)+=O(9))

C23H38O6 (410.2668)


   

DG(18:2(10E,12Z)+=O(9)/0:0/2:0)

DG(18:2(10E,12Z)+=O(9)/0:0/2:0)

C23H38O6 (410.2668)


   

DG(2:0/18:2(9Z,11E)+=O(13)/0:0)

DG(2:0/18:2(9Z,11E)+=O(13)/0:0)

C23H38O6 (410.2668)


   

DG(18:2(9Z,11E)+=O(13)/2:0/0:0)

DG(18:2(9Z,11E)+=O(13)/2:0/0:0)

C23H38O6 (410.2668)


   

DG(2:0/0:0/18:2(9Z,11E)+=O(13))

DG(2:0/0:0/18:2(9Z,11E)+=O(13))

C23H38O6 (410.2668)


   

DG(18:2(9Z,11E)+=O(13)/0:0/2:0)

DG(18:2(9Z,11E)+=O(13)/0:0/2:0)

C23H38O6 (410.2668)


   

[(2S)-1-acetyloxy-3-hydroxypropan-2-yl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

[(2S)-1-acetyloxy-3-hydroxypropan-2-yl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

C23H38O6 (410.2668)


   

[(2S)-2-acetyloxy-3-hydroxypropyl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

[(2S)-2-acetyloxy-3-hydroxypropyl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

C23H38O6 (410.2668)


   

[(2R)-3-acetyloxy-2-hydroxypropyl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

[(2R)-3-acetyloxy-2-hydroxypropyl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

C23H38O6 (410.2668)


   

[(2S)-3-acetyloxy-2-hydroxypropyl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

[(2S)-3-acetyloxy-2-hydroxypropyl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

C23H38O6 (410.2668)


   

[(2S)-1-acetyloxy-3-hydroxypropan-2-yl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

[(2S)-1-acetyloxy-3-hydroxypropan-2-yl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

C23H38O6 (410.2668)


   

[(2S)-2-acetyloxy-3-hydroxypropyl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

[(2S)-2-acetyloxy-3-hydroxypropyl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

C23H38O6 (410.2668)


   

[(2R)-3-acetyloxy-2-hydroxypropyl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

[(2R)-3-acetyloxy-2-hydroxypropyl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

C23H38O6 (410.2668)


   

[(2S)-3-acetyloxy-2-hydroxypropyl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

[(2S)-3-acetyloxy-2-hydroxypropyl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

C23H38O6 (410.2668)


   

[3-Carboxy-2-[5-(3,4-dimethyl-5-pentylfuran-2-yl)pentanoyloxy]propyl]-trimethylazanium

[3-Carboxy-2-[5-(3,4-dimethyl-5-pentylfuran-2-yl)pentanoyloxy]propyl]-trimethylazanium

C23H40NO5+ (410.2906)


   

[3-Carboxy-2-[6-(5-hexylfuran-2-yl)hexanoyloxy]propyl]-trimethylazanium

[3-Carboxy-2-[6-(5-hexylfuran-2-yl)hexanoyloxy]propyl]-trimethylazanium

C23H40NO5+ (410.2906)


   

[3-Carboxy-2-[7-(3,4-dimethyl-5-propylfuran-2-yl)heptanoyloxy]propyl]-trimethylazanium

[3-Carboxy-2-[7-(3,4-dimethyl-5-propylfuran-2-yl)heptanoyloxy]propyl]-trimethylazanium

C23H40NO5+ (410.2906)


   

[3-Carboxy-2-[7-(5-pentylfuran-2-yl)heptanoyloxy]propyl]-trimethylazanium

[3-Carboxy-2-[7-(5-pentylfuran-2-yl)heptanoyloxy]propyl]-trimethylazanium

C23H40NO5+ (410.2906)


   

[2-[8-(5-Butylfuran-2-yl)octanoyloxy]-3-carboxypropyl]-trimethylazanium

[2-[8-(5-Butylfuran-2-yl)octanoyloxy]-3-carboxypropyl]-trimethylazanium

C23H40NO5+ (410.2906)


   

(5Z)-5-[(2E)-2-[1-(6-hydroxy-6-methylhept-4-yn-2-yl)-7a-methyl-3a,5,6,7-tetrahydro-3H-inden-4-ylidene]ethylidene]-4-methylidenecyclohexane-1,3-diol

(5Z)-5-[(2E)-2-[1-(6-hydroxy-6-methylhept-4-yn-2-yl)-7a-methyl-3a,5,6,7-tetrahydro-3H-inden-4-ylidene]ethylidene]-4-methylidenecyclohexane-1,3-diol

C27H38O3 (410.2821)


   

Minabeolide 4

Minabeolide 4

C27H38O3 (410.2821)


A withanolide that is (22R,25S)-22,26-epoxycholesta-1,4-dien-26-one substituted by an oxo group at position 3. Isolated from Paraminabea acronocephala,it exhibits anti-inflammatory activity.

   

(22E,24R)-ergosta-7,22-diene-3,6-dione

(22E,24R)-ergosta-7,22-diene-3,6-dione

C28H42O2 (410.3185)


A 3-oxo Delta(7)-steroid that is (22E)-ergosta-7,22-diene substituted by oxo groups at positions 3 and 6. It has been isolated from Penicillium commune.

   

1,2-Cyclohexanedicarboxylic acid, nonyl 4-octyl ester

1,2-Cyclohexanedicarboxylic acid, nonyl 4-octyl ester

C25H46O4 (410.3396)


   

N-oleoyl-L-lysine zwitterion

N-oleoyl-L-lysine zwitterion

C24H46N2O3 (410.3508)


   

12-HPETE 2-glyceryl ester

12-HPETE 2-glyceryl ester

C23H38O6 (410.2668)


   

1,3-dihydroxypropan-2-yl (5Z,8Z,11Z,13E,15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate

1,3-dihydroxypropan-2-yl (5Z,8Z,11Z,13E,15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate

C23H38O6 (410.2668)


   

[3-carboxy-2-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropyl]-trimethylazanium

[3-carboxy-2-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropyl]-trimethylazanium

C24H44NO4+ (410.327)


   

(2S)-6-amino-2-[[(Z)-octadec-9-enoyl]amino]hexanoic acid

(2S)-6-amino-2-[[(Z)-octadec-9-enoyl]amino]hexanoic acid

C24H46N2O3 (410.3508)


   

3-[[(3R,5R,7S,8E,10E,12E)-3-amino-5-hydroxy-7-methoxyoctadeca-8,10,12-trienoyl]amino]propanoic acid

3-[[(3R,5R,7S,8E,10E,12E)-3-amino-5-hydroxy-7-methoxyoctadeca-8,10,12-trienoyl]amino]propanoic acid

C22H38N2O5 (410.2781)


   

3-(3,7,11,15-Tetramethyl-2,6,10,14-hexadecatetrenyl)-4-hydroxybenzoic acid

3-(3,7,11,15-Tetramethyl-2,6,10,14-hexadecatetrenyl)-4-hydroxybenzoic acid

C27H38O3 (410.2821)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-hydroxypropan-2-yl] hexanoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-hydroxypropan-2-yl] hexanoate

C25H46O4 (410.3396)


   

[1-hydroxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] acetate

[1-hydroxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] acetate

C25H46O4 (410.3396)


   

[1-hydroxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] butanoate

[1-hydroxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] butanoate

C25H46O4 (410.3396)


   

[1-hydroxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] propanoate

[1-hydroxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] propanoate

C25H46O4 (410.3396)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoxy]-3-hydroxypropan-2-yl] pentanoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoxy]-3-hydroxypropan-2-yl] pentanoate

C25H46O4 (410.3396)


   

2,3-dihydroxypropyl (13Z,16Z)-docosa-13,16-dienoate

2,3-dihydroxypropyl (13Z,16Z)-docosa-13,16-dienoate

C25H46O4 (410.3396)


   

Fahfa 9:0/16:1

Fahfa 9:0/16:1

C25H46O4 (410.3396)


   

Fahfa 20:1/5:0

Fahfa 20:1/5:0

C25H46O4 (410.3396)


   

Fahfa 22:1/3:0

Fahfa 22:1/3:0

C25H46O4 (410.3396)


   

Fahfa 19:1/6:0

Fahfa 19:1/6:0

C25H46O4 (410.3396)


   

Fahfa 5:0/20:1

Fahfa 5:0/20:1

C25H46O4 (410.3396)


   

Fahfa 17:1/8:0

Fahfa 17:1/8:0

C25H46O4 (410.3396)


   

Fahfa 7:0/18:1

Fahfa 7:0/18:1

C25H46O4 (410.3396)


   

Fahfa 4:0/21:1

Fahfa 4:0/21:1

C25H46O4 (410.3396)


   

Fahfa 6:0/19:1

Fahfa 6:0/19:1

C25H46O4 (410.3396)


   

Fahfa 16:1/9:0

Fahfa 16:1/9:0

C25H46O4 (410.3396)


   

Fahfa 8:0/17:1

Fahfa 8:0/17:1

C25H46O4 (410.3396)


   

Fahfa 18:1/7:0

Fahfa 18:1/7:0

C25H46O4 (410.3396)


   

Fahfa 3:0/22:1

Fahfa 3:0/22:1

C25H46O4 (410.3396)


   

Fahfa 21:1/4:0

Fahfa 21:1/4:0

C25H46O4 (410.3396)


   

Fahfa 14:1/11:0

Fahfa 14:1/11:0

C25H46O4 (410.3396)


   

Fahfa 13:1/12:0

Fahfa 13:1/12:0

C25H46O4 (410.3396)


   

Fahfa 15:1/10:0

Fahfa 15:1/10:0

C25H46O4 (410.3396)


   

Fahfa 11:0/14:1

Fahfa 11:0/14:1

C25H46O4 (410.3396)


   

Fahfa 10:0/15:1

Fahfa 10:0/15:1

C25H46O4 (410.3396)


   

Fahfa 12:0/13:1

Fahfa 12:0/13:1

C25H46O4 (410.3396)


   

(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoic acid

(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoic acid

C28H42O2 (410.3185)


   

1,2-Dihexyl-1,2-dimethyl 1,2-diphenyldisilane

1,2-Dihexyl-1,2-dimethyl 1,2-diphenyldisilane

C26H42Si2 (410.2825)


   

(1-hydroxy-3-propanoyloxypropan-2-yl) (9Z,12Z)-octadeca-9,12-dienoate

(1-hydroxy-3-propanoyloxypropan-2-yl) (9Z,12Z)-octadeca-9,12-dienoate

C24H42O5 (410.3032)


   

(1-butanoyloxy-3-hydroxypropan-2-yl) (9Z,12Z)-heptadeca-9,12-dienoate

(1-butanoyloxy-3-hydroxypropan-2-yl) (9Z,12Z)-heptadeca-9,12-dienoate

C24H42O5 (410.3032)


   

(1-acetyloxy-3-hydroxypropan-2-yl) (9Z,12Z)-nonadeca-9,12-dienoate

(1-acetyloxy-3-hydroxypropan-2-yl) (9Z,12Z)-nonadeca-9,12-dienoate

C24H42O5 (410.3032)


   

(1-hydroxy-3-pentanoyloxypropan-2-yl) (9Z,12Z)-hexadeca-9,12-dienoate

(1-hydroxy-3-pentanoyloxypropan-2-yl) (9Z,12Z)-hexadeca-9,12-dienoate

C24H42O5 (410.3032)


   

[(2S)-2,3-dihydroxypropyl] (13E,16E)-docosa-13,16-dienoate

[(2S)-2,3-dihydroxypropyl] (13E,16E)-docosa-13,16-dienoate

C25H46O4 (410.3396)


   

e-Tokoferol

(2R)-3,4-dihydro-2,5,8-trimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrienyl]-2H-1-benzopyran-6-ol

C28H42O2 (410.3185)


A tocotrienol that is chroman-6-ol substituted by methyl groups at positions 2, 5 and 8 and a farnesyl chain at position 2. It has been isolated from various cultivars of wheat.

   

2-docosadienoyl-glycerol

2-docosadienoyl-glycerol

C25H46O4 (410.3396)


   

1-Docosadienoyl-glycerol

1-Docosadienoyl-glycerol

C25H46O4 (410.3396)


   

(3beta,22E,24R)-3-Hydroxyergosta-5,8,22-trien-7-one

(3beta,22E,24R)-3-Hydroxyergosta-5,8,22-trien-7-one

C28H42O2 (410.3185)


   

5,8-Epoxy-5,8-dihydro-10-apo-b,y-carotene-3,10-diol

5,8-Epoxy-5,8-dihydro-10-apo-b,y-carotene-3,10-diol

C27H38O3 (410.2821)


   

5,6-Epoxy-5,6-dihydro-10-apo-b,y-carotene-3,10-diol

5,6-Epoxy-5,6-dihydro-10-apo-b,y-carotene-3,10-diol

C27H38O3 (410.2821)


   

Gama-Tocotrienol

Gama-Tocotrienol

C28H42O2 (410.3185)


   

PGF2alpha-11-acetate methyl ester

PGF2alpha-11-acetate methyl ester

C23H38O6 (410.2668)


   

4Z,7Z,10Z,13Z,16Z,19Z,22Z-octacosaheptaenoic acid

4Z,7Z,10Z,13Z,16Z,19Z,22Z-octacosaheptaenoic acid

C28H42O2 (410.3185)


   

TG(20:2)

TG(4:0_6:0_10:2)

C23H38O6 (410.2668)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

DG(21:2)

DG(11:0_10:2)

C24H42O5 (410.3032)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

DG(22:2)

DG(16:2(1)_6:0)

C25H46O4 (410.3396)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

Octacosaheptaenoic acid

Octacosaheptaenoic acid

C28H42O2 (410.3185)


   

NA-Arg 17:1(9Z)

NA-Arg 17:1(9Z)

C22H42N4O3 (410.3257)


   

NA-Asn 19:1(9Z)

NA-Asn 19:1(9Z)

C23H42N2O4 (410.3144)


   

NA-Gln 18:1(9Z)

NA-Gln 18:1(9Z)

C23H42N2O4 (410.3144)


   

NA-Lys 18:1(9Z)

NA-Lys 18:1(9Z)

C24H46N2O3 (410.3508)


   

NA-Orn 19:1(9Z)

NA-Orn 19:1(9Z)

C24H46N2O3 (410.3508)


   

NA-Tryptamine 17:1(9Z)

NA-Tryptamine 17:1(9Z)

C27H42N2O (410.3297)


   

FAHFA 10:0/O-15:1

FAHFA 10:0/O-15:1

C25H46O4 (410.3396)


   

FAHFA 10:1/O-15:0

FAHFA 10:1/O-15:0

C25H46O4 (410.3396)


   

FAHFA 11:0/O-14:1

FAHFA 11:0/O-14:1

C25H46O4 (410.3396)


   

FAHFA 11:1(10E)/2O-14:0

FAHFA 11:1(10E)/2O-14:0

C25H46O4 (410.3396)


   

FAHFA 11:1/O-14:0

FAHFA 11:1/O-14:0

C25H46O4 (410.3396)


   

FAHFA 12:0/O-13:1

FAHFA 12:0/O-13:1

C25H46O4 (410.3396)


   

FAHFA 12:1(5Z)/3O-13:0

FAHFA 12:1(5Z)/3O-13:0

C25H46O4 (410.3396)


   

FAHFA 12:1/O-13:0

FAHFA 12:1/O-13:0

C25H46O4 (410.3396)


   

FAHFA 13:0/O-12:1

FAHFA 13:0/O-12:1

C25H46O4 (410.3396)


   

FAHFA 13:1(12E)/3O-12:0

FAHFA 13:1(12E)/3O-12:0

C25H46O4 (410.3396)


   

FAHFA 13:1/O-12:0

FAHFA 13:1/O-12:0

C25H46O4 (410.3396)


   

FAHFA 14:0/O-11:1

FAHFA 14:0/O-11:1

C25H46O4 (410.3396)


   

FAHFA 14:1(9Z)/3O-11:0

FAHFA 14:1(9Z)/3O-11:0

C25H46O4 (410.3396)


   

FAHFA 14:1/O-11:0

FAHFA 14:1/O-11:0

C25H46O4 (410.3396)


   

FAHFA 15:0/O-10:1

FAHFA 15:0/O-10:1

C25H46O4 (410.3396)


   

FAHFA 15:1(9Z)/3O-10:0

FAHFA 15:1(9Z)/3O-10:0

C25H46O4 (410.3396)


   

FAHFA 15:1/O-10:0

FAHFA 15:1/O-10:0

C25H46O4 (410.3396)


   

FAHFA 16:0/O-9:1

FAHFA 16:0/O-9:1

C25H46O4 (410.3396)


   

FAHFA 16:1(9Z)/3O-9:0

FAHFA 16:1(9Z)/3O-9:0

C25H46O4 (410.3396)


   

FAHFA 16:1/O-9:0

FAHFA 16:1/O-9:0

C25H46O4 (410.3396)


   

FAHFA 17:0/O-8:1

FAHFA 17:0/O-8:1

C25H46O4 (410.3396)


   

FAHFA 17:1(9Z)/3O-8:0

FAHFA 17:1(9Z)/3O-8:0

C25H46O4 (410.3396)


   

FAHFA 17:1/O-8:0

FAHFA 17:1/O-8:0

C25H46O4 (410.3396)


   

FAHFA 19:1(10Z)/3O-6:0

FAHFA 19:1(10Z)/3O-6:0

C25H46O4 (410.3396)


   

FAHFA 25:1;O

FAHFA 25:1;O

C25H46O4 (410.3396)


   

FAHFA 8:0/O-17:1

FAHFA 8:0/O-17:1

C25H46O4 (410.3396)


   

FAHFA 8:1/O-17:0

FAHFA 8:1/O-17:0

C25H46O4 (410.3396)


   

FAHFA 9:0/O-16:1

FAHFA 9:0/O-16:1

C25H46O4 (410.3396)


   

FAHFA 9:1/O-16:0

FAHFA 9:1/O-16:0

C25H46O4 (410.3396)


   
   
   
   

3-[(2,4b,8,8,10a-pentamethyl-4,4a,5,6,7,8a,9,10-octahydro-1h-phenanthren-1-yl)methyl]-4-hydroxybenzoic acid

3-[(2,4b,8,8,10a-pentamethyl-4,4a,5,6,7,8a,9,10-octahydro-1h-phenanthren-1-yl)methyl]-4-hydroxybenzoic acid

C27H38O3 (410.2821)


   

10-hydroxy-1,1,4a,6a,8,12b-hexamethyl-3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthen-2-one

10-hydroxy-1,1,4a,6a,8,12b-hexamethyl-3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthen-2-one

C27H38O3 (410.2821)


   

(1s,3as,3bs,9ar,9bs,11as)-1-[(2s)-2-hydroxy-6-methyl-5-methylideneheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

(1s,3as,3bs,9ar,9bs,11as)-1-[(2s)-2-hydroxy-6-methyl-5-methylideneheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C28H42O2 (410.3185)


   

2-(6-hydroxy-4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-2,8-dimethylchromen-6-ol

2-(6-hydroxy-4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-2,8-dimethylchromen-6-ol

C27H38O3 (410.2821)


   

(2s)-6-methoxy-2,8-dimethyl-2-[(3e,7e)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-1-benzopyran

(2s)-6-methoxy-2,8-dimethyl-2-[(3e,7e)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-1-benzopyran

C28H42O2 (410.3185)


   

2-[(2e,6e,9r,10e)-9-hydroxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]-6-methylcyclohexa-2,5-diene-1,4-dione

2-[(2e,6e,9r,10e)-9-hydroxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]-6-methylcyclohexa-2,5-diene-1,4-dione

C27H38O3 (410.2821)


   

1-(2,5-dihydroxy-3-methylphenyl)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-5-one

1-(2,5-dihydroxy-3-methylphenyl)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-5-one

C27H38O3 (410.2821)


   

(2s,4as,4bs,6as,11as,11bs,13ar)-2-hydroxy-1,1,4a,6a,9,11b-hexamethyl-2h,3h,4h,4bh,5h,6h,11h,11ah,12h,13h,13ah-indeno[2,1-a]phenanthrene-7,10-dione

(2s,4as,4bs,6as,11as,11bs,13ar)-2-hydroxy-1,1,4a,6a,9,11b-hexamethyl-2h,3h,4h,4bh,5h,6h,11h,11ah,12h,13h,13ah-indeno[2,1-a]phenanthrene-7,10-dione

C27H38O3 (410.2821)


   

(1r,7s,9as,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-4-one

(1r,7s,9as,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-4-one

C28H42O2 (410.3185)


   

(1r,3ar,3br,9ar,9br,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-3b-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

(1r,3ar,3br,9ar,9br,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-3b-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C28H42O2 (410.3185)


   

(2s,3r,4s,5r,6r)-2-{[(1ar,4r,4as,7r,7as,7bs)-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulen-4-yl]oxy}-4,5-dihydroxy-6-methyloxan-3-yl acetate

(2s,3r,4s,5r,6r)-2-{[(1ar,4r,4as,7r,7as,7bs)-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulen-4-yl]oxy}-4,5-dihydroxy-6-methyloxan-3-yl acetate

C23H38O6 (410.2668)


   

3-[5-(2,5,5,8a-tetramethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl)-3-methylpent-2-en-1-yl]-4-hydroxybenzoic acid

3-[5-(2,5,5,8a-tetramethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl)-3-methylpent-2-en-1-yl]-4-hydroxybenzoic acid

C27H38O3 (410.2821)


   

(2s,3r,4s,5r,6r)-2-({2-[(2r,4as)-4a,8-dimethyl-2,3,4,5,6,7-hexahydro-1h-naphthalen-2-yl]propan-2-yl}oxy)-4,5-dihydroxy-6-methyloxan-3-yl acetate

(2s,3r,4s,5r,6r)-2-({2-[(2r,4as)-4a,8-dimethyl-2,3,4,5,6,7-hexahydro-1h-naphthalen-2-yl]propan-2-yl}oxy)-4,5-dihydroxy-6-methyloxan-3-yl acetate

C23H38O6 (410.2668)


   

methyl 5-[7-(acetyloxy)-1,6-dihydroxy-2,5,5,8a-tetramethyl-hexahydro-2h-naphthalen-1-yl]-3-methylpent-2-enoate

methyl 5-[7-(acetyloxy)-1,6-dihydroxy-2,5,5,8a-tetramethyl-hexahydro-2h-naphthalen-1-yl]-3-methylpent-2-enoate

C23H38O6 (410.2668)


   

13-(6-hydroxy-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl)-2,6,10-trimethyltrideca-2,6,10-trien-5-one

13-(6-hydroxy-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl)-2,6,10-trimethyltrideca-2,6,10-trien-5-one

C27H38O3 (410.2821)


   

6β-hydroxyergosta-4,7,22-trien-3-one

NA

C28H42O2 (410.3185)


{"Ingredient_id": "HBIN012274","Ingredient_name": "6\u03b2-hydroxyergosta-4,7,22-trien-3-one","Alias": "NA","Ingredient_formula": "C28H42O2","Ingredient_Smile": "NA","Ingredient_weight": "410.63","OB_score": "25.38516555","CAS_id": "68378-35-8","SymMap_id": "SMIT12077","TCMID_id": "NA","TCMSP_id": "MOL011142","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

2-[(2e,6e,10z)-12-hydroxy-3,7-dimethyl-11-(4-methylpent-3-en-1-yl)dodeca-2,6,10-trien-1-yl]-5-methylcyclohexa-2,5-diene-1,4-dione

2-[(2e,6e,10z)-12-hydroxy-3,7-dimethyl-11-(4-methylpent-3-en-1-yl)dodeca-2,6,10-trien-1-yl]-5-methylcyclohexa-2,5-diene-1,4-dione

C27H38O3 (410.2821)


   

(9ar,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,5ah,6h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,7-dione

(9ar,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,5ah,6h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,7-dione

C28H42O2 (410.3185)


   

(3r,6s,9r,12s)-3,6,9-triisopropyl-12-(2-methylpropyl)-1,4,7,10-tetraazacyclododeca-1,4,7,10-tetraene-2,5,8,11-tetrol

(3r,6s,9r,12s)-3,6,9-triisopropyl-12-(2-methylpropyl)-1,4,7,10-tetraazacyclododeca-1,4,7,10-tetraene-2,5,8,11-tetrol

C21H38N4O4 (410.2893)


   

(1r,3ar,7s,9as,11ar)-1-[(2r,3e,5s)-5,6-dimethylhept-3-en-2-yl]-7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-4-one

(1r,3ar,7s,9as,11ar)-1-[(2r,3e,5s)-5,6-dimethylhept-3-en-2-yl]-7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-4-one

C28H42O2 (410.3185)


   

4-hydroxy-3-(3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl)benzoic acid

4-hydroxy-3-(3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl)benzoic acid

C27H38O3 (410.2821)


   

(1r,2r,4r,12r,13r,16z)-13-hydroxy-11,22-diazapentacyclo[11.11.2.1²,²².0²,¹².0⁴,¹¹]heptacosa-5,16,25-triene-25-carbaldehyde

(1r,2r,4r,12r,13r,16z)-13-hydroxy-11,22-diazapentacyclo[11.11.2.1²,²².0²,¹².0⁴,¹¹]heptacosa-5,16,25-triene-25-carbaldehyde

C26H38N2O2 (410.2933)


   

(2e,7e)-10-[(2r)-6-hydroxy-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl]-3,7-dimethyl-2-(2-methylprop-1-en-1-yl)deca-2,7-dienal

(2e,7e)-10-[(2r)-6-hydroxy-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl]-3,7-dimethyl-2-(2-methylprop-1-en-1-yl)deca-2,7-dienal

C27H38O3 (410.2821)


   

1-(2-hydroxy-6-methyl-5-methylideneheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

1-(2-hydroxy-6-methyl-5-methylideneheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C28H42O2 (410.3185)


   

2-[12-hydroxy-3,7-dimethyl-11-(4-methylpent-3-en-1-yl)dodeca-2,6,10-trien-1-yl]-5-methylcyclohexa-2,5-diene-1,4-dione

2-[12-hydroxy-3,7-dimethyl-11-(4-methylpent-3-en-1-yl)dodeca-2,6,10-trien-1-yl]-5-methylcyclohexa-2,5-diene-1,4-dione

C27H38O3 (410.2821)


   

(4s,4ar,5s,7r,8r,8as)-2,5,8-trihydroxy-4-(3-hydroxypropanoyl)-4,7-dimethyl-3-[(2r)-octan-2-yl]-4a,5,6,7,8,8a-hexahydronaphthalen-1-one

(4s,4ar,5s,7r,8r,8as)-2,5,8-trihydroxy-4-(3-hydroxypropanoyl)-4,7-dimethyl-3-[(2r)-octan-2-yl]-4a,5,6,7,8,8a-hexahydronaphthalen-1-one

C23H38O6 (410.2668)


   

2-(8-hydroxy-4,8,12-trimethyltrideca-3,6,11-trien-1-yl)-2,8-dimethylchromen-6-ol

2-(8-hydroxy-4,8,12-trimethyltrideca-3,6,11-trien-1-yl)-2,8-dimethylchromen-6-ol

C27H38O3 (410.2821)


   

methyl (2s,3e,5r)-5-[(1r,3as,3bs,9ar,9bs,11ar)-9a,11a-dimethyl-7-oxo-1h,2h,3h,3ah,3bh,4h,5h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylhex-3-enoate

methyl (2s,3e,5r)-5-[(1r,3as,3bs,9ar,9bs,11ar)-9a,11a-dimethyl-7-oxo-1h,2h,3h,3ah,3bh,4h,5h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylhex-3-enoate

C27H38O3 (410.2821)


   

3-{[(1r,4as,4bs,8as,10ar)-2,4b,8,8,10a-pentamethyl-4,4a,5,6,7,8a,9,10-octahydro-1h-phenanthren-1-yl]methyl}-4-hydroxybenzoic acid

3-{[(1r,4as,4bs,8as,10ar)-2,4b,8,8,10a-pentamethyl-4,4a,5,6,7,8a,9,10-octahydro-1h-phenanthren-1-yl]methyl}-4-hydroxybenzoic acid

C27H38O3 (410.2821)


   

(3r,3ar,5r,8s,11br)-3-[(2s,3e,5s)-5,6-dimethylhept-3-en-2-yl]-3a,6-dimethyl-1h,2h,3h,4h,5h,7h,8h,9h,10h,11bh-cyclopenta[a]anthracene-5,8-diol

(3r,3ar,5r,8s,11br)-3-[(2s,3e,5s)-5,6-dimethylhept-3-en-2-yl]-3a,6-dimethyl-1h,2h,3h,4h,5h,7h,8h,9h,10h,11bh-cyclopenta[a]anthracene-5,8-diol

C28H42O2 (410.3185)


   

(1r,2r,4r,5z,12r,13s,16z)-13-hydroxy-11,22-diazapentacyclo[11.11.2.1²,²².0²,¹².0⁴,¹¹]heptacosa-5,16,25-triene-25-carbaldehyde

(1r,2r,4r,5z,12r,13s,16z)-13-hydroxy-11,22-diazapentacyclo[11.11.2.1²,²².0²,¹².0⁴,¹¹]heptacosa-5,16,25-triene-25-carbaldehyde

C26H38N2O2 (410.2933)


   

methyl (2e)-5-[(1s,2r,4as,6s,7r,8as)-7-(acetyloxy)-1,6-dihydroxy-2,5,5,8a-tetramethyl-hexahydro-2h-naphthalen-1-yl]-3-methylpent-2-enoate

methyl (2e)-5-[(1s,2r,4as,6s,7r,8as)-7-(acetyloxy)-1,6-dihydroxy-2,5,5,8a-tetramethyl-hexahydro-2h-naphthalen-1-yl]-3-methylpent-2-enoate

C23H38O6 (410.2668)


   

(4ar,4br,6as,12as,12br,14ar)-10-hydroxy-1,1,4a,6a,8,12b-hexamethyl-3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthen-2-one

(4ar,4br,6as,12as,12br,14ar)-10-hydroxy-1,1,4a,6a,8,12b-hexamethyl-3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthen-2-one

C27H38O3 (410.2821)


   

(1s,2s,3r,4r,5r,7s,8r,11s,14r,15r,17s)-15-hydroxy-14-methoxy-5,8,11,15-tetramethyl-10,18-dioxatetracyclo[9.7.0.0²,⁷.0³,¹⁷]octadecan-4-yl acetate

(1s,2s,3r,4r,5r,7s,8r,11s,14r,15r,17s)-15-hydroxy-14-methoxy-5,8,11,15-tetramethyl-10,18-dioxatetracyclo[9.7.0.0²,⁷.0³,¹⁷]octadecan-4-yl acetate

C23H38O6 (410.2668)


   

(2e,6z,10e)-1-(2,5-dihydroxy-3-methylphenyl)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-5-one

(2e,6z,10e)-1-(2,5-dihydroxy-3-methylphenyl)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-5-one

C27H38O3 (410.2821)


   

(1r,3ar,7s,9as,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-4-one

(1r,3ar,7s,9as,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-4-one

C28H42O2 (410.3185)


   

2-hydroxy-1,1,4a,6a,9,11b-hexamethyl-2h,3h,4h,4bh,5h,6h,11h,11ah,12h,13h,13ah-indeno[2,1-a]phenanthrene-7,10-dione

2-hydroxy-1,1,4a,6a,9,11b-hexamethyl-2h,3h,4h,4bh,5h,6h,11h,11ah,12h,13h,13ah-indeno[2,1-a]phenanthrene-7,10-dione

C27H38O3 (410.2821)


   

(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-14',17'-dien-16'-one

(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-14',17'-dien-16'-one

C27H38O3 (410.2821)


   

3,5-bis[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-4-hydroxybenzoic acid

3,5-bis[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-4-hydroxybenzoic acid

C27H38O3 (410.2821)


   

2,6,11,14-tetramethyl-5-propyl-4,13,19,20-tetraoxatricyclo[14.2.1.1⁷,¹⁰]icosane-3,12-dione

2,6,11,14-tetramethyl-5-propyl-4,13,19,20-tetraoxatricyclo[14.2.1.1⁷,¹⁰]icosane-3,12-dione

C23H38O6 (410.2668)


   

(1r,3ar,7s,9as,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthrene-7-peroxol

(1r,3ar,7s,9as,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthrene-7-peroxol

C28H42O2 (410.3185)


   

methyl 5-{9a,11a-dimethyl-7-oxo-1h,2h,3h,3ah,3bh,4h,5h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-2-methylhex-3-enoate

methyl 5-{9a,11a-dimethyl-7-oxo-1h,2h,3h,3ah,3bh,4h,5h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-2-methylhex-3-enoate

C27H38O3 (410.2821)


   

3,5-bis(3,7-dimethylocta-2,6-dien-1-yl)-4-hydroxybenzoic acid

3,5-bis(3,7-dimethylocta-2,6-dien-1-yl)-4-hydroxybenzoic acid

C27H38O3 (410.2821)


   

(6e,10e)-13-[(2r)-6-hydroxy-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl]-2,6,10-trimethyltrideca-2,6,10-trien-5-one

(6e,10e)-13-[(2r)-6-hydroxy-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl]-2,6,10-trimethyltrideca-2,6,10-trien-5-one

C27H38O3 (410.2821)


   

1-{15-hydroxy-5-methyl-19-oxapentacyclo[12.3.2.0¹,¹³.0²,¹⁰.0⁵,⁹]nonadeca-6,10-dien-6-yl}-5-methyl-4-methylidenehexan-1-one

1-{15-hydroxy-5-methyl-19-oxapentacyclo[12.3.2.0¹,¹³.0²,¹⁰.0⁵,⁹]nonadeca-6,10-dien-6-yl}-5-methyl-4-methylidenehexan-1-one

C27H38O3 (410.2821)


   

(2r,7r)-1-(acetyloxy)-7-methyl-3-methylidene-10-[(2s)-2,6,6-trimethyloxan-2-yl]decan-2-yl acetate

(2r,7r)-1-(acetyloxy)-7-methyl-3-methylidene-10-[(2s)-2,6,6-trimethyloxan-2-yl]decan-2-yl acetate

C24H42O5 (410.3032)


   

1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,7-dione

1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,7-dione

C28H42O2 (410.3185)


   

(2s)-6-methoxy-2,8-dimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-3,4-dihydro-1-benzopyran

(2s)-6-methoxy-2,8-dimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-3,4-dihydro-1-benzopyran

C28H42O2 (410.3185)


   

2-[15-(acetyloxy)pentadecyl]-4-methylidene-5-oxooxolane-3-carboxylic acid

2-[15-(acetyloxy)pentadecyl]-4-methylidene-5-oxooxolane-3-carboxylic acid

C23H38O6 (410.2668)


   

2-[(2e,6e)-12-hydroxy-3,7-dimethyl-11-(4-methylpent-3-en-1-yl)dodeca-2,6,10-trien-1-yl]-5-methylcyclohexa-2,5-diene-1,4-dione

2-[(2e,6e)-12-hydroxy-3,7-dimethyl-11-(4-methylpent-3-en-1-yl)dodeca-2,6,10-trien-1-yl]-5-methylcyclohexa-2,5-diene-1,4-dione

C27H38O3 (410.2821)


   

(1s,2s,5s,6r,7s,10r,11s,14r,16r)-2,6,11,14-tetramethyl-5-propyl-4,13,19,20-tetraoxatricyclo[14.2.1.1⁷,¹⁰]icosane-3,12-dione

(1s,2s,5s,6r,7s,10r,11s,14r,16r)-2,6,11,14-tetramethyl-5-propyl-4,13,19,20-tetraoxatricyclo[14.2.1.1⁷,¹⁰]icosane-3,12-dione

C23H38O6 (410.2668)


   

1-[(1s,4ar,4br,6as,12as,12br,14ar)-10-hydroxy-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthen-1-yl]ethanone

1-[(1s,4ar,4br,6as,12as,12br,14ar)-10-hydroxy-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthen-1-yl]ethanone

C27H38O3 (410.2821)


   

methyl (3e,5r)-5-[(1r,3as,3bs,9ar,9bs,11ar)-9a,11a-dimethyl-7-oxo-1h,2h,3h,3ah,3bh,4h,5h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylhex-3-enoate

methyl (3e,5r)-5-[(1r,3as,3bs,9ar,9bs,11ar)-9a,11a-dimethyl-7-oxo-1h,2h,3h,3ah,3bh,4h,5h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylhex-3-enoate

C27H38O3 (410.2821)


   

9a,11a-dimethyl-1-[(2r)-6-methyl-5-oxohept-6-en-2-yl]-1h,2h,3h,3ah,3bh,4h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,7-dione

9a,11a-dimethyl-1-[(2r)-6-methyl-5-oxohept-6-en-2-yl]-1h,2h,3h,3ah,3bh,4h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,7-dione

C27H38O3 (410.2821)


   

(2s)-2,6,7-trimethyl-2-[(3e,7e)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-1-benzopyran-8-ol

(2s)-2,6,7-trimethyl-2-[(3e,7e)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-1-benzopyran-8-ol

C28H42O2 (410.3185)


   

3-[(1r,2r,3s,4as,6r,8r,8as)-2-[(2r)-butan-2-yl]-3,6-dihydroxy-1,3,6,8-tetramethyl-4-oxo-hexahydronaphthalen-1-yl]-3-oxopropyl acetate

3-[(1r,2r,3s,4as,6r,8r,8as)-2-[(2r)-butan-2-yl]-3,6-dihydroxy-1,3,6,8-tetramethyl-4-oxo-hexahydronaphthalen-1-yl]-3-oxopropyl acetate

C23H38O6 (410.2668)


   

octacosa-4,7,10,13,16,19,22-heptaenoic acid

octacosa-4,7,10,13,16,19,22-heptaenoic acid

C28H42O2 (410.3185)


   

(1r,2s,3r,4r,5r,7s,8s,11r,14r,15r,17r)-15-hydroxy-14-methoxy-5,8,11,15-tetramethyl-10,18-dioxatetracyclo[9.7.0.0²,⁷.0³,¹⁷]octadecan-4-yl acetate

(1r,2s,3r,4r,5r,7s,8s,11r,14r,15r,17r)-15-hydroxy-14-methoxy-5,8,11,15-tetramethyl-10,18-dioxatetracyclo[9.7.0.0²,⁷.0³,¹⁷]octadecan-4-yl acetate

C23H38O6 (410.2668)


   

1-(acetyloxy)-7-methyl-3-methylidene-10-(2,6,6-trimethyloxan-2-yl)decan-2-yl acetate

1-(acetyloxy)-7-methyl-3-methylidene-10-(2,6,6-trimethyloxan-2-yl)decan-2-yl acetate

C24H42O5 (410.3032)


   

(2r)-2-[(3e,6r,7e)-6-hydroxy-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-2,8-dimethylchromen-6-ol

(2r)-2-[(3e,6r,7e)-6-hydroxy-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-2,8-dimethylchromen-6-ol

C27H38O3 (410.2821)


   

(4ar,4br,8as,9r,10ar)-2-(3-hydroxy-4-methylphenyl)-4b,8,8,10a-tetramethyl-4,4a,5,6,7,8a,9,10-octahydro-1h-phenanthren-9-yl acetate

(4ar,4br,8as,9r,10ar)-2-(3-hydroxy-4-methylphenyl)-4b,8,8,10a-tetramethyl-4,4a,5,6,7,8a,9,10-octahydro-1h-phenanthren-9-yl acetate

C27H38O3 (410.2821)


   

1-[(1s,2s,5s,9s,13r,14r,15s)-15-hydroxy-5-methyl-19-oxapentacyclo[12.3.2.0¹,¹³.0²,¹⁰.0⁵,⁹]nonadeca-6,10-dien-6-yl]-5-methyl-4-methylidenehexan-1-one

1-[(1s,2s,5s,9s,13r,14r,15s)-15-hydroxy-5-methyl-19-oxapentacyclo[12.3.2.0¹,¹³.0²,¹⁰.0⁵,⁹]nonadeca-6,10-dien-6-yl]-5-methyl-4-methylidenehexan-1-one

C27H38O3 (410.2821)


   

4-hydroxy-5-methyl-3-[(2e,6e,10e)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]cyclohexa-3,5-diene-1,2-dione

4-hydroxy-5-methyl-3-[(2e,6e,10e)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]cyclohexa-3,5-diene-1,2-dione

C27H38O3 (410.2821)


   

(1r,5ar,7s,9as,11ar)-7-hydroxy-9a,11a-dimethyl-1-[(2r)-6-methyl-5-methylideneheptan-2-yl]-1h,2h,5h,5ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-4-one

(1r,5ar,7s,9as,11ar)-7-hydroxy-9a,11a-dimethyl-1-[(2r)-6-methyl-5-methylideneheptan-2-yl]-1h,2h,5h,5ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-4-one

C28H42O2 (410.3185)


   

(1r)-1-isopropyl-4-methylcyclohex-3-en-1-yl 4-hydroxy-3,5-bis(3-methylbut-2-en-1-yl)benzoate

(1r)-1-isopropyl-4-methylcyclohex-3-en-1-yl 4-hydroxy-3,5-bis(3-methylbut-2-en-1-yl)benzoate

C27H38O3 (410.2821)


   

1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthrene-7-peroxol

1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthrene-7-peroxol

C28H42O2 (410.3185)


   

3-{5-[(4as,8as)-2,5,5,8a-tetramethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl]-3-methylpent-2-en-1-yl}-4-hydroxybenzoic acid

3-{5-[(4as,8as)-2,5,5,8a-tetramethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl]-3-methylpent-2-en-1-yl}-4-hydroxybenzoic acid

C27H38O3 (410.2821)


   

(1s,2s,5r,6r,9s,10s,15s,19s)-5-methyl-6-[(2r)-6-methyl-5-methylideneheptan-2-yl]-16-oxapentacyclo[13.2.2.0¹,¹³.0²,¹⁰.0⁵,⁹]nonadeca-11,13-dien-19-ol

(1s,2s,5r,6r,9s,10s,15s,19s)-5-methyl-6-[(2r)-6-methyl-5-methylideneheptan-2-yl]-16-oxapentacyclo[13.2.2.0¹,¹³.0²,¹⁰.0⁵,⁹]nonadeca-11,13-dien-19-ol

C28H42O2 (410.3185)


   

(2e,10e)-1-(2,5-dihydroxy-3-methylphenyl)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-5-one

(2e,10e)-1-(2,5-dihydroxy-3-methylphenyl)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-5-one

C27H38O3 (410.2821)


   

4-hydroxy-3-[(2e,6e,10e)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]benzoic acid

4-hydroxy-3-[(2e,6e,10e)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]benzoic acid

C27H38O3 (410.2821)


   

(2e,6e,10e)-13-[(2s)-6-hydroxy-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl]-2,6,10-trimethyltrideca-2,6,10-trienal

(2e,6e,10e)-13-[(2s)-6-hydroxy-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl]-2,6,10-trimethyltrideca-2,6,10-trienal

C27H38O3 (410.2821)


   

(1r,2r,4r,5z,13s,16z)-13-hydroxy-11,22-diazapentacyclo[11.11.2.1²,²².0²,¹².0⁴,¹¹]heptacosa-5,16,25-triene-25-carbaldehyde

(1r,2r,4r,5z,13s,16z)-13-hydroxy-11,22-diazapentacyclo[11.11.2.1²,²².0²,¹².0⁴,¹¹]heptacosa-5,16,25-triene-25-carbaldehyde

C26H38N2O2 (410.2933)


   

(4as,11as,11bs,13ar)-2-hydroxy-1,1,4a,6a,9,11b-hexamethyl-2h,3h,4h,4bh,5h,6h,11h,11ah,12h,13h,13ah-indeno[2,1-a]phenanthrene-7,10-dione

(4as,11as,11bs,13ar)-2-hydroxy-1,1,4a,6a,9,11b-hexamethyl-2h,3h,4h,4bh,5h,6h,11h,11ah,12h,13h,13ah-indeno[2,1-a]phenanthrene-7,10-dione

C27H38O3 (410.2821)


   

1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,5ah,6h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,7-dione

1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,5ah,6h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,7-dione

C28H42O2 (410.3185)


   

2-{[2-(4a,8-dimethyl-2,3,4,5,6,7-hexahydro-1h-naphthalen-2-yl)propan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-3-yl acetate

2-{[2-(4a,8-dimethyl-2,3,4,5,6,7-hexahydro-1h-naphthalen-2-yl)propan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-3-yl acetate

C23H38O6 (410.2668)


   

(2e,6e,10e)-1-(2,5-dihydroxy-3-methylphenyl)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-5-one

(2e,6e,10e)-1-(2,5-dihydroxy-3-methylphenyl)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-5-one

C27H38O3 (410.2821)


   

2-hydroxy-5-methyl-3-[(2e,6e,10e)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]cyclohexa-2,5-diene-1,4-dione

2-hydroxy-5-methyl-3-[(2e,6e,10e)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]cyclohexa-2,5-diene-1,4-dione

C27H38O3 (410.2821)


   

(1r,3ar,7s,9as,11ar)-1-[(2s,3e,5s)-5,6-dimethylhept-3-en-2-yl]-7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-4-one

(1r,3ar,7s,9as,11ar)-1-[(2s,3e,5s)-5,6-dimethylhept-3-en-2-yl]-7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-4-one

C28H42O2 (410.3185)


   

(2e,6e,10e)-13-(6-hydroxy-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl)-2,6,10-trimethyltrideca-2,6,10-trienal

(2e,6e,10e)-13-(6-hydroxy-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl)-2,6,10-trimethyltrideca-2,6,10-trienal

C27H38O3 (410.2821)


   

15-hydroxy-14-methoxy-5,8,11,15-tetramethyl-10,18-dioxatetracyclo[9.7.0.0²,⁷.0³,¹⁷]octadecan-4-yl acetate

15-hydroxy-14-methoxy-5,8,11,15-tetramethyl-10,18-dioxatetracyclo[9.7.0.0²,⁷.0³,¹⁷]octadecan-4-yl acetate

C23H38O6 (410.2668)


   

3-{[(1s,4as,5r,8as)-2,5,8a-trimethyl-5-(4-methylpent-3-en-1-yl)-1,4,4a,6,7,8-hexahydronaphthalen-1-yl]methyl}-4-hydroxybenzoic acid

3-{[(1s,4as,5r,8as)-2,5,8a-trimethyl-5-(4-methylpent-3-en-1-yl)-1,4,4a,6,7,8-hexahydronaphthalen-1-yl]methyl}-4-hydroxybenzoic acid

C27H38O3 (410.2821)


   

13-(6-hydroxy-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl)-2,6,10-trimethyltrideca-2,6,10-trienal

13-(6-hydroxy-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl)-2,6,10-trimethyltrideca-2,6,10-trienal

C27H38O3 (410.2821)


   

2-(9-hydroxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl)-6-methylcyclohexa-2,5-diene-1,4-dione

2-(9-hydroxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl)-6-methylcyclohexa-2,5-diene-1,4-dione

C27H38O3 (410.2821)


   

3-{[(1r,4ar,5s,8ar)-5,8a-dimethyl-2-methylidene-5-(4-methylpent-4-en-1-yl)-hexahydro-1h-naphthalen-1-yl]methyl}-4-hydroxybenzoic acid

3-{[(1r,4ar,5s,8ar)-5,8a-dimethyl-2-methylidene-5-(4-methylpent-4-en-1-yl)-hexahydro-1h-naphthalen-1-yl]methyl}-4-hydroxybenzoic acid

C27H38O3 (410.2821)


   

(1r,3as,3bs,9ar,9bs,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,7-dione

(1r,3as,3bs,9ar,9bs,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,7-dione

C28H42O2 (410.3185)


   

2-{6-[2-(8a-hydroxy-1,2,5,5-tetramethyl-hexahydro-2h-naphthalen-1-yl)ethyl]-6-methyl-1,2-dioxan-3-yl}propanoic acid

2-{6-[2-(8a-hydroxy-1,2,5,5-tetramethyl-hexahydro-2h-naphthalen-1-yl)ethyl]-6-methyl-1,2-dioxan-3-yl}propanoic acid

C24H42O5 (410.3032)


   

2,5,8-trihydroxy-4-(3-hydroxypropanoyl)-4,7-dimethyl-3-(octan-2-yl)-4a,5,6,7,8,8a-hexahydronaphthalen-1-one

2,5,8-trihydroxy-4-(3-hydroxypropanoyl)-4,7-dimethyl-3-(octan-2-yl)-4a,5,6,7,8,8a-hexahydronaphthalen-1-one

C23H38O6 (410.2668)


   

(1r,2r,4r,5z,12r,13r,16z)-13-hydroxy-11,22-diazapentacyclo[11.11.2.1²,²².0²,¹².0⁴,¹¹]heptacosa-5,16,25-triene-25-carbaldehyde

(1r,2r,4r,5z,12r,13r,16z)-13-hydroxy-11,22-diazapentacyclo[11.11.2.1²,²².0²,¹².0⁴,¹¹]heptacosa-5,16,25-triene-25-carbaldehyde

C26H38N2O2 (410.2933)


   

1-isopropyl-4-methylcyclohex-3-en-1-yl 4-hydroxy-3,5-bis(3-methylbut-2-en-1-yl)benzoate

1-isopropyl-4-methylcyclohex-3-en-1-yl 4-hydroxy-3,5-bis(3-methylbut-2-en-1-yl)benzoate

C27H38O3 (410.2821)


   

(2s)-2-[(3e,6e,8s)-8-hydroxy-4,8,12-trimethyltrideca-3,6,11-trien-1-yl]-2,8-dimethylchromen-6-ol

(2s)-2-[(3e,6e,8s)-8-hydroxy-4,8,12-trimethyltrideca-3,6,11-trien-1-yl]-2,8-dimethylchromen-6-ol

C27H38O3 (410.2821)


   

2,6,7-trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-3,4-dihydro-1-benzopyran-8-ol

2,6,7-trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-3,4-dihydro-1-benzopyran-8-ol

C28H42O2 (410.3185)


   

3-[(2e,6e)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,6-dien-1-yl]-4-hydroxybenzoic acid

3-[(2e,6e)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,6-dien-1-yl]-4-hydroxybenzoic acid

C27H38O3 (410.2821)


   

(4as,4br,8as,9r,10ar)-2-(3-hydroxy-4-methylphenyl)-4b,8,8,10a-tetramethyl-4,4a,5,6,7,8a,9,10-octahydro-1h-phenanthren-9-yl acetate

(4as,4br,8as,9r,10ar)-2-(3-hydroxy-4-methylphenyl)-4b,8,8,10a-tetramethyl-4,4a,5,6,7,8a,9,10-octahydro-1h-phenanthren-9-yl acetate

C27H38O3 (410.2821)


   

10-(6-hydroxy-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl)-3,7-dimethyl-2-(2-methylprop-1-en-1-yl)deca-2,7-dienal

10-(6-hydroxy-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl)-3,7-dimethyl-2-(2-methylprop-1-en-1-yl)deca-2,7-dienal

C27H38O3 (410.2821)


   

(5s)-5-[(1s,3ar,3br,5ar,9ar,9bs,11ar)-3a,3b,6,6,9a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,9bh,10h,11h,11ah-cyclopenta[a]phenanthren-1-yl]-5-methylfuran-2-one

(5s)-5-[(1s,3ar,3br,5ar,9ar,9bs,11ar)-3a,3b,6,6,9a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,9bh,10h,11h,11ah-cyclopenta[a]phenanthren-1-yl]-5-methylfuran-2-one

C27H38O3 (410.2821)


   

methyl (2z)-5-[(1s,2r,4as,6s,7r,8as)-7-(acetyloxy)-1,6-dihydroxy-2,5,5,8a-tetramethyl-hexahydro-2h-naphthalen-1-yl]-3-methylpent-2-enoate

methyl (2z)-5-[(1s,2r,4as,6s,7r,8as)-7-(acetyloxy)-1,6-dihydroxy-2,5,5,8a-tetramethyl-hexahydro-2h-naphthalen-1-yl]-3-methylpent-2-enoate

C23H38O6 (410.2668)


   

2-[(2e,6e,9r,10e)-9-hydroxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]-5-methylcyclohexa-2,5-diene-1,4-dione

2-[(2e,6e,9r,10e)-9-hydroxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]-5-methylcyclohexa-2,5-diene-1,4-dione

C27H38O3 (410.2821)


   

(1r,3ar,5as,9ar,9br,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,5ah,6h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,7-dione

(1r,3ar,5as,9ar,9br,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,5ah,6h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,7-dione

C28H42O2 (410.3185)


   

2-(9-hydroxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl)-5-methylcyclohexa-2,5-diene-1,4-dione

2-(9-hydroxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl)-5-methylcyclohexa-2,5-diene-1,4-dione

C27H38O3 (410.2821)


   

1-(5,6-dimethylhept-3-en-2-yl)-7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-4-one

1-(5,6-dimethylhept-3-en-2-yl)-7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-4-one

C28H42O2 (410.3185)


   

(4e,7e,10e,13e,16e,19e,22e)-octacosa-4,7,10,13,16,19,22-heptaenoic acid

(4e,7e,10e,13e,16e,19e,22e)-octacosa-4,7,10,13,16,19,22-heptaenoic acid

C28H42O2 (410.3185)


   

(6z,9z)-22-(5-formyl-1h-pyrrol-2-yl)docosa-6,9-dienenitrile

(6z,9z)-22-(5-formyl-1h-pyrrol-2-yl)docosa-6,9-dienenitrile

C27H42N2O (410.3297)


   

1-(5,6-dimethylhept-3-en-2-yl)-3b-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

1-(5,6-dimethylhept-3-en-2-yl)-3b-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C28H42O2 (410.3185)


   

(5s)-5-[(3ar,3br,9ar)-3a,3b,6,6,9a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,9bh,10h,11h,11ah-cyclopenta[a]phenanthren-1-yl]-5-methylfuran-2-one

(5s)-5-[(3ar,3br,9ar)-3a,3b,6,6,9a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,9bh,10h,11h,11ah-cyclopenta[a]phenanthren-1-yl]-5-methylfuran-2-one

C27H38O3 (410.2821)


   

(2r,3s)-2-[15-(acetyloxy)pentadecyl]-4-methylidene-5-oxooxolane-3-carboxylic acid

(2r,3s)-2-[15-(acetyloxy)pentadecyl]-4-methylidene-5-oxooxolane-3-carboxylic acid

C23H38O6 (410.2668)


   

(3ar,4s,6s,10s,11s,11ar)-10-hydroxy-6,10-dimethyl-3-methylidene-4,11-bis(2-methylpropoxy)-octahydrocyclodeca[b]furan-2,5-dione

(3ar,4s,6s,10s,11s,11ar)-10-hydroxy-6,10-dimethyl-3-methylidene-4,11-bis(2-methylpropoxy)-octahydrocyclodeca[b]furan-2,5-dione

C23H38O6 (410.2668)


   

5-{3a,3b,6,6,9a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,9bh,10h,11h,11ah-cyclopenta[a]phenanthren-1-yl}-5-methylfuran-2-one

5-{3a,3b,6,6,9a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,9bh,10h,11h,11ah-cyclopenta[a]phenanthren-1-yl}-5-methylfuran-2-one

C27H38O3 (410.2821)


   

2-hydroxy-5-methyl-3-(3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl)cyclohexa-2,5-diene-1,4-dione

2-hydroxy-5-methyl-3-(3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl)cyclohexa-2,5-diene-1,4-dione

C27H38O3 (410.2821)


   

(2r,5r,7's,9's,13'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-14',17'-dien-16'-one

(2r,5r,7's,9's,13'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-14',17'-dien-16'-one

C27H38O3 (410.2821)


   

10-hydroxy-6,10-dimethyl-3-methylidene-4,11-bis(2-methylpropoxy)-octahydrocyclodeca[b]furan-2,5-dione

10-hydroxy-6,10-dimethyl-3-methylidene-4,11-bis(2-methylpropoxy)-octahydrocyclodeca[b]furan-2,5-dione

C23H38O6 (410.2668)


   

(1r,3s,6s)-6-[(1e,3e,5e,7e,9e,11e,13e)-15-hydroxy-3,7,12-trimethylpentadeca-1,3,5,7,9,11,13-heptaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

(1r,3s,6s)-6-[(1e,3e,5e,7e,9e,11e,13e)-15-hydroxy-3,7,12-trimethylpentadeca-1,3,5,7,9,11,13-heptaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C27H38O3 (410.2821)


   

(4ar,4br,6ar,12as,12br,14ar)-10-hydroxy-1,1,4a,6a,8,12b-hexamethyl-3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthen-2-one

(4ar,4br,6ar,12as,12br,14ar)-10-hydroxy-1,1,4a,6a,8,12b-hexamethyl-3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthen-2-one

C27H38O3 (410.2821)


   

4,5-dihydroxy-6-methyl-2-({1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulen-4-yl}oxy)oxan-3-yl acetate

4,5-dihydroxy-6-methyl-2-({1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulen-4-yl}oxy)oxan-3-yl acetate

C23H38O6 (410.2668)


   

(2z,7e)-10-[(2r)-6-hydroxy-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl]-3,7-dimethyl-2-(2-methylprop-1-en-1-yl)deca-2,7-dienal

(2z,7e)-10-[(2r)-6-hydroxy-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl]-3,7-dimethyl-2-(2-methylprop-1-en-1-yl)deca-2,7-dienal

C27H38O3 (410.2821)