Exact Mass: 375.27732920000005
Exact Mass Matches: 375.27732920000005
Found 194 metabolites which its exact mass value is equals to given mass value 375.27732920000005
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Icaceine
A diterpene alkaloid that is 6,18:14,16-diepoxypimar-7-en-18-one substituted by a hydroxy group at position 3 and a dimethyl amino group at position 15. It is isolated from Icacina guessfeldtii.
Adrenoyl ethanolamide
C24H41NO2 (375.31371260000003)
Adrenoyl ethanolamide is a N-acylethanolamine. N-acylethanolamines (NAEs) constitute a class of lipid compounds naturally present in both animal and plant membranes as constituents of the membrane-bound phospholipid, N-acylphosphatidylethanolamine (NAPE). NAPE is composed of a third fatty acid moiety linked to the amino head group of the commonly occurring membrane phospholipid, phosphatidylethanolamine. NAEs are released from NAPE by phospholipase D-type hydrolases in response to a variety of stimuli. Transient NAE release and accumulation has been attributed a variety of biological activities, including neurotransmission, membrane protection, and immunomodulation in animals. N-oleoylethanolamine is an inhibitor of the sphingolipid signaling pathway, via specific ceramidase inhibition (ceramidase converts ceramide to sphingosine). N-oleoylethanolamine blocks the effects of TNF- and arachidonic acid on intracellular Ca concentration. (PMID: 12692337, 12056855, 12560208, 11997249) [HMDB] Adrenoyl ethanolamide is a N-acylethanolamine. N-acylethanolamines (NAEs) constitute a class of lipid compounds naturally present in both animal and plant membranes as constituents of the membrane-bound phospholipid, N-acylphosphatidylethanolamine (NAPE). NAPE is composed of a third fatty acid moiety linked to the amino head group of the commonly occurring membrane phospholipid, phosphatidylethanolamine. NAEs are released from NAPE by phospholipase D-type hydrolases in response to a variety of stimuli. Transient NAE release and accumulation has been attributed a variety of biological activities, including neurotransmission, membrane protection, and immunomodulation in animals. N-oleoylethanolamine is an inhibitor of the sphingolipid signaling pathway, via specific ceramidase inhibition (ceramidase converts ceramide to sphingosine). N-oleoylethanolamine blocks the effects of TNF- and arachidonic acid on intracellular Ca concentration. (PMID: 12692337, 12056855, 12560208, 11997249).
3,5-Dihydroxydodecanoylcarnitine
C19H37NO6 (375.26207420000003)
3,5-Dihydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,5-Dihydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,5-Dihydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3,5-Dihydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
3,10-Dihydroxydodecanoylcarnitine
C19H37NO6 (375.26207420000003)
3,10-Dihydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,10-Dihydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,10-Dihydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3,10-Dihydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
3,9-Dihydroxydodecanoylcarnitine
C19H37NO6 (375.26207420000003)
3,9-Dihydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,9-Dihydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,9-Dihydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3,9-Dihydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
3,6-Dihydroxydodecanoylcarnitine
C19H37NO6 (375.26207420000003)
3,6-Dihydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,6-Dihydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,6-Dihydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3,6-Dihydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
3,8-Dihydroxydodecanoylcarnitine
C19H37NO6 (375.26207420000003)
3,8-Dihydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,8-Dihydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,8-Dihydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3,8-Dihydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
3,7-Dihydroxydodecanoylcarnitine
C19H37NO6 (375.26207420000003)
3,7-Dihydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,7-Dihydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,7-Dihydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3,7-Dihydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
3,4-Dihydroxydodecanoylcarnitine
C19H37NO6 (375.26207420000003)
3,4-Dihydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,4-Dihydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,4-Dihydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3,4-Dihydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
3,11-Dihydroxydodecanoylcarnitine
C19H37NO6 (375.26207420000003)
3,11-Dihydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,11-Dihydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,11-Dihydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3,11-Dihydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
N-Arachidonoyl Alanine
C23H37NO3 (375.27732920000005)
N-arachidonoyl alanine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is an Arachidonic acid amide of Alanine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Arachidonoyl Alanine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Arachidonoyl Alanine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
N-Myristoyl Phenylalanine
C23H37NO3 (375.27732920000005)
N-myristoyl phenylalanine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Myristic acid amide of Phenylalanine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Myristoyl Phenylalanine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Myristoyl Phenylalanine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
Docosatetraenylethanolamide
C24H41NO2 (375.31371260000003)
Pipamperone
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AD - Butyrophenone derivatives D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent Pipamperone (Floropipamide; McN-JR 3345; R 3345) is a high-affinity antagonist of 5-HT2A receptor (pKi=8.2) and D4 receptor (pKi=8.0) and a low-affinity antagonist of D2 receptor (pKi=6.7)[1].
Tuberstemonine
Tuberostemonine is an alkaloid. It has a role as a metabolite. Tuberostemonine is a natural product found in Stemona tuberosa, Stemona sessilifolia, and other organisms with data available. A natural product found in Stemona phyllantha and Stemona tuberosa. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.534 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.531 Tuberostemonine, an alkaloid, is an antimalarial agent that targets Plasmodium falciparum ferredoxin-NADP+ reductases (pfFNR)[1]. Tuberostemonine, an alkaloid, is an antimalarial agent that targets Plasmodium falciparum ferredoxin-NADP+ reductases (pfFNR)[1].
Pipamperone
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AD - Butyrophenone derivatives D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent CONFIDENCE standard compound; INTERNAL_ID 2514 Pipamperone (Floropipamide; McN-JR 3345; R 3345) is a high-affinity antagonist of 5-HT2A receptor (pKi=8.2) and D4 receptor (pKi=8.0) and a low-affinity antagonist of D2 receptor (pKi=6.7)[1].
methyl 7-hydroxyhomodaphniphyllate|rel-(3aR,4S,4aS,5R,8S,8aR,8bS,9S,10S)-octahydro-9-hydroxy-8-methyl-5-(1-methylethyl)-4,8,3a-[1,2,4]butanetriylcyclopent[b]indole-8a(4aH)-propanoic acid methyl ester
C23H37NO3 (375.27732920000005)
2-heptadec-11-enamidoethanesulfonic acid
C19H37NO4S (375.24431620000007)
20-ethyl-8-hydroxy-1alpha-methoxy-4-methyl-heteratisan-14-one|6-deoxy-heteratisine|Hetereophyllisin|heterophyllisine
methyl 17-hydroxyhomodaphniphyllate
C23H37NO3 (375.27732920000005)
NA 24:4;O
C24H41NO2 (375.31371260000003)
N-(3-Methoxybenzyl)palmitamide is a natural product found in Lepidium meyenii with data available. N-(3-Methoxybenzyl)Palmitamide is a promising inhibitor of FAAH for the treatment of pain, inflammation and CNS degenerative disorders[1]. N-(3-Methoxybenzyl)Palmitamide is a promising inhibitor of FAAH for the treatment of pain, inflammation and CNS degenerative disorders[1].
Neotuberostemonine
Neotuberostemonine is an alkaloid. It has a role as a metabolite. Neotuberostemonine is a natural product found in Stemona tuberosa, Stemona phyllantha, and other organisms with data available. A natural product found in Stemona tuberosa and Stemona phyllantha. Neotuberostemonine, one of the main antitussive alkaloids in the root of Stemona tuberosa Lour, attenuates bleomycin-induced pulmonary fibrosis by suppressing the recruitment and activation of macrophages[1]. Neotuberostemonine, one of the main antitussive alkaloids in the root of Stemona tuberosa Lour, attenuates bleomycin-induced pulmonary fibrosis by suppressing the recruitment and activation of macrophages[1].
Napelline N-oxide
Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid
R-4-benzyl-3-((R)-3-hydroxy-2,2-dimethyloctanoyl)-5,5-dimethyloxazolidin-2-one
S-4-benzyl-3-((S)-3-hydroxy-2,2-dimethyloctanoyl) -5,5-dimethyloxazolidin-2-one
N-(1,1-dimethyl-2-hydroxy-ethyl)arachidonoylamide
C24H41NO2 (375.31371260000003)
N-ethyl N-(2-hydroxy-ethyl)arachidonoylamide
C24H41NO2 (375.31371260000003)
alpha,alpha-dimethyl anandamide
C24H41NO2 (375.31371260000003)
N-(5Z,8Z,11Z,14Z-docosatetraenoyl)-ethanolamine
C24H41NO2 (375.31371260000003)
N-Arachidonoyl-L-Alanine
C23H37NO3 (375.27732920000005)
An N-acyl-L-alanine resulting from the formal condensation of the amino group of L-alanine with the carboxy group of arachidonic acid.
S-4-benzyl-3-((S)-3-hydroxy-2,2-dimethyloctanoyl)-5,5-dimethyloxazolidin-2-one
R-4-benzyl-3-((R)-3-hydroxy-2,2-dimethyloctanoyl)-5,5-dimethyloxazolidin-2-one
5,8,11,14-all-cis-docosatetraenoylethanolamine
C24H41NO2 (375.31371260000003)
N-(15-methyl-2,3,4-trihydroxy-hexadecanoyl)-glycine
C19H37NO6 (375.26207420000003)
Asc C11 EA
C19H37NO6 (375.26207420000003)
sodium (Z)-N-methyl-N-(1-oxo-9-octadecenyl)aminoacetate
4,4-bis(dimethylamino)-4-(methylamino)trityl alcohol
3-Pyridinemethanol, 5-butyl-4-(4-fluoro-2-hydroxyphenyl)-a-methyl-2,6-bis(1-methylethyl)-, (aR)-
3-Pyridinemethanol, 5-butyl-4-(4-fluoro-2-hydroxyphenyl)-a-methyl-2,6-bis(1-methylethyl)-, (aR,4R)- (9CI)
3-Pyridinemethanol, 5-butyl-4-(4-fluoro-2-hydroxyphenyl)-a-methyl-2,6-bis(1-methylethyl)-, (aR,4S)- (9CI)
1-METHYL-4-(4-FLUOROPHENYL)-PIPERIDINE-3-CARBOXYLIC ACID MENTHYL ESTER
sodium N-methyl-N-(1-oxo-9-octadecenyl)aminoacetate
3-Pyridinemethanol, 5-butyl-4-(4-fluoro-2-hydroxyphenyl)-a-methyl-2,6-bis(1-methylethyl)-, (aS)-
Octadecanamide,N-(4-hydroxyphenyl)-
C24H41NO2 (375.31371260000003)
Undecyl2-acetamido-2-deoxy-b-D-glucopyranoside
C19H37NO6 (375.26207420000003)
Pentazocine lactate
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D002491 - Central Nervous System Agents > D000700 - Analgesics
(4R)-4-[(3R,5R,8R,9S,10S,13R,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoate
C24H39O3- (375.28990439999995)
Isolithocholate
C24H39O3- (375.28990439999995)
A bile acid anion that is the conjugate base of isolithocholic acid, obtained by deprotonation of the carboxy group. The 3beta-hydroxy epimer of lithocholate. It is the major microspecies at pH 7.3.
(7E,10E,13E,16E)-N-(2-hydroxyethyl)docosa-7,10,13,16-tetraenamide
C24H41NO2 (375.31371260000003)
2-[[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]amino]propanoic acid
C23H37NO3 (375.27732920000005)
tuberostemonine N
A natural product found in Stemona tuberosa and Stemona phyllantha.
17-Dimethylaminolobohedleolide
A cembrane diterpenoid isolated from Lobophytum and shown to have anti-HIV-1 activity.
(2S)-6-amino-2-[[(2S,3R)-2-[[(2S)-2,6-diaminohexanoyl]amino]-3-hydroxybutanoyl]amino]hexanoic acid
7-ethyl-1-[(phenylmethyl)amino]-3-(1-piperidinyl)-6,8-dihydro-5H-2,7-naphthyridine-4-carbonitrile
2-[[4-(3,5-Ditert-butylpyrazol-1-yl)phenyl]iminomethyl]phenol
(8S)-2-hexadec-6-enoyl-1-hydroxy-5,6,7,8-tetrahydropyrrolizin-3-one
C23H37NO3 (375.27732920000005)
(3R)-13-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxy-3-hydroxytridecanoate
(3R,12R)-12-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxy-3-hydroxytridecanoate
(10Z,13Z,16Z,19Z)-N-(2-hydroxyethyl)docosa-10,13,16,19-tetraenamide
C24H41NO2 (375.31371260000003)
beta-Picolinyl 4-ethylisopalmitate
C24H41NO2 (375.31371260000003)
2,3-Dihydroxy-3,7,11,15-tetramethylhexadecan-1-OL nitrate
C20H41NO5 (375.29845760000006)
(1R,4S,5R,7R,8S,13R,16S,17S)-11-ethyl-13-methyl-6-methylidene-11-oxido-11-azoniahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecane-4,7,16-triol
N-(1,1-dimethyl-2-hydroxy-ethyl) arachidonoyl amine
C24H41NO2 (375.31371260000003)
N-ethyl N-(2-hydroxy-ethyl) arachidonoyl amine
C24H41NO2 (375.31371260000003)
n-[(3-methoxyphenyl)methyl]hexadecanimidic acid
C24H41NO2 (375.31371260000003)
(1s,3s,9r,10r,11r,14r,15r,16s)-10-ethyl-14-methyl-3-[(2s,4s)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one
(1r,2s,3r,4r,5s,7r,8r,12r,13s,21r)-4,12-dimethyl-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosane-3,4-diol
methyl 3-[(1r,2s,3r,7s,10r,11r,13r,14s)-11-hydroxy-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁷.0⁷,¹²]hexadecan-2-yl]propanoate
C23H37NO3 (375.27732920000005)
methyl 3-[(1s,2r,3r,7r,9s,14r)-9-hydroxy-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁷.0⁷,¹¹]hexadecan-2-yl]propanoate
C23H37NO3 (375.27732920000005)
(1r,2s,3r,4s,5s,7r,8r,12r,13s,21r)-4,12-dimethyl-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosane-3,4-diol
(1s,3r,9s,10s,11s,14r,15s,16s)-10-ethyl-14-methyl-3-[(2r,4r)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one
12-ethyl-9-hydroxy-17-methoxy-14-methyl-5-oxa-12-azahexacyclo[8.7.2.1²,⁶.0¹,¹¹.0³,⁹.0¹⁴,¹⁸]icosan-4-one
1,6,11-trihydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,6h,6ah,7h,10h,11h,12h-cyclonona[d]isoindol-13-one
(1r,7r,10r,11s,15s,18s,21r,22r,23r)-21,23-dihydroxy-11-methyl-5-oxa-13-azahexacyclo[11.9.1.0¹,⁷.0⁷,¹⁵.0¹⁰,²³.0¹⁸,²²]tricosan-4-one
(1r,4s,5r,7r,8s,13r,16s)-11-ethyl-4,7,16-trihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-11-ium-11-olate
(1s,2r,4r,5r,7r,8s,9r,11r,13s,16s,17r)-11-ethyl-4,7,16-trihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-11-ium-11-olate
(1s,2r,4r,5s,7r,8r,12r,13r,18r,20s,21r)-4,12-dimethyl-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosane-4,20-diol
5-(4-cyclopropyl-2-methylbuta-1,3-dien-1-yl)-7-hydroxy-7-methyl-hexahydro-1ah-oxireno[2,3-g]indolizin-6-yl 3-methylbutanoate
(1r,11s,21r)-21,23-dihydroxy-11-methyl-5-oxa-13-azahexacyclo[11.9.1.0¹,⁷.0⁷,¹⁵.0¹⁰,²³.0¹⁸,²²]tricosan-4-one
(2r,4ar,7r,8as,10as)-7-ethenyl-1,1,4a,7-tetramethyl-3,4,6,8,8a,9,10,10a-octahydro-2h-phenanthren-2-yl (hydroxycarbamoyl)formate
(1as,5r,6r,7r,7as,7br)-5-[(1e,3e)-4-cyclopropyl-2-methylbuta-1,3-dien-1-yl]-7-hydroxy-7-methyl-hexahydro-1ah-oxireno[2,3-g]indolizin-6-yl 3-methylbutanoate
3-[15-hydroxy-12-(hydroxymethyl)-16-methyl-1-azapentacyclo[9.6.1.0²,¹⁵.0³,¹².0⁴,⁸]octadec-4-en-3-yl]propanoic acid
methyl 3-[(2s,3r,4r,8s,11s,12r,15r)-11-hydroxy-12,16-dimethyl-1-azapentacyclo[9.6.1.0²,¹⁵.0³,¹².0⁴,⁸]octadecan-3-yl]propanoate
C23H37NO3 (375.27732920000005)
(1s,2r,4r,5r,7r,8r,9r,10r,13r,14r,16s,17r)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,14,16-tetrol
methyl 3-[(1s,2r,3s,7s,8s,10s,13s,14r)-8-hydroxy-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁷.0⁷,¹²]hexadecan-2-yl]propanoate
C23H37NO3 (375.27732920000005)
n-(3,5,11,18-tetrahydroxyoctadecan-2-yl)ethanimidic acid
C20H41NO5 (375.29845760000006)
(1r,3s,9r,10r,11r,14s,15s,16r)-10-ethyl-14-methyl-3-[(2r,4s)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one
methyl 3-{11-hydroxy-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁷.0⁷,¹²]hexadecan-2-yl}propanoate
C23H37NO3 (375.27732920000005)
methyl 3-[(1s,2r,7r)-7-hydroxy-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁸.0⁷,¹²]hexadecan-2-yl]propanoate
C23H37NO3 (375.27732920000005)
(1s,2r,3s,6r,9s,10s,11r,14r,17s,18r)-12-ethyl-9-hydroxy-17-methoxy-14-methyl-5-oxa-12-azahexacyclo[8.7.2.1²,⁶.0¹,¹¹.0³,⁹.0¹⁴,¹⁸]icosan-4-one
(1s,3s,9r,10r,11r,14s,15r,16r)-10-ethyl-14-methyl-3-[(2s,4r)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one
(1r,2s,3r,5r,7s,10r,11s,13s,14s,16s,17s,18s,19r)-4-ethyl-16-methoxy-10-methyl-6-oxa-4-azaheptacyclo[15.2.1.0²,⁷.0²,¹¹.0³,¹³.0⁵,¹⁰.0¹⁴,¹⁹]icosane-14,18-diol
(1r,2r,4s,5r,7r,8r,9r,10r,11r,13s,16s,17r)-11-ethyl-4,7,16-trihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-11-ium-11-olate
3-[(2r,3r,8r,11s,12r,15s,16r)-15-hydroxy-12-(hydroxymethyl)-16-methyl-1-azapentacyclo[9.6.1.0²,¹⁵.0³,¹².0⁴,⁸]octadec-4-en-3-yl]propanoic acid
(2r,4ar,7s,8as,10as)-7-ethenyl-1,1,4a,7-tetramethyl-3,4,6,8,8a,9,10,10a-octahydro-2h-phenanthren-2-yl (hydroxycarbamoyl)formate
(1r,3r,9r,10r,11s,14s,15s,16r)-10-ethyl-14-methyl-3-[(2s,4s)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one
15,18-dihydroxy-13-(2-hydroxyethyl)-11-methyl-19-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-6-one
(1s,2s,5r,8r,9r,10s,11r,13r,14s,15r,16r)-7-ethyl-2,11,14-trihydroxy-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.2¹⁰,¹³.0¹,⁸.0⁵,¹⁶.0¹⁰,¹⁵]nonadecan-7-ium-7-olate
(1r,3s,9r,10r,11r,14s,15r,16r)-10-ethyl-14-methyl-3-[(2s,4s)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one
methyl 3-{15-hydroxy-14-isopropyl-1-methyl-12-azatetracyclo[8.6.0.0²,¹³.0³,⁷]hexadec-3-en-2-yl}propanoate
C23H37NO3 (375.27732920000005)
(1r,2r,4s,5r,7r,8r,9r,10r,13s,16s,17r)-11-ethyl-4,7,16-trihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-11-ium-11-olate
methyl 3-[(1s,2r,3r,7r,9s,10s,11r,13s,14r)-9-hydroxy-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁷.0⁷,¹¹]hexadecan-2-yl]propanoate
C23H37NO3 (375.27732920000005)
3-[(dimethylamino)methyl]-6,14-dimethyl-2-oxo-3h,3ah,4h,5h,8h,9h,12h,13h,15ah-cyclotetradeca[b]furan-10-carboxylic acid
11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,14,16-tetrol
(3s,3ar,6r,6ar,11s,13as)-1,6,11-trihydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,6h,6ah,7h,10h,11h,12h-cyclonona[d]isoindol-13-one
(7as)-2-(hexadec-6-enoyl)-1-hydroxy-5,6,7,7a-tetrahydropyrrolizin-3-one
C23H37NO3 (375.27732920000005)
(1s,2r,4r,5r,7r,8s,9r,10r,13s,16s,17r)-11-ethyl-4,7,16-trihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-11-ium-11-olate
(3r,3as,15ar)-3-[(dimethylamino)methyl]-6,14-dimethyl-2-oxo-3h,3ah,4h,5h,6h,9h,12h,13h,15ah-cyclotetradeca[b]furan-10-carboxylic acid
(7z,10z,13z,16z)-n-(2-hydroxyethyl)docosa-7,10,13,16-tetraenimidic acid
C24H41NO2 (375.31371260000003)
7-ethyl-2,11,14-trihydroxy-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.2¹⁰,¹³.0¹,⁸.0⁵,¹⁶.0¹⁰,¹⁵]nonadecan-7-ium-7-olate
2-(hexadec-6-enoyl)-1-hydroxy-5,6,7,7a-tetrahydropyrrolizin-3-one
C23H37NO3 (375.27732920000005)
4-ethyl-16-methoxy-10-methyl-6-oxa-4-azaheptacyclo[15.2.1.0²,⁷.0²,¹¹.0³,¹³.0⁵,¹⁰.0¹⁴,¹⁹]icosane-14,18-diol
(1s,3r,9s,10s,11r,14r,15r,16s)-10-ethyl-14-methyl-3-[(2r,4r)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one
6-(5,6-dimethylhept-3-en-2-yl)-3a-hydroxy-3-(2-hydroxyethyl)-5a-methyl-4h,5h,6h,7h,8h,8ah-cyclopenta[e]indol-2-one
C23H37NO3 (375.27732920000005)
10-ethyl-14-methyl-3-(4-methyl-5-oxooxolan-2-yl)-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one
(1s,2s,5r,7s,10s,11r,13r,14s,15r,16r)-7-ethyl-2,11,14-trihydroxy-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.2¹⁰,¹³.0¹,⁸.0⁵,¹⁶.0¹⁰,¹⁵]nonadecan-7-ium-7-olate
methyl 3-[(1s,2s,7s,10s,13s,14r,15s)-15-hydroxy-14-isopropyl-1-methyl-12-azatetracyclo[8.6.0.0²,¹³.0³,⁷]hexadec-3-en-2-yl]propanoate
C23H37NO3 (375.27732920000005)
(3ar,5ar,6r,8ar)-6-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-3a-hydroxy-3-(2-hydroxyethyl)-5a-methyl-4h,5h,6h,7h,8h,8ah-cyclopenta[e]indol-2-one
C23H37NO3 (375.27732920000005)
7-ethenyl-1,1,4a,7-tetramethyl-3,4,6,8,8a,9,10,10a-octahydro-2h-phenanthren-2-yl (hydroxycarbamoyl)formate
(1r,3s,9r,10r,11s,14s,15s,16s)-10-ethyl-14-methyl-3-[(2s,4s)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one
11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-3,4,7,16-tetrol
methyl 3-[(1s,2s,7r,10s,13s,14r,15s)-15-hydroxy-14-isopropyl-1-methyl-12-azatetracyclo[8.6.0.0²,¹³.0³,⁷]hexadec-3-en-2-yl]propanoate
C23H37NO3 (375.27732920000005)