Exact Mass: 375.2773

Exact Mass Matches: 375.2773

Found 194 metabolites which its exact mass value is equals to given mass value 375.2773, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Icaceine

Icaceine

C22H33NO4 (375.2409)


A diterpene alkaloid that is 6,18:14,16-diepoxypimar-7-en-18-one substituted by a hydroxy group at position 3 and a dimethyl amino group at position 15. It is isolated from Icacina guessfeldtii.

   

Adrenoyl ethanolamide

(7Z,10Z,13Z,16Z)-N-(2-hydroxyethyl)docosa-7,10,13,16-tetraenamide

C24H41NO2 (375.3137)


Adrenoyl ethanolamide is a N-acylethanolamine. N-acylethanolamines (NAEs) constitute a class of lipid compounds naturally present in both animal and plant membranes as constituents of the membrane-bound phospholipid, N-acylphosphatidylethanolamine (NAPE). NAPE is composed of a third fatty acid moiety linked to the amino head group of the commonly occurring membrane phospholipid, phosphatidylethanolamine. NAEs are released from NAPE by phospholipase D-type hydrolases in response to a variety of stimuli. Transient NAE release and accumulation has been attributed a variety of biological activities, including neurotransmission, membrane protection, and immunomodulation in animals. N-oleoylethanolamine is an inhibitor of the sphingolipid signaling pathway, via specific ceramidase inhibition (ceramidase converts ceramide to sphingosine). N-oleoylethanolamine blocks the effects of TNF- and arachidonic acid on intracellular Ca concentration. (PMID: 12692337, 12056855, 12560208, 11997249) [HMDB] Adrenoyl ethanolamide is a N-acylethanolamine. N-acylethanolamines (NAEs) constitute a class of lipid compounds naturally present in both animal and plant membranes as constituents of the membrane-bound phospholipid, N-acylphosphatidylethanolamine (NAPE). NAPE is composed of a third fatty acid moiety linked to the amino head group of the commonly occurring membrane phospholipid, phosphatidylethanolamine. NAEs are released from NAPE by phospholipase D-type hydrolases in response to a variety of stimuli. Transient NAE release and accumulation has been attributed a variety of biological activities, including neurotransmission, membrane protection, and immunomodulation in animals. N-oleoylethanolamine is an inhibitor of the sphingolipid signaling pathway, via specific ceramidase inhibition (ceramidase converts ceramide to sphingosine). N-oleoylethanolamine blocks the effects of TNF- and arachidonic acid on intracellular Ca concentration. (PMID: 12692337, 12056855, 12560208, 11997249).

   

3,5-Dihydroxydodecanoylcarnitine

3-[(3,5-dihydroxydodecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C19H37NO6 (375.2621)


3,5-Dihydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,5-Dihydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,5-Dihydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3,5-Dihydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3,10-Dihydroxydodecanoylcarnitine

3-[(3,10-dihydroxydodecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C19H37NO6 (375.2621)


3,10-Dihydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,10-Dihydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,10-Dihydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3,10-Dihydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3,9-Dihydroxydodecanoylcarnitine

3-[(3,9-dihydroxydodecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C19H37NO6 (375.2621)


3,9-Dihydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,9-Dihydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,9-Dihydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3,9-Dihydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3,6-Dihydroxydodecanoylcarnitine

3-[(3,6-dihydroxydodecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C19H37NO6 (375.2621)


3,6-Dihydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,6-Dihydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,6-Dihydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3,6-Dihydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3,8-Dihydroxydodecanoylcarnitine

3-[(3,8-dihydroxydodecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C19H37NO6 (375.2621)


3,8-Dihydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,8-Dihydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,8-Dihydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3,8-Dihydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3,7-Dihydroxydodecanoylcarnitine

3-[(3,7-Dihydroxydodecanoyl)oxy]-4-(trimethylazaniumyl)butanoic acid

C19H37NO6 (375.2621)


3,7-Dihydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,7-Dihydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,7-Dihydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3,7-Dihydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3,4-Dihydroxydodecanoylcarnitine

3-[(3,4-dihydroxydodecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C19H37NO6 (375.2621)


3,4-Dihydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,4-Dihydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,4-Dihydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3,4-Dihydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3,11-Dihydroxydodecanoylcarnitine

3-[(3,11-dihydroxydodecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C19H37NO6 (375.2621)


3,11-Dihydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,11-Dihydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,11-Dihydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3,11-Dihydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

N-Arachidonoyl Alanine

2-(icosa-5,8,11,14-tetraenamido)propanoic acid

C23H37NO3 (375.2773)


N-arachidonoyl alanine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is an Arachidonic acid amide of Alanine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Arachidonoyl Alanine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Arachidonoyl Alanine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

N-Myristoyl Phenylalanine

2-[(1-Hydroxytetradecylidene)amino]-3-phenylpropanoate

C23H37NO3 (375.2773)


N-myristoyl phenylalanine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Myristic acid amide of Phenylalanine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Myristoyl Phenylalanine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Myristoyl Phenylalanine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

Docosatetraenylethanolamide

N-(2-Hydroxyethyl)docosa-7,10,13,16-tetraenimidate

C24H41NO2 (375.3137)


   

Pipamperone

1-[4-(4-fluorophenyl)-4-oxobutyl]-[1,4-bipiperidine]-4-carboxamide

C21H30FN3O2 (375.2322)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AD - Butyrophenone derivatives D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent Pipamperone (Floropipamide; McN-JR 3345; R 3345) is a high-affinity antagonist of 5-HT2A receptor (pKi=8.2) and D4 receptor (pKi=8.0) and a low-affinity antagonist of D2 receptor (pKi=6.7)[1].

   

Tuberstemonine

Furo[2,3-h]pyrrolo[3,2,1-jk][1]benzazepin-10(2H)-one, 8-ethyldodecahydro-11-methyl-2-[(2S,4S)-tetrahydro-4-methyl-5-oxo-2-furanyl]-, (2S,7aR,8R,8aS,11S,11aS,11bR,11cR)-

C22H33NO4 (375.2409)


Tuberostemonine is an alkaloid. It has a role as a metabolite. Tuberostemonine is a natural product found in Stemona tuberosa, Stemona sessilifolia, and other organisms with data available. A natural product found in Stemona phyllantha and Stemona tuberosa. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.534 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.531 Tuberostemonine, an alkaloid, is an antimalarial agent that targets Plasmodium falciparum ferredoxin-NADP+ reductases (pfFNR)[1]. Tuberostemonine, an alkaloid, is an antimalarial agent that targets Plasmodium falciparum ferredoxin-NADP+ reductases (pfFNR)[1].

   

Tuberostemonine J

(9alpa,9aalpha)-Neotuberostemonin

C22H33NO4 (375.2409)


   

Daphnioldhanin C

Daphnioldhanin C

C22H33NO4 (375.2409)


   

Oxaloterpin C

Oxaloterpin C

C22H33NO4 (375.2409)


   
   
   

Lepenine N-oxide

Lepenine N-oxide

C22H33NO4 (375.2409)


   
   

Turpelline

11beta-Hydroxynapelline

C22H33NO4 (375.2409)


   

Calyciphylline O

Calyciphylline O

C23H37NO3 (375.2773)


   

Tuberostemonine H

(9alpha)-Neotuberostemonine

C22H33NO4 (375.2409)


   

Pipamperone

Pipamperone

C21H30FN3O2 (375.2322)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AD - Butyrophenone derivatives D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent CONFIDENCE standard compound; INTERNAL_ID 2514 Pipamperone (Floropipamide; McN-JR 3345; R 3345) is a high-affinity antagonist of 5-HT2A receptor (pKi=8.2) and D4 receptor (pKi=8.0) and a low-affinity antagonist of D2 receptor (pKi=6.7)[1].

   

Tuberostemonin

Tuberostemonin

C22H33NO4 (375.2409)


   
   

Pachyaximine B

Pachyaximine B

C24H41NO2 (375.3137)


   
   

3alpha-hydroxy-12-epi-napelline

3alpha-hydroxy-12-epi-napelline

C22H33NO4 (375.2409)


   

caldaphnidine L

caldaphnidine L

C23H37NO3 (375.2773)


   

methyl 7-hydroxyhomodaphniphyllate|rel-(3aR,4S,4aS,5R,8S,8aR,8bS,9S,10S)-octahydro-9-hydroxy-8-methyl-5-(1-methylethyl)-4,8,3a-[1,2,4]butanetriylcyclopent[b]indole-8a(4aH)-propanoic acid methyl ester

methyl 7-hydroxyhomodaphniphyllate|rel-(3aR,4S,4aS,5R,8S,8aR,8bS,9S,10S)-octahydro-9-hydroxy-8-methyl-5-(1-methylethyl)-4,8,3a-[1,2,4]butanetriylcyclopent[b]indole-8a(4aH)-propanoic acid methyl ester

C23H37NO3 (375.2773)


   

N-(3-Methoxybenzyl)Palmitamide

N-(3-Methoxybenzyl)Palmitamide

C24H41NO2 (375.3137)


   

Antibiotic KA 6606 XVI

Antibiotic KA 6606 XVI

C16H33N5O5 (375.2482)


   
   
   

2-heptadec-11-enamidoethanesulfonic acid

2-heptadec-11-enamidoethanesulfonic acid

C19H37NO4S (375.2443)


   

16beta-hydroxycrambescidin 359

16beta-hydroxycrambescidin 359

C21H33N3O3 (375.2522)


   

20-ethyl-8-hydroxy-1alpha-methoxy-4-methyl-heteratisan-14-one|6-deoxy-heteratisine|Hetereophyllisin|heterophyllisine

20-ethyl-8-hydroxy-1alpha-methoxy-4-methyl-heteratisan-14-one|6-deoxy-heteratisine|Hetereophyllisin|heterophyllisine

C22H33NO4 (375.2409)


   

Antibiotic KA 6606 XVII

Antibiotic KA 6606 XVII

C16H33N5O5 (375.2482)


   

daphnezomine S

daphnezomine S

C22H33NO4 (375.2409)


   

methyl 17-hydroxyhomodaphniphyllate

methyl 17-hydroxyhomodaphniphyllate

C23H37NO3 (375.2773)


   

lysylthreonyllysine

lysylthreonyllysine

C16H33N5O5 (375.2482)


   
   
   

NA 24:4;O

N-(1,1-dimethy-2-hydroxy-ethyl)-5Z,8Z,11Z,14Z-eicosatetraenoyl amine

C24H41NO2 (375.3137)


N-(3-Methoxybenzyl)palmitamide is a natural product found in Lepidium meyenii with data available. N-(3-Methoxybenzyl)Palmitamide is a promising inhibitor of FAAH for the treatment of pain, inflammation and CNS degenerative disorders[1]. N-(3-Methoxybenzyl)Palmitamide is a promising inhibitor of FAAH for the treatment of pain, inflammation and CNS degenerative disorders[1].

   

Neotuberostemonine

(1S,3S,9R,10R,11R,14S,15R,16R)-10-ethyl-14-methyl-3-[(2S,4S)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.04,16.011,15]hexadecan-13-one

C22H33NO4 (375.2409)


Neotuberostemonine is an alkaloid. It has a role as a metabolite. Neotuberostemonine is a natural product found in Stemona tuberosa, Stemona phyllantha, and other organisms with data available. A natural product found in Stemona tuberosa and Stemona phyllantha. Neotuberostemonine, one of the main antitussive alkaloids in the root of Stemona tuberosa Lour, attenuates bleomycin-induced pulmonary fibrosis by suppressing the recruitment and activation of macrophages[1]. Neotuberostemonine, one of the main antitussive alkaloids in the root of Stemona tuberosa Lour, attenuates bleomycin-induced pulmonary fibrosis by suppressing the recruitment and activation of macrophages[1].

   

Napelline N-oxide

Napelline N-oxide

C22H33NO4 (375.2409)


Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid

   

R-4-benzyl-3-((R)-3-hydroxy-2,2-dimethyloctanoyl)-5,5-dimethyloxazolidin-2-one

"R-4-benzyl-3-((R)-3-hydroxy-2,2-dimethyloctanoyl)-5,5-dimethyloxazolidin-2-one"

C22H33NO4 (375.2409)


   

S-4-benzyl-3-((S)-3-hydroxy-2,2-dimethyloctanoyl) -5,5-dimethyloxazolidin-2-one

"S-4-benzyl-3-((S)-3-hydroxy-2,2-dimethyloctanoyl) -5,5-dimethyloxazolidin-2-one"

C22H33NO4 (375.2409)


   
   
   

N-(1,1-dimethyl-2-hydroxy-ethyl)arachidonoylamide

N-(1,1-dimethy-2-hydroxy-ethyl)-5Z,8Z,11Z,14Z-eicosatetraenoyl amine

C24H41NO2 (375.3137)


   

N-ethyl N-(2-hydroxy-ethyl)arachidonoylamide

N-ethyl-N-(2-hydroxy-ethyl)-5Z,8Z,11Z,14Z-eicosatetraenoyl amine

C24H41NO2 (375.3137)


   

alpha,alpha-dimethyl anandamide

N-(2,2-dimethy-5Z,8Z,11Z,14Z-eicosatetraenoyl)-ethanolamine

C24H41NO2 (375.3137)


   

N-(5Z,8Z,11Z,14Z-docosatetraenoyl)-ethanolamine

N-(5Z,8Z,11Z,14Z-docosatetraenoyl)-ethanolamine

C24H41NO2 (375.3137)


   

N-Arachidonoyl-L-Alanine

N-(1-oxo-5Z,8Z,11Z,14Z-eicosatetraenyl)-L-alanine

C23H37NO3 (375.2773)


An N-acyl-L-alanine resulting from the formal condensation of the amino group of L-alanine with the carboxy group of arachidonic acid.

   

S-4-benzyl-3-((S)-3-hydroxy-2,2-dimethyloctanoyl)-5,5-dimethyloxazolidin-2-one

S-4-benzyl-3-((S)-3-hydroxy-2,2-dimethyloctanoyl)-5,5-dimethyloxazolidin-2-one

C22H33NO4 (375.2409)


   

R-4-benzyl-3-((R)-3-hydroxy-2,2-dimethyloctanoyl)-5,5-dimethyloxazolidin-2-one

R-4-benzyl-3-((R)-3-hydroxy-2,2-dimethyloctanoyl)-5,5-dimethyloxazolidin-2-one

C22H33NO4 (375.2409)


   

N-arachidonoyl alanine

N-(5Z,8Z,11Z,15Z-eicosatetraenoyl)-alanine

C23H37NO3 (375.2773)


   

5,8,11,14-all-cis-docosatetraenoylethanolamine

N-(5Z,8Z,11Z,14Z-docosatetraenoyl)-ethanolamine

C24H41NO2 (375.3137)


   

17-trimethylarsenylheptadecan-1-ol

17-trimethylarsenylheptadecan-1-ol

C20H44OAs (375.2608)


   

NA 23:5;O2

N-(5Z,8Z,11Z,14Z-eicosatetraenoyl) alanine

C23H37NO3 (375.2773)


   

Stieleriacine B1

N-(dodecanoyl)-6-methyl-2,3-(Z)-dehydrotyrosine

C22H33NO4 (375.2409)


   

Stieleriacine B2

N-(dodecanoyl)-6-methyl-2,3-(E)-dehydrotyrosine

C22H33NO4 (375.2409)


   

N-(15-methyl-2,3,4-trihydroxy-hexadecanoyl)-glycine

N-(15-methyl-2,3,4-trihydroxy-hexadecanoyl)-glycine

C19H37NO6 (375.2621)


   

NAE 22:4

N-(2,2-dimethy-5Z,8Z,11Z,14Z-eicosatetraenoyl)-ethanolamine

C24H41NO2 (375.3137)


   

Asc C11 EA

N-(10R-(3,6-dideoxy-alpha-L-arabinosyloxy)-3R,8R-dihydroxy-undecanoyl) ethanolamine

C19H37NO6 (375.2621)


   

sodium (Z)-N-methyl-N-(1-oxo-9-octadecenyl)aminoacetate

sodium (Z)-N-methyl-N-(1-oxo-9-octadecenyl)aminoacetate

C21H38NNaO3 (375.2749)


   

4,4-bis(dimethylamino)-4-(methylamino)trityl alcohol

4,4-bis(dimethylamino)-4-(methylamino)trityl alcohol

C24H29N3O (375.2311)


   

3-Pyridinemethanol, 5-butyl-4-(4-fluoro-2-hydroxyphenyl)-a-methyl-2,6-bis(1-methylethyl)-, (aR)-

3-Pyridinemethanol, 5-butyl-4-(4-fluoro-2-hydroxyphenyl)-a-methyl-2,6-bis(1-methylethyl)-, (aR)-

C23H34FNO2 (375.2573)


   

1,3,5-TRIS(2,2-DIMETHYLPROPANAMIDO)BENZENE

1,3,5-TRIS(2,2-DIMETHYLPROPANAMIDO)BENZENE

C21H33N3O3 (375.2522)


   

Daphnezomine B

Daphnezomine B

C23H37NO3 (375.2773)


   

hydrogen ionophore iv

hydrogen ionophore iv

C24H41NO2 (375.3137)


   

3-Pyridinemethanol, 5-butyl-4-(4-fluoro-2-hydroxyphenyl)-a-methyl-2,6-bis(1-methylethyl)-, (aR,4R)- (9CI)

3-Pyridinemethanol, 5-butyl-4-(4-fluoro-2-hydroxyphenyl)-a-methyl-2,6-bis(1-methylethyl)-, (aR,4R)- (9CI)

C23H34FNO2 (375.2573)


   

3-Pyridinemethanol, 5-butyl-4-(4-fluoro-2-hydroxyphenyl)-a-methyl-2,6-bis(1-methylethyl)-, (aR,4S)- (9CI)

3-Pyridinemethanol, 5-butyl-4-(4-fluoro-2-hydroxyphenyl)-a-methyl-2,6-bis(1-methylethyl)-, (aR,4S)- (9CI)

C23H34FNO2 (375.2573)


   
   

1-METHYL-4-(4-FLUOROPHENYL)-PIPERIDINE-3-CARBOXYLIC ACID MENTHYL ESTER

1-METHYL-4-(4-FLUOROPHENYL)-PIPERIDINE-3-CARBOXYLIC ACID MENTHYL ESTER

C23H34FNO2 (375.2573)


   

sodium N-methyl-N-(1-oxo-9-octadecenyl)aminoacetate

sodium N-methyl-N-(1-oxo-9-octadecenyl)aminoacetate

C21H38NNaO3 (375.2749)


   

3-Pyridinemethanol, 5-butyl-4-(4-fluoro-2-hydroxyphenyl)-a-methyl-2,6-bis(1-methylethyl)-, (aS)-

3-Pyridinemethanol, 5-butyl-4-(4-fluoro-2-hydroxyphenyl)-a-methyl-2,6-bis(1-methylethyl)-, (aS)-

C23H34FNO2 (375.2573)


   

Sodium 1-palmitoyl-L-prolinate

Sodium 1-palmitoyl-L-prolinate

C21H38NNaO3 (375.2749)


   

N-Myristol-L-phenylalanine

N-Myristol-L-phenylalanine

C23H37NO3 (375.2773)


   

Octadecanamide,N-(4-hydroxyphenyl)-

Octadecanamide,N-(4-hydroxyphenyl)-

C24H41NO2 (375.3137)


   

Glycerides, tallow mono-, hydrogenated

Glycerides, tallow mono-, hydrogenated

C21H43O5- (375.311)


   

Undecyl2-acetamido-2-deoxy-b-D-glucopyranoside

Undecyl2-acetamido-2-deoxy-b-D-glucopyranoside

C19H37NO6 (375.2621)


   

Pentazocine lactate

Pentazocine lactate

C22H33NO4 (375.2409)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Terestigmine

Terestigmine

C21H33N3O3 (375.2522)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

3-Picolinyl stearate

3-Picolinyl stearate

C24H41NO2 (375.3137)


   

(4R)-4-[(3R,5R,8R,9S,10S,13R,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoate

(4R)-4-[(3R,5R,8R,9S,10S,13R,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoate

C24H39O3- (375.2899)


   

Isolithocholate

Isolithocholate

C24H39O3- (375.2899)


A bile acid anion that is the conjugate base of isolithocholic acid, obtained by deprotonation of the carboxy group. The 3beta-hydroxy epimer of lithocholate. It is the major microspecies at pH 7.3.

   

Prefusarin (open ring form)

Prefusarin (open ring form)

C22H33NO4 (375.2409)


   

(7E,10E,13E,16E)-N-(2-hydroxyethyl)docosa-7,10,13,16-tetraenamide

(7E,10E,13E,16E)-N-(2-hydroxyethyl)docosa-7,10,13,16-tetraenamide

C24H41NO2 (375.3137)


   

3,5-Dihydroxydodecanoylcarnitine

3,5-Dihydroxydodecanoylcarnitine

C19H37NO6 (375.2621)


   

3,9-Dihydroxydodecanoylcarnitine

3,9-Dihydroxydodecanoylcarnitine

C19H37NO6 (375.2621)


   

3,6-Dihydroxydodecanoylcarnitine

3,6-Dihydroxydodecanoylcarnitine

C19H37NO6 (375.2621)


   

3,8-Dihydroxydodecanoylcarnitine

3,8-Dihydroxydodecanoylcarnitine

C19H37NO6 (375.2621)


   

3,7-Dihydroxydodecanoylcarnitine

3,7-Dihydroxydodecanoylcarnitine

C19H37NO6 (375.2621)


   

3,4-Dihydroxydodecanoylcarnitine

3,4-Dihydroxydodecanoylcarnitine

C19H37NO6 (375.2621)


   

3,10-Dihydroxydodecanoylcarnitine

3,10-Dihydroxydodecanoylcarnitine

C19H37NO6 (375.2621)


   

3,11-Dihydroxydodecanoylcarnitine

3,11-Dihydroxydodecanoylcarnitine

C19H37NO6 (375.2621)


   

2-[[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]amino]propanoic acid

2-[[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]amino]propanoic acid

C23H37NO3 (375.2773)


   

tuberostemonine N

tuberostemonine N

C22H33NO4 (375.2409)


A natural product found in Stemona tuberosa and Stemona phyllantha.

   

17-Dimethylaminolobohedleolide

17-Dimethylaminolobohedleolide

C22H33NO4 (375.2409)


A cembrane diterpenoid isolated from Lobophytum and shown to have anti-HIV-1 activity.

   

(2S)-6-amino-2-[[(2S,3R)-2-[[(2S)-2,6-diaminohexanoyl]amino]-3-hydroxybutanoyl]amino]hexanoic acid

(2S)-6-amino-2-[[(2S,3R)-2-[[(2S)-2,6-diaminohexanoyl]amino]-3-hydroxybutanoyl]amino]hexanoic acid

C16H33N5O5 (375.2482)


   

7-ethyl-1-[(phenylmethyl)amino]-3-(1-piperidinyl)-6,8-dihydro-5H-2,7-naphthyridine-4-carbonitrile

7-ethyl-1-[(phenylmethyl)amino]-3-(1-piperidinyl)-6,8-dihydro-5H-2,7-naphthyridine-4-carbonitrile

C23H29N5 (375.2423)


   

2-[[4-(3,5-Ditert-butylpyrazol-1-yl)phenyl]iminomethyl]phenol

2-[[4-(3,5-Ditert-butylpyrazol-1-yl)phenyl]iminomethyl]phenol

C24H29N3O (375.2311)


   
   
   
   

(8S)-2-hexadec-6-enoyl-1-hydroxy-5,6,7,8-tetrahydropyrrolizin-3-one

(8S)-2-hexadec-6-enoyl-1-hydroxy-5,6,7,8-tetrahydropyrrolizin-3-one

C23H37NO3 (375.2773)


   

(3R)-13-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxy-3-hydroxytridecanoate

(3R)-13-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxy-3-hydroxytridecanoate

C19H35O7- (375.2383)


   

(3R,12R)-12-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxy-3-hydroxytridecanoate

(3R,12R)-12-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxy-3-hydroxytridecanoate

C19H35O7- (375.2383)


   
   

Cer 8:0;3O/12:0;(2OH)

Cer 8:0;3O/12:0;(2OH)

C20H41NO5 (375.2985)


   

(10Z,13Z,16Z,19Z)-N-(2-hydroxyethyl)docosa-10,13,16,19-tetraenamide

(10Z,13Z,16Z,19Z)-N-(2-hydroxyethyl)docosa-10,13,16,19-tetraenamide

C24H41NO2 (375.3137)


   

beta-Picolinyl 4-ethylisopalmitate

beta-Picolinyl 4-ethylisopalmitate

C24H41NO2 (375.3137)


   

2,3-Dihydroxy-3,7,11,15-tetramethylhexadecan-1-OL nitrate

2,3-Dihydroxy-3,7,11,15-tetramethylhexadecan-1-OL nitrate

C20H41NO5 (375.2985)


   

(1R,4S,5R,7R,8S,13R,16S,17S)-11-ethyl-13-methyl-6-methylidene-11-oxido-11-azoniahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecane-4,7,16-triol

(1R,4S,5R,7R,8S,13R,16S,17S)-11-ethyl-13-methyl-6-methylidene-11-oxido-11-azoniahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecane-4,7,16-triol

C22H33NO4 (375.2409)


   

Lithocholate

Lithocholate

C24H39O3 (375.2899)


A bile acid anion that is the conjugate base of lithocholic acid.

   

N-(1,1-dimethyl-2-hydroxy-ethyl) arachidonoyl amine

N-(1,1-dimethyl-2-hydroxy-ethyl) arachidonoyl amine

C24H41NO2 (375.3137)


   

N-ethyl N-(2-hydroxy-ethyl) arachidonoyl amine

N-ethyl N-(2-hydroxy-ethyl) arachidonoyl amine

C24H41NO2 (375.3137)


   

bhos#22(1-)

bhos#22(1-)

C19H35O7 (375.2383)


Conjugate base of bhos#22

   

bhas#22(1-)

bhas#22(1-)

C19H35O7 (375.2383)


Conjugate base of bhas#22

   

NA-Ala 20:4(5Z,8Z,11Z,14Z)

NA-Ala 20:4(5Z,8Z,11Z,14Z)

C23H37NO3 (375.2773)


   

NA-Dopamine 15:1(9Z)

NA-Dopamine 15:1(9Z)

C23H37NO3 (375.2773)


   

NA-Histamine 18:1(9Z)

NA-Histamine 18:1(9Z)

C23H41N3O (375.3249)


   
   
   

NA-Taurine 17:1(9Z)

NA-Taurine 17:1(9Z)

C19H37NO4S (375.2443)


   

NA-Val 18:4(6Z,9Z,12Z,15Z)

NA-Val 18:4(6Z,9Z,12Z,15Z)

C23H37NO3 (375.2773)


   

Docosatetraenoyl-EA

Docosatetraenoyl-EA

C24H41NO2 (375.3137)


   
   

ST 20:2;O2;Gly

ST 20:2;O2;Gly

C22H33NO4 (375.2409)


   

n-[(3-methoxyphenyl)methyl]hexadecanimidic acid

n-[(3-methoxyphenyl)methyl]hexadecanimidic acid

C24H41NO2 (375.3137)


   

(1s,3s,9r,10r,11r,14r,15r,16s)-10-ethyl-14-methyl-3-[(2s,4s)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one

(1s,3s,9r,10r,11r,14r,15r,16s)-10-ethyl-14-methyl-3-[(2s,4s)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one

C22H33NO4 (375.2409)


   

(1r,2s,3r,4r,5s,7r,8r,12r,13s,21r)-4,12-dimethyl-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosane-3,4-diol

(1r,2s,3r,4r,5s,7r,8r,12r,13s,21r)-4,12-dimethyl-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosane-3,4-diol

C22H33NO4 (375.2409)


   

methyl 3-[(1r,2s,3r,7s,10r,11r,13r,14s)-11-hydroxy-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁷.0⁷,¹²]hexadecan-2-yl]propanoate

methyl 3-[(1r,2s,3r,7s,10r,11r,13r,14s)-11-hydroxy-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁷.0⁷,¹²]hexadecan-2-yl]propanoate

C23H37NO3 (375.2773)


   

methyl 3-[(1s,2r,3r,7r,9s,14r)-9-hydroxy-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁷.0⁷,¹¹]hexadecan-2-yl]propanoate

methyl 3-[(1s,2r,3r,7r,9s,14r)-9-hydroxy-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁷.0⁷,¹¹]hexadecan-2-yl]propanoate

C23H37NO3 (375.2773)


   

(1r,2s,3r,4s,5s,7r,8r,12r,13s,21r)-4,12-dimethyl-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosane-3,4-diol

(1r,2s,3r,4s,5s,7r,8r,12r,13s,21r)-4,12-dimethyl-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosane-3,4-diol

C22H33NO4 (375.2409)


   

(1s,3r,9s,10s,11s,14r,15s,16s)-10-ethyl-14-methyl-3-[(2r,4r)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one

(1s,3r,9s,10s,11s,14r,15s,16s)-10-ethyl-14-methyl-3-[(2r,4r)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one

C22H33NO4 (375.2409)


   

12-ethyl-9-hydroxy-17-methoxy-14-methyl-5-oxa-12-azahexacyclo[8.7.2.1²,⁶.0¹,¹¹.0³,⁹.0¹⁴,¹⁸]icosan-4-one

12-ethyl-9-hydroxy-17-methoxy-14-methyl-5-oxa-12-azahexacyclo[8.7.2.1²,⁶.0¹,¹¹.0³,⁹.0¹⁴,¹⁸]icosan-4-one

C22H33NO4 (375.2409)


   

1,6,11-trihydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,6h,6ah,7h,10h,11h,12h-cyclonona[d]isoindol-13-one

1,6,11-trihydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,6h,6ah,7h,10h,11h,12h-cyclonona[d]isoindol-13-one

C22H33NO4 (375.2409)


   

(1r,7r,10r,11s,15s,18s,21r,22r,23r)-21,23-dihydroxy-11-methyl-5-oxa-13-azahexacyclo[11.9.1.0¹,⁷.0⁷,¹⁵.0¹⁰,²³.0¹⁸,²²]tricosan-4-one

(1r,7r,10r,11s,15s,18s,21r,22r,23r)-21,23-dihydroxy-11-methyl-5-oxa-13-azahexacyclo[11.9.1.0¹,⁷.0⁷,¹⁵.0¹⁰,²³.0¹⁸,²²]tricosan-4-one

C22H33NO4 (375.2409)


   

(1r,4s,5r,7r,8s,13r,16s)-11-ethyl-4,7,16-trihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-11-ium-11-olate

(1r,4s,5r,7r,8s,13r,16s)-11-ethyl-4,7,16-trihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-11-ium-11-olate

C22H33NO4 (375.2409)


   

(1s,2r,4r,5r,7r,8s,9r,11r,13s,16s,17r)-11-ethyl-4,7,16-trihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-11-ium-11-olate

(1s,2r,4r,5r,7r,8s,9r,11r,13s,16s,17r)-11-ethyl-4,7,16-trihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-11-ium-11-olate

C22H33NO4 (375.2409)


   

(1s,2r,4r,5s,7r,8r,12r,13r,18r,20s,21r)-4,12-dimethyl-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosane-4,20-diol

(1s,2r,4r,5s,7r,8r,12r,13r,18r,20s,21r)-4,12-dimethyl-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosane-4,20-diol

C22H33NO4 (375.2409)


   

5-(4-cyclopropyl-2-methylbuta-1,3-dien-1-yl)-7-hydroxy-7-methyl-hexahydro-1ah-oxireno[2,3-g]indolizin-6-yl 3-methylbutanoate

5-(4-cyclopropyl-2-methylbuta-1,3-dien-1-yl)-7-hydroxy-7-methyl-hexahydro-1ah-oxireno[2,3-g]indolizin-6-yl 3-methylbutanoate

C22H33NO4 (375.2409)


   

(1r,11s,21r)-21,23-dihydroxy-11-methyl-5-oxa-13-azahexacyclo[11.9.1.0¹,⁷.0⁷,¹⁵.0¹⁰,²³.0¹⁸,²²]tricosan-4-one

(1r,11s,21r)-21,23-dihydroxy-11-methyl-5-oxa-13-azahexacyclo[11.9.1.0¹,⁷.0⁷,¹⁵.0¹⁰,²³.0¹⁸,²²]tricosan-4-one

C22H33NO4 (375.2409)


   

(2r,4ar,7r,8as,10as)-7-ethenyl-1,1,4a,7-tetramethyl-3,4,6,8,8a,9,10,10a-octahydro-2h-phenanthren-2-yl (hydroxycarbamoyl)formate

(2r,4ar,7r,8as,10as)-7-ethenyl-1,1,4a,7-tetramethyl-3,4,6,8,8a,9,10,10a-octahydro-2h-phenanthren-2-yl (hydroxycarbamoyl)formate

C22H33NO4 (375.2409)


   

(1as,5r,6r,7r,7as,7br)-5-[(1e,3e)-4-cyclopropyl-2-methylbuta-1,3-dien-1-yl]-7-hydroxy-7-methyl-hexahydro-1ah-oxireno[2,3-g]indolizin-6-yl 3-methylbutanoate

(1as,5r,6r,7r,7as,7br)-5-[(1e,3e)-4-cyclopropyl-2-methylbuta-1,3-dien-1-yl]-7-hydroxy-7-methyl-hexahydro-1ah-oxireno[2,3-g]indolizin-6-yl 3-methylbutanoate

C22H33NO4 (375.2409)


   

3-[15-hydroxy-12-(hydroxymethyl)-16-methyl-1-azapentacyclo[9.6.1.0²,¹⁵.0³,¹².0⁴,⁸]octadec-4-en-3-yl]propanoic acid

3-[15-hydroxy-12-(hydroxymethyl)-16-methyl-1-azapentacyclo[9.6.1.0²,¹⁵.0³,¹².0⁴,⁸]octadec-4-en-3-yl]propanoic acid

C22H33NO4 (375.2409)


   

methyl 3-[(2s,3r,4r,8s,11s,12r,15r)-11-hydroxy-12,16-dimethyl-1-azapentacyclo[9.6.1.0²,¹⁵.0³,¹².0⁴,⁸]octadecan-3-yl]propanoate

methyl 3-[(2s,3r,4r,8s,11s,12r,15r)-11-hydroxy-12,16-dimethyl-1-azapentacyclo[9.6.1.0²,¹⁵.0³,¹².0⁴,⁸]octadecan-3-yl]propanoate

C23H37NO3 (375.2773)


   

(1s,2r,4r,5r,7r,8r,9r,10r,13r,14r,16s,17r)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,14,16-tetrol

(1s,2r,4r,5r,7r,8r,9r,10r,13r,14r,16s,17r)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,14,16-tetrol

C22H33NO4 (375.2409)


   

methyl 3-[(1s,2r,3s,7s,8s,10s,13s,14r)-8-hydroxy-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁷.0⁷,¹²]hexadecan-2-yl]propanoate

methyl 3-[(1s,2r,3s,7s,8s,10s,13s,14r)-8-hydroxy-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁷.0⁷,¹²]hexadecan-2-yl]propanoate

C23H37NO3 (375.2773)


   

n-(3,5,11,18-tetrahydroxyoctadecan-2-yl)ethanimidic acid

n-(3,5,11,18-tetrahydroxyoctadecan-2-yl)ethanimidic acid

C20H41NO5 (375.2985)


   

(1r,3s,9r,10r,11r,14s,15s,16r)-10-ethyl-14-methyl-3-[(2r,4s)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one

(1r,3s,9r,10r,11r,14s,15s,16r)-10-ethyl-14-methyl-3-[(2r,4s)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one

C22H33NO4 (375.2409)


   

methyl 3-{11-hydroxy-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁷.0⁷,¹²]hexadecan-2-yl}propanoate

methyl 3-{11-hydroxy-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁷.0⁷,¹²]hexadecan-2-yl}propanoate

C23H37NO3 (375.2773)


   

methyl 3-[(1s,2r,7r)-7-hydroxy-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁸.0⁷,¹²]hexadecan-2-yl]propanoate

methyl 3-[(1s,2r,7r)-7-hydroxy-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁸.0⁷,¹²]hexadecan-2-yl]propanoate

C23H37NO3 (375.2773)


   

(1s,2r,3s,6r,9s,10s,11r,14r,17s,18r)-12-ethyl-9-hydroxy-17-methoxy-14-methyl-5-oxa-12-azahexacyclo[8.7.2.1²,⁶.0¹,¹¹.0³,⁹.0¹⁴,¹⁸]icosan-4-one

(1s,2r,3s,6r,9s,10s,11r,14r,17s,18r)-12-ethyl-9-hydroxy-17-methoxy-14-methyl-5-oxa-12-azahexacyclo[8.7.2.1²,⁶.0¹,¹¹.0³,⁹.0¹⁴,¹⁸]icosan-4-one

C22H33NO4 (375.2409)


   

(1s,3s,9r,10r,11r,14s,15r,16r)-10-ethyl-14-methyl-3-[(2s,4r)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one

(1s,3s,9r,10r,11r,14s,15r,16r)-10-ethyl-14-methyl-3-[(2s,4r)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one

C22H33NO4 (375.2409)


   

(1r,2s,3r,5r,7s,10r,11s,13s,14s,16s,17s,18s,19r)-4-ethyl-16-methoxy-10-methyl-6-oxa-4-azaheptacyclo[15.2.1.0²,⁷.0²,¹¹.0³,¹³.0⁵,¹⁰.0¹⁴,¹⁹]icosane-14,18-diol

(1r,2s,3r,5r,7s,10r,11s,13s,14s,16s,17s,18s,19r)-4-ethyl-16-methoxy-10-methyl-6-oxa-4-azaheptacyclo[15.2.1.0²,⁷.0²,¹¹.0³,¹³.0⁵,¹⁰.0¹⁴,¹⁹]icosane-14,18-diol

C22H33NO4 (375.2409)


   

(1r,2r,4s,5r,7r,8r,9r,10r,11r,13s,16s,17r)-11-ethyl-4,7,16-trihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-11-ium-11-olate

(1r,2r,4s,5r,7r,8r,9r,10r,11r,13s,16s,17r)-11-ethyl-4,7,16-trihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-11-ium-11-olate

C22H33NO4 (375.2409)


   

3-[(2r,3r,8r,11s,12r,15s,16r)-15-hydroxy-12-(hydroxymethyl)-16-methyl-1-azapentacyclo[9.6.1.0²,¹⁵.0³,¹².0⁴,⁸]octadec-4-en-3-yl]propanoic acid

3-[(2r,3r,8r,11s,12r,15s,16r)-15-hydroxy-12-(hydroxymethyl)-16-methyl-1-azapentacyclo[9.6.1.0²,¹⁵.0³,¹².0⁴,⁸]octadec-4-en-3-yl]propanoic acid

C22H33NO4 (375.2409)


   

(2r,4ar,7s,8as,10as)-7-ethenyl-1,1,4a,7-tetramethyl-3,4,6,8,8a,9,10,10a-octahydro-2h-phenanthren-2-yl (hydroxycarbamoyl)formate

(2r,4ar,7s,8as,10as)-7-ethenyl-1,1,4a,7-tetramethyl-3,4,6,8,8a,9,10,10a-octahydro-2h-phenanthren-2-yl (hydroxycarbamoyl)formate

C22H33NO4 (375.2409)


   

(1r,3r,9r,10r,11s,14s,15s,16r)-10-ethyl-14-methyl-3-[(2s,4s)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one

(1r,3r,9r,10r,11s,14s,15s,16r)-10-ethyl-14-methyl-3-[(2s,4s)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one

C22H33NO4 (375.2409)


   

15,18-dihydroxy-13-(2-hydroxyethyl)-11-methyl-19-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-6-one

15,18-dihydroxy-13-(2-hydroxyethyl)-11-methyl-19-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-6-one

C22H33NO4 (375.2409)


   

(1s,2s,5r,8r,9r,10s,11r,13r,14s,15r,16r)-7-ethyl-2,11,14-trihydroxy-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.2¹⁰,¹³.0¹,⁸.0⁵,¹⁶.0¹⁰,¹⁵]nonadecan-7-ium-7-olate

(1s,2s,5r,8r,9r,10s,11r,13r,14s,15r,16r)-7-ethyl-2,11,14-trihydroxy-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.2¹⁰,¹³.0¹,⁸.0⁵,¹⁶.0¹⁰,¹⁵]nonadecan-7-ium-7-olate

C22H33NO4 (375.2409)


   

(1r,3s,9r,10r,11r,14s,15r,16r)-10-ethyl-14-methyl-3-[(2s,4s)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one

(1r,3s,9r,10r,11r,14s,15r,16r)-10-ethyl-14-methyl-3-[(2s,4s)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one

C22H33NO4 (375.2409)


   

methyl 3-{15-hydroxy-14-isopropyl-1-methyl-12-azatetracyclo[8.6.0.0²,¹³.0³,⁷]hexadec-3-en-2-yl}propanoate

methyl 3-{15-hydroxy-14-isopropyl-1-methyl-12-azatetracyclo[8.6.0.0²,¹³.0³,⁷]hexadec-3-en-2-yl}propanoate

C23H37NO3 (375.2773)


   

(1r,2r,4s,5r,7r,8r,9r,10r,13s,16s,17r)-11-ethyl-4,7,16-trihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-11-ium-11-olate

(1r,2r,4s,5r,7r,8r,9r,10r,13s,16s,17r)-11-ethyl-4,7,16-trihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-11-ium-11-olate

C22H33NO4 (375.2409)


   

methyl 3-[(1s,2r,3r,7r,9s,10s,11r,13s,14r)-9-hydroxy-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁷.0⁷,¹¹]hexadecan-2-yl]propanoate

methyl 3-[(1s,2r,3r,7r,9s,10s,11r,13s,14r)-9-hydroxy-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁷.0⁷,¹¹]hexadecan-2-yl]propanoate

C23H37NO3 (375.2773)


   

3-[(dimethylamino)methyl]-6,14-dimethyl-2-oxo-3h,3ah,4h,5h,8h,9h,12h,13h,15ah-cyclotetradeca[b]furan-10-carboxylic acid

3-[(dimethylamino)methyl]-6,14-dimethyl-2-oxo-3h,3ah,4h,5h,8h,9h,12h,13h,15ah-cyclotetradeca[b]furan-10-carboxylic acid

C22H33NO4 (375.2409)


   

11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,14,16-tetrol

11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,14,16-tetrol

C22H33NO4 (375.2409)


   

(3s,3ar,6r,6ar,11s,13as)-1,6,11-trihydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,6h,6ah,7h,10h,11h,12h-cyclonona[d]isoindol-13-one

(3s,3ar,6r,6ar,11s,13as)-1,6,11-trihydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,6h,6ah,7h,10h,11h,12h-cyclonona[d]isoindol-13-one

C22H33NO4 (375.2409)


   

(7as)-2-(hexadec-6-enoyl)-1-hydroxy-5,6,7,7a-tetrahydropyrrolizin-3-one

(7as)-2-(hexadec-6-enoyl)-1-hydroxy-5,6,7,7a-tetrahydropyrrolizin-3-one

C23H37NO3 (375.2773)


   

(1s,2r,4r,5r,7r,8s,9r,10r,13s,16s,17r)-11-ethyl-4,7,16-trihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-11-ium-11-olate

(1s,2r,4r,5r,7r,8s,9r,10r,13s,16s,17r)-11-ethyl-4,7,16-trihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-11-ium-11-olate

C22H33NO4 (375.2409)


   

(3r,3as,15ar)-3-[(dimethylamino)methyl]-6,14-dimethyl-2-oxo-3h,3ah,4h,5h,6h,9h,12h,13h,15ah-cyclotetradeca[b]furan-10-carboxylic acid

(3r,3as,15ar)-3-[(dimethylamino)methyl]-6,14-dimethyl-2-oxo-3h,3ah,4h,5h,6h,9h,12h,13h,15ah-cyclotetradeca[b]furan-10-carboxylic acid

C22H33NO4 (375.2409)


   

(7z,10z,13z,16z)-n-(2-hydroxyethyl)docosa-7,10,13,16-tetraenimidic acid

(7z,10z,13z,16z)-n-(2-hydroxyethyl)docosa-7,10,13,16-tetraenimidic acid

C24H41NO2 (375.3137)


   

7-ethyl-2,11,14-trihydroxy-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.2¹⁰,¹³.0¹,⁸.0⁵,¹⁶.0¹⁰,¹⁵]nonadecan-7-ium-7-olate

7-ethyl-2,11,14-trihydroxy-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.2¹⁰,¹³.0¹,⁸.0⁵,¹⁶.0¹⁰,¹⁵]nonadecan-7-ium-7-olate

C22H33NO4 (375.2409)


   

2-(hexadec-6-enoyl)-1-hydroxy-5,6,7,7a-tetrahydropyrrolizin-3-one

2-(hexadec-6-enoyl)-1-hydroxy-5,6,7,7a-tetrahydropyrrolizin-3-one

C23H37NO3 (375.2773)


   

4-ethyl-16-methoxy-10-methyl-6-oxa-4-azaheptacyclo[15.2.1.0²,⁷.0²,¹¹.0³,¹³.0⁵,¹⁰.0¹⁴,¹⁹]icosane-14,18-diol

4-ethyl-16-methoxy-10-methyl-6-oxa-4-azaheptacyclo[15.2.1.0²,⁷.0²,¹¹.0³,¹³.0⁵,¹⁰.0¹⁴,¹⁹]icosane-14,18-diol

C22H33NO4 (375.2409)


   

(1s,3r,9s,10s,11r,14r,15r,16s)-10-ethyl-14-methyl-3-[(2r,4r)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one

(1s,3r,9s,10s,11r,14r,15r,16s)-10-ethyl-14-methyl-3-[(2r,4r)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one

C22H33NO4 (375.2409)


   

6-(5,6-dimethylhept-3-en-2-yl)-3a-hydroxy-3-(2-hydroxyethyl)-5a-methyl-4h,5h,6h,7h,8h,8ah-cyclopenta[e]indol-2-one

6-(5,6-dimethylhept-3-en-2-yl)-3a-hydroxy-3-(2-hydroxyethyl)-5a-methyl-4h,5h,6h,7h,8h,8ah-cyclopenta[e]indol-2-one

C23H37NO3 (375.2773)


   

10-ethyl-14-methyl-3-(4-methyl-5-oxooxolan-2-yl)-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one

10-ethyl-14-methyl-3-(4-methyl-5-oxooxolan-2-yl)-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one

C22H33NO4 (375.2409)


   

(1s,2s,5r,7s,10s,11r,13r,14s,15r,16r)-7-ethyl-2,11,14-trihydroxy-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.2¹⁰,¹³.0¹,⁸.0⁵,¹⁶.0¹⁰,¹⁵]nonadecan-7-ium-7-olate

(1s,2s,5r,7s,10s,11r,13r,14s,15r,16r)-7-ethyl-2,11,14-trihydroxy-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.2¹⁰,¹³.0¹,⁸.0⁵,¹⁶.0¹⁰,¹⁵]nonadecan-7-ium-7-olate

C22H33NO4 (375.2409)


   

methyl 3-[(1s,2s,7s,10s,13s,14r,15s)-15-hydroxy-14-isopropyl-1-methyl-12-azatetracyclo[8.6.0.0²,¹³.0³,⁷]hexadec-3-en-2-yl]propanoate

methyl 3-[(1s,2s,7s,10s,13s,14r,15s)-15-hydroxy-14-isopropyl-1-methyl-12-azatetracyclo[8.6.0.0²,¹³.0³,⁷]hexadec-3-en-2-yl]propanoate

C23H37NO3 (375.2773)


   

(3ar,5ar,6r,8ar)-6-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-3a-hydroxy-3-(2-hydroxyethyl)-5a-methyl-4h,5h,6h,7h,8h,8ah-cyclopenta[e]indol-2-one

(3ar,5ar,6r,8ar)-6-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-3a-hydroxy-3-(2-hydroxyethyl)-5a-methyl-4h,5h,6h,7h,8h,8ah-cyclopenta[e]indol-2-one

C23H37NO3 (375.2773)


   

7-ethenyl-1,1,4a,7-tetramethyl-3,4,6,8,8a,9,10,10a-octahydro-2h-phenanthren-2-yl (hydroxycarbamoyl)formate

7-ethenyl-1,1,4a,7-tetramethyl-3,4,6,8,8a,9,10,10a-octahydro-2h-phenanthren-2-yl (hydroxycarbamoyl)formate

C22H33NO4 (375.2409)


   

(1r,3s,9r,10r,11s,14s,15s,16s)-10-ethyl-14-methyl-3-[(2s,4s)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one

(1r,3s,9r,10r,11s,14s,15s,16s)-10-ethyl-14-methyl-3-[(2s,4s)-4-methyl-5-oxooxolan-2-yl]-12-oxa-4-azatetracyclo[7.6.1.0⁴,¹⁶.0¹¹,¹⁵]hexadecan-13-one

C22H33NO4 (375.2409)


   

11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-3,4,7,16-tetrol

11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-3,4,7,16-tetrol

C22H33NO4 (375.2409)


   

methyl 3-[(1s,2s,7r,10s,13s,14r,15s)-15-hydroxy-14-isopropyl-1-methyl-12-azatetracyclo[8.6.0.0²,¹³.0³,⁷]hexadec-3-en-2-yl]propanoate

methyl 3-[(1s,2s,7r,10s,13s,14r,15s)-15-hydroxy-14-isopropyl-1-methyl-12-azatetracyclo[8.6.0.0²,¹³.0³,⁷]hexadec-3-en-2-yl]propanoate

C23H37NO3 (375.2773)