Exact Mass: 347.32363569
Exact Mass Matches: 347.32363569
Found 36 metabolites which its exact mass value is equals to given mass value 347.32363569
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Anandamide
Anandamide, also known as arachidonoylethanolamide (AEA), is a highly potent endogenous agonist of the cannabinoid CB1 and CB2 receptors. CB1 receptors are predominantly found in the central nervous system (CNS) where they mainly mediate the psychotropic effects of tetrahydrocannabinol (THC) and endocannabinoids, whereas the expression of the CB2 receptor is thought to be restricted to cells of the immune system. It was suggested that AEA might inhibit tumour cell proliferation or induce apoptosis independently of CB1 and CB2 receptors, via interaction with the type 1 vanilloid receptor (VR1). VR1 is an ion channel expressed almost exclusively by sensory neurons, activated by pH, noxious heat (> 48-degree centigrade), and plant toxins and is thought to play an important role in nociception. Cervical cancer cells are sensitive to AEA-induced apoptosis via VR1 that is aberrantly expressed in vitro and in vivo while CB1 and CB2 receptors play a protective role. (PMID: 15047233). Novel prostaglandins (prostaglandin glycerol esters and prostaglandin ethanolamides) are COX-2 oxidative metabolites of endogenous cannabinoids (such as anandamide). Recent evidence suggests that these new types of prostaglandins are likely novel signalling mediators involved in synaptic transmission and plasticity (PMID: 16957004). Anandamide is a highly potent endogenous agonist of the cannabinoid CB1 and CB2 receptors. CB1 receptors are predominantly found in the central nervous system (CNS) where they mainly mediate the psychotropic effects of Tetrahydrocannabinol (THC) and endocannabinoids, whereas the expression of the CB2 receptor is thought to be restricted to cells of the immune system. It was suggested that AEA might inhibit tumor cell proliferation or induce apoptosis independently of CB1 and CB2 receptors, via interaction with the type 1 vanilloid receptor (VR1). VR1 is an ion channel expressed almost exclusively by sensory neurons, activated by pH, noxious heat (>48 degree centigrade) and plant toxins and is thought to play an important role in nociception. Cervical cancer cells are sensitive to AEA-induced apoptosis via VR1 that is aberrantly expressed in vitro and in vivo while CB1 and CB2 receptors play a protective role. (PMID 15047233) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents CONFIDENCE standard compound; INTERNAL_ID 41 D049990 - Membrane Transport Modulators
Stearyltrimethylammonium chloride
C21H46ClN (347.33185860000003)
O-Arachidonoyl Ethanolamine
Arachidonoyl ethanolamide (AEA) was the first endogenous cannabinoid to be isolated and characterized as an agonist acting on the same receptors (CB1 and CB2) as tetrahydrocannabinols (THC). Since that time, a number of related endocannabinoids have been isolated, most notably 2-arachidonoyl glycerol (2-AG).O-Arachidonoyl ethanolamine hydrochloride (O-AEA) is a recently isolated constituent of human and rat brain wherein the ethanolamine moiety is attached ?backwards?, as an ester instead of an amide, as in AEA.1,2,4 O-AEA has mixed agonist/antagonist activity at the CB1 receptor and does not appear to be the native endogenous cannabinoid agonist at this receptor. This is in keeping with other observations that 2-AG is the primary endogenous CB1 receptor ligand [HMDB] Arachidonoyl ethanolamide (AEA) was the first endogenous cannabinoid to be isolated and characterized as an agonist acting on the same receptors (CB1 and CB2) as tetrahydrocannabinols (THC). Since that time, a number of related endocannabinoids have been isolated, most notably 2-arachidonoyl glycerol (2-AG).O-Arachidonoyl ethanolamine hydrochloride (O-AEA) is a recently isolated constituent of human and rat brain wherein the ethanolamine moiety is attached "backwards", as an ester instead of an amide, as in AEA.1,2,4 O-AEA has mixed agonist/antagonist activity at the CB1 receptor and does not appear to be the native endogenous cannabinoid agonist at this receptor. This is in keeping with other observations that 2-AG is the primary endogenous CB1 receptor ligand. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents
O-(2-Aminoethyl)-5Z,8Z,11Z,14Z-eicosatetraenoate
N-(2-Hydroxyethyl)eicosa-5,8,11,14-tetraenamide
(-)-clavepictine A|(3R,4S,6S,9aS)-6-((1E,3E)-deca-1,3-dienyl)-4-methyl-octahydro-quinolizin-3-yl acetate|Clavepictine A
3beta-Hydroxy-20alpha-dimethylamino-5alpha-pregnan; Funtuphyllamin C|Funtuphyllamin C
N-Me-(3beta,16alpha,20S)-20-Aminopregn-5-ene-3,16-diol
Virodhamine
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents
2-Hydroxypropanoic acid - 2-(tetradecylamino)ethanol (1:1)
C19H41NO4 (347.30354260000007)
2-aminoethyl (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate
(8Z,11Z,14Z,17Z)-N-(2-hydroxyethyl)icosa-8,11,14,17-tetraenamide
Trimethylstearylammonium Chloride
C21H46ClN (347.33185860000003)
Anandamide
An N-acylethanolamine 20:4 resulting from the formal condensation of carboxy group of arachidonic acid with the amino group of ethanolamine. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators