Exact Mass: 343.2021572

Exact Mass Matches: 343.2021572

Found 500 metabolites which its exact mass value is equals to given mass value 343.2021572, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

denudatine

(1S,5R,8R,10S,11R,13R,14S,15S,16R)-7-Ethyl-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.210,13.01,8.05,16.010,15]nonadecane-11,14-diol

C22H33NO2 (343.25111580000004)


Denudatine is a diterpenoid. It derives from a hydride of an atisane. CID 441729 is a natural product found in Aconitum kusnezoffii and Aconitum carmichaelii with data available.

   

Clemastine

(+)-(2R)-2-(2-(((R)-p-Chloro-alpha-methyl-alpha-phenylbenzyl)oxy)ethyl)-1-methylpyrrolidine

C21H26ClNO (343.17028160000007)


Clemastine is only found in individuals that have used or taken this drug. It is an ethanolamine-derivative, first generation histamine H1 antagonist used in hay fever, rhinitis, allergic skin conditions, and pruritus. It causes drowsiness. [PubChem]Clemastine is a selective histamine H1 antagonist and binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AA - Aminoalkyl ethers D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D003879 - Dermatologic Agents > D000982 - Antipruritics D018926 - Anti-Allergic Agents

   

Dibucaine

2-Butoxy-quinoline-4-carboxylic acid (2-diethylamino-ethyl)-amide

C20H29N3O2 (343.2259654)


A local anesthetic of the amide type now generally used for surface anesthesia. It is one of the most potent and toxic of the long-acting local anesthetics and its parenteral use is restricted to spinal anesthesia. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1006) D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AB - Anesthetics for topical use C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AD - Local anesthetics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics S - Sensory organs > S02 - Otologicals > S02D - Other otologicals > S02DA - Analgesics and anesthetics S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Laudanine

5-[(6,7-dimethoxy-2-methyl-3,4-dihydro-1H-isoquinolin-1-yl)methyl]-2-methoxyphenol

C20H25NO4 (343.178349)


A benzyltetrahydroisoquinoline that is norlaudanosoline carrying four methyl substituents at positions N-1, O-6, O-7 and O-4. Laudanine is a benzyltetrahydroisoquinoline that is norlaudanosoline carrying four methyl substituents at positions N-1, O-6, O-7 and O-4'. It is a benzyltetrahydroisoquinoline, a benzylisoquinoline alkaloid, a member of phenols and an aromatic ether. It is functionally related to a norlaudanosoline. It is a conjugate base of a laudanine(1+).

   

Atisine

Anthorine

C22H33NO2 (343.25111580000004)


A organic heterohexacyclic compound and diterpene alkaloid isolated from Aconitum anthora. In solution, it is a 2:1 mixture of readily interconvertible epimers at position 20 (the carbon attached to both the nitrogen and an oxygen atom).

   

Cuauchichicine

Veatchine,15-deoxy-16,17-dihydro-15-oxo-, (16-beta,20S)-

C22H33NO2 (343.25111580000004)


   
   

Paravallarine

Paravallarine

C22H33NO2 (343.25111580000004)


A natural product found in Kibatalia laurifolia.

   

MCULE-7550286264

3-Hydroxyestra-1,3,5(10)-trien-17-one O-(carboxymethyl)oxime

C20H25NO4 (343.178349)


   

N-Didesmethyl-tamoxifen

2-{4-[(1Z)-1,2-diphenylbut-1-en-1-yl]phenoxy}ethan-1-amine

C24H25NO (343.193604)


N-Didesmethyl-tamoxifen is a metabolite of tamoxifen. Tamoxifen is an antagonist of the estrogen receptor in breast tissue via its active metabolite, hydroxytamoxifen. In other tissues such as the endometrium, it behaves as an agonist, and thus may be characterized as a mixed agonist/antagonist. Tamoxifen is the usual endocrine therapy for hormone receptor-positive breast cancer in pre-menopausal women, and is also a standard in post-menopausal women although aromatase inhibitors are also frequently used in that setting. (Wikipedia)

   

TETRAHYDROPAPAVERINE

(1~{s})-1-[(3,4-Dimethoxyphenyl)methyl]-6,7-Dimethoxy-1,2,3,4-Tetrahydroisoquinoline

C20H25NO4 (343.178349)


   

(R)-Laudanidine

5-[(6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl]-2-methoxyphenol

C20H25NO4 (343.178349)


Laudanine is found in opium poppy. Laudanine is an alkaloid from Papaver somniferum (opium poppy Alkaloid from Papaver somniferum (opium poppy). Laudanine is found in opium poppy.

   

Cilomilast

Cilomilast

C20H25NO4 (343.178349)


D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors > D058988 - Phosphodiesterase 4 Inhibitors C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor

   

(S)-Laudanine

(S)-Laudanine

C20H25NO4 (343.178349)


The (S)-enantiomer of laudanine

   

Levobetaxolol hydrochloride

Levobetaxolol hydrochloride

C18H30ClNO3 (343.19141)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist Levobetaxolol hydrochloride is a beta-adrenergic receptor inhibitor (beta blocker) that can lower the pressure in the eye. Levobetaxolol hydrochloride can be used for the research of glaucoma.

   

6-beta-Naltrexol

4-(cyclopropylmethyl)-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10-triene-10,14,17-triol

C20H25NO4 (343.178349)


6-beta-Naltrexol is a metabolite of naltrexone. Naltrexone is an opioid receptor antagonist used primarily in the management of alcohol dependence and opioid dependence. It is marketed in generic form as its hydrochloride salt, naltrexone hydrochloride, and marketed under the trade names Revia and Depade. In some countries including the United States, a once-monthly extended-release injectable formulation is marketed under the trade name Vivitrol. (Wikipedia)

   

Anomurine

1,2,3,4-Tetrahydro-5,6,7-trimethoxy-1-[(4-methoxyphenyl)methyl]isoquinoline, 9ci

C20H25NO4 (343.178349)


Anomurine is found in fruits. Minor alkaloid from the root and stem bark of Annona muricata (soursop

   

Gossyrubilone

6,7-dihydroxy-2-methyl-5-[(1E)-[(3-methylbutyl)imino]methyl]-8-(propan-2-yl)-1,4-dihydronaphthalene-1,4-dione

C20H25NO4 (343.178349)


Gossyrubilone is isolated from terminal leaves of Gossypium hirsutum (cotton). Isolated from terminal leaves of Gossypium hirsutum (cotton).

   

Piperolein B

(8E)-9-(2H-1,3-benzodioxol-5-yl)-1-(piperidin-1-yl)non-8-en-1-one

C21H29NO3 (343.2147324)


Minor constituent of Piper nigrum (black pepper). Piperolein B is found in herbs and spices and pepper (spice). Piperolein B is found in herbs and spices. Piperolein B is a minor constituent of Piper nigrum (black pepper

   

Isopiperolein B

(9E)-10-(2H-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)dec-9-en-1-one

C21H29NO3 (343.2147324)


Isopiperolein B is found in herbs and spices. Isopiperolein B is an alkaloid from the berries of Piper nigrum (pepper). Alkaloid from the berries of Piper nigrum (pepper). Isopiperolein B is found in herbs and spices.

   

(S)-Codamine

1-[(3,4-dimethoxyphenyl)methyl]-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-ol

C20H25NO4 (343.178349)


(S)-Codamine is found in opium poppy. (S)-Codamine is a minor constituent of opiu Minor constituent of opium. (S)-Codamine is found in opium poppy.

   

N1-(2,4-Dimethoxybenzyl)-n2-(2-(pyridin-2-yl) ethyl)oxalamide

N-[(2,4-dimethoxyphenyl)methyl]-N-[2-(pyridin-2-yl)ethyl]ethanediamide

C18H21N3O4 (343.15319860000005)


N1-(2,4-Dimethoxybenzyl)-n2-(2-(pyridin-2-yl) ethyl)oxalamide is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")

   

Dec-4-enedioylcarnitine

3-[(9-carboxynon-6-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C17H29NO6 (343.1994774)


Dec-6-enedioylcarnitine is an acylcarnitine. More specifically, it is an dec-6-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Dec-6-enedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Dec-6-enedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Dec-5-enedioylcarnitine

3-[(9-carboxynon-5-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C17H29NO6 (343.1994774)


Dec-5-enedioylcarnitine is an acylcarnitine. More specifically, it is an dec-5-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Dec-5-enedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Dec-5-enedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(2Z)-dec-2-enedioylcarnitine

3-[(9-carboxynon-2-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C17H29NO6 (343.1994774)


(2Z)-dec-2-enedioylcarnitine is an acylcarnitine. More specifically, it is an (2Z)-dec-2-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2Z)-dec-2-enedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2Z)-dec-2-enedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Dec-7-enedioylcarnitine

3-[(9-carboxynon-7-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C17H29NO6 (343.1994774)


Dec-7-enedioylcarnitine is an acylcarnitine. More specifically, it is an dec-7-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Dec-7-enedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Dec-7-enedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(4Z)-dec-4-enedioylcarnitine

3-[(9-carboxynon-4-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C17H29NO6 (343.1994774)


(4Z)-dec-4-enedioylcarnitine is an acylcarnitine. More specifically, it is an (4Z)-dec-4-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z)-dec-4-enedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (4Z)-dec-4-enedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

2-Hydroxyundec-3-enoylcarnitine

3-[(2-hydroxyundec-3-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H33NO5 (343.2358608)


2-Hydroxyundec-3-enoylcarnitine is an acylcarnitine. More specifically, it is an 2-hydroxyundec-3-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Hydroxyundec-3-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 2-Hydroxyundec-3-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

2-Hydroxyundec-8-enoylcarnitine

3-[(2-hydroxyundec-8-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H33NO5 (343.2358608)


2-Hydroxyundec-8-enoylcarnitine is an acylcarnitine. More specifically, it is an 2-hydroxyundec-8-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Hydroxyundec-8-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 2-Hydroxyundec-8-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

2-Hydroxyundec-6-enoylcarnitine

3-[(2-hydroxyundec-6-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H33NO5 (343.2358608)


2-Hydroxyundec-6-enoylcarnitine is an acylcarnitine. More specifically, it is an 2-hydroxyundec-6-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Hydroxyundec-6-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 2-Hydroxyundec-6-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

2-Hydroxyundec-5-enoylcarnitine

3-[(2-hydroxyundec-5-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H33NO5 (343.2358608)


2-Hydroxyundec-5-enoylcarnitine is an acylcarnitine. More specifically, it is an 2-hydroxyundec-5-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Hydroxyundec-5-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 2-Hydroxyundec-5-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(4E)-2-Hydroxyundec-4-enoylcarnitine

3-[(2-hydroxyundec-4-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H33NO5 (343.2358608)


(4E)-2-Hydroxyundec-4-enoylcarnitine is an acylcarnitine. More specifically, it is an (4E)-2-hydroxyundec-4-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4E)-2-Hydroxyundec-4-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (4E)-2-Hydroxyundec-4-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

2-Hydroxyundec-7-enoylcarnitine

3-[(2-hydroxyundec-7-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H33NO5 (343.2358608)


2-Hydroxyundec-7-enoylcarnitine is an acylcarnitine. More specifically, it is an 2-hydroxyundec-7-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Hydroxyundec-7-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 2-Hydroxyundec-7-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

2-Hydroxyundec-2-enoylcarnitine

3-[(2-hydroxyundec-2-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H33NO5 (343.2358608)


2-Hydroxyundec-2-enoylcarnitine is an acylcarnitine. More specifically, it is an 2-hydroxyundec-2-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Hydroxyundec-2-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 2-Hydroxyundec-2-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

2-Hydroxyundec-9-enoylcarnitine

3-[(2-hydroxyundec-9-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H33NO5 (343.2358608)


2-Hydroxyundec-9-enoylcarnitine is an acylcarnitine. More specifically, it is an 2-hydroxyundec-9-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Hydroxyundec-9-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 2-Hydroxyundec-9-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3-Oxoundecanoylcarnitine

3-[(3-oxoundecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H33NO5 (343.2358608)


3-OxoUndecanoylcarnitine is an acylcarnitine. More specifically, it is an 3-oxoundecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-OxoUndecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-OxoUndecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

N-Myristoyl Aspartic acid

2-tetradecanamidobutanedioic acid

C18H33NO5 (343.2358608)


N-myristoyl aspartic acid, also known as N-myristoyl aspartate belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Myristic acid amide of Aspartic acid. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Myristoyl Aspartic acid is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Myristoyl Aspartic acid is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

(1R,9S,10S)-17-[(3-Hydroxycyclobutyl)methyl]-17-azatetracyclo[7.5.3.01,10.02,7]heptadeca-2(7),3,5-triene-4,10-diol

(1R,9S,10S)-17-[(3-Hydroxycyclobutyl)methyl]-17-azatetracyclo[7.5.3.01,10.02,7]heptadeca-2(7),3,5-triene-4,10-diol

C21H29NO3 (343.2147324)


   

1-(2,6-Dimethylphenoxy)-2-(3,4-dimethoxyphenylethylamino)propane

[2-(3,4-dimethoxyphenyl)ethyl][1-(2,6-dimethylphenoxy)propan-2-yl]amine

C21H29NO3 (343.2147324)


   

3,5-Dimethyl-3'-isopropyl-L-thyronine

2-amino-3-{4-[4-hydroxy-3-(propan-2-yl)phenoxy]-3,5-dimethylphenyl}propanoic acid

C20H25NO4 (343.178349)


   

Cilomilast

4-cyano-4-[3-(cyclopentyloxy)-4-methoxyphenyl]cyclohexane-1-carboxylic acid

C20H25NO4 (343.178349)


D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors > D058988 - Phosphodiesterase 4 Inhibitors C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor

   

Hydroxyethyl retinamide

N-(2-hydroxyethyl)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraenamide

C22H33NO2 (343.25111580000004)


   

Meclastine

2-(2-(1-(4-Chlorophenyl)-1-phenylethoxy)ethyl)-1-methylpyrrolidine

C21H26ClNO (343.17028160000007)


   

Tetrahydropapaverine hydrochloride

1-[(3,4-dimethoxyphenyl)methyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline

C20H25NO4 (343.178349)


   

Bullatine

(5R,11R,14S,15R,16R)-7-ethyl-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.210,13.01,8.05,16.010,15]nonadecane-11,14-diol

C22H33NO2 (343.25111580000004)


Bullatine A, a diterpenoid alkaloid of the genus Aconitum, possesses anti-rheumatic, anti-inflammatory and anti-nociceptive effects. Bullatine A is a potent P2X7 antagonist, inhibits ATP-induced cell death/apoptosis and P2X receptor-mediated inflammatory responses[1]. Bullatine A attenuates pain hypersensitivity, regardless of the pain models employed[2]. Bullatine A, a diterpenoid alkaloid of the genus Aconitum, possesses anti-rheumatic, anti-inflammatory and anti-nociceptive effects. Bullatine A is a potent P2X7 antagonist, inhibits ATP-induced cell death/apoptosis and P2X receptor-mediated inflammatory responses[1]. Bullatine A attenuates pain hypersensitivity, regardless of the pain models employed[2].

   
   

MONOAMINOILLIMAQUINONE

MONOAMINOILLIMAQUINONE

C21H29NO3 (343.2147324)


   
   

(+)-trans-Deacetoxyerioaustralasine hydrate

(+)-trans-Deacetoxyerioaustralasine hydrate

C20H25NO4 (343.178349)


   
   
   
   
   
   
   

(-)-14-O-Acetylindolactam-V

(-)-14-O-Acetylindolactam-V

C19H25N3O3 (343.189582)


   

2-(3,4-Dimethoxybenzyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline

2-(3,4-Dimethoxybenzyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline

C20H25NO4 (343.178349)


   
   
   
   

(+)-Ribaliprenylene

(+)-Ribaliprenylene

C20H25NO4 (343.178349)


   
   
   
   
   
   
   
   

Zippeline

8-Demethoxy-(+)-stephodeline

C20H25NO4 (343.178349)


   
   

Jamtine

O,O-Dimethylhaiderine

C20H25NO4 (343.178349)


   
   
   

Crassifoline methine

Crassifoline methine

C20H25NO4 (343.178349)


   

Erythrococcamide A

Erythrococcamide A

C20H25NO4 (343.178349)


   
   

O-Methylarmepavine N-oxide

O-Methylarmepavine N-oxide

C20H25NO4 (343.178349)


   

CP-642931

CP-642931

C17H25N7O (343.212048)


CONFIDENCE standard compound; INTERNAL_ID 292; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5447; ORIGINAL_PRECURSOR_SCAN_NO 5445 CONFIDENCE standard compound; INTERNAL_ID 292; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5458; ORIGINAL_PRECURSOR_SCAN_NO 5457 CONFIDENCE standard compound; INTERNAL_ID 292; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5487; ORIGINAL_PRECURSOR_SCAN_NO 5486 CONFIDENCE standard compound; INTERNAL_ID 292; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5483; ORIGINAL_PRECURSOR_SCAN_NO 5482 CONFIDENCE standard compound; INTERNAL_ID 292; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5482; ORIGINAL_PRECURSOR_SCAN_NO 5479 CONFIDENCE standard compound; INTERNAL_ID 292; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5493; ORIGINAL_PRECURSOR_SCAN_NO 5492 DATA_PROCESSING MERGING RMBmix ver. 0.2.7; CONFIDENCE standard compound; INTERNAL_ID 292; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5493; ORIGINAL_PRECURSOR_SCAN_NO 5492

   
   

JWH-073 5-hydroxyindole metabolite

JWH-073 5-hydroxyindole metabolite

C23H21NO2 (343.1572206)


   

JWH 073 6-hydroxyindole metabolite

(1-butyl-6-hydroxy-1H-indol-3-yl)(naphthalen-1-yl)-methanone

C23H21NO2 (343.1572206)


   

JWH 073 7-hydroxyindole metabolite

(1-butyl-7-hydroxy-1H-indol-3-yl)(naphthalen-1-yl)-methanone

C23H21NO2 (343.1572206)


   

JWH 073 N-(4-hydroxybutyl) metabolite

(1-(4-hydroxybutyl)-1H-indol-3-yl)(naphthalen-1-yl)-methanone

C23H21NO2 (343.1572206)


   
   
   

2,4,6-Trideoxy-6-{[(4E)-3-hydroxy-2,4-dimethyl-4-heptenoyl]amino}-2,4-dimethylhex-5-ulosonic acid

2,4,6-Trideoxy-6-{[(4E)-3-hydroxy-2,4-dimethyl-4-heptenoyl]amino}-2,4-dimethylhex-5-ulosonic acid

C17H29NO6 (343.1994774)


   

JWH 073 N-(3-hydroxybutyl) metabolite

JWH 073 N-(3-hydroxybutyl) metabolite

C23H21NO2 (343.1572206)


   
   
   
   
   
   

4-methyl-6-(2-benzoyloxypentyl)-quinolizidine

4-methyl-6-(2-benzoyloxypentyl)-quinolizidine

C22H33NO2 (343.25111580000004)


   
   
   
   

3-epi-18-methoxyschelhammericine|dyshomerythrine|dyshomoerythrine

3-epi-18-methoxyschelhammericine|dyshomerythrine|dyshomoerythrine

C20H25NO4 (343.178349)


   
   
   
   
   
   

N-(4-Hydroxyphenethyl)-2,4-tetradecadienamid

N-(4-Hydroxyphenethyl)-2,4-tetradecadienamid

C22H33NO2 (343.25111580000004)


   

(-)-O-methylpallidinine|(S)-(-)-O-methylpallidinine|Me ether-(??)-Pallidinine|O-Methylpallidinine

(-)-O-methylpallidinine|(S)-(-)-O-methylpallidinine|Me ether-(??)-Pallidinine|O-Methylpallidinine

C20H25NO4 (343.178349)


   
   

(-)-8-demethoxyrunanine|8-demethoxyrunanine

(-)-8-demethoxyrunanine|8-demethoxyrunanine

C20H25NO4 (343.178349)


   
   

1-(4-Hydroxy-benzyl)-2-methyl-5,6,7-trimethoxy-1,2,3,4-tetrahydro-isochinolin|4-(5,6,7-trimethoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-1-ylmethyl)-phenol|Thalifendlerin|Thalifendlerine

1-(4-Hydroxy-benzyl)-2-methyl-5,6,7-trimethoxy-1,2,3,4-tetrahydro-isochinolin|4-(5,6,7-trimethoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-1-ylmethyl)-phenol|Thalifendlerin|Thalifendlerine

C20H25NO4 (343.178349)


   

3a,5,6,6a,7,11c-Hexahydro-1,2,10-trimethoxy-6-methyl-4H-dibenzo[de,g]quinoline-11-ol

3a,5,6,6a,7,11c-Hexahydro-1,2,10-trimethoxy-6-methyl-4H-dibenzo[de,g]quinoline-11-ol

C20H25NO4 (343.178349)


   

incargranine A|rel-(3aR,4S,4aR,7aR,8R,8aR)-decahydro-3a-hydroxy-7-[4-(2-hydroxyethyl)phenyl]-4,8-ethano-2H-furo[3,2-f]indol-9-one

incargranine A|rel-(3aR,4S,4aR,7aR,8R,8aR)-decahydro-3a-hydroxy-7-[4-(2-hydroxyethyl)phenyl]-4,8-ethano-2H-furo[3,2-f]indol-9-one

C20H25NO4 (343.178349)


   
   

oxo-3 hydroxy-18 methylamino-20(S) pregnadiene-1,4

oxo-3 hydroxy-18 methylamino-20(S) pregnadiene-1,4

C22H33NO2 (343.25111580000004)


   
   
   

(3aR)-4t-[trans-2-((2S)-1,6t-dimethyl-piperidin-2r-yl)-vinyl]-3c-methyl-(3ar,4at,8ac)-3a,4,4a,5,6,7,8,8a-octahydro-3H-naphtho[2,3-c]furan-1-one|Himgravin|Himgravine

(3aR)-4t-[trans-2-((2S)-1,6t-dimethyl-piperidin-2r-yl)-vinyl]-3c-methyl-(3ar,4at,8ac)-3a,4,4a,5,6,7,8,8a-octahydro-3H-naphtho[2,3-c]furan-1-one|Himgravin|Himgravine

C22H33NO2 (343.25111580000004)


   

N-allylschoberine|N16-allylisoschoberine

N-allylschoberine|N16-allylisoschoberine

C23H25N3 (343.204837)


   

(E,E)-N-(4-Hydroxyphenethyl)-2,4-tetradecadienamide

(E,E)-N-(4-Hydroxyphenethyl)-2,4-tetradecadienamide

C22H33NO2 (343.25111580000004)


   

(E)-2,4-Dimethoxy-3-(gammar,gammar-dimethylallylcinnamoyl)piperidide|2,4-dimethyoxy-3-gamma,gamma-dimethylallyl-trans-cinnamoylpiperidide

(E)-2,4-Dimethoxy-3-(gammar,gammar-dimethylallylcinnamoyl)piperidide|2,4-dimethyoxy-3-gamma,gamma-dimethylallyl-trans-cinnamoylpiperidide

C21H29NO3 (343.2147324)


   
   

5-epi-smenospongine

5-epi-smenospongine

C21H29NO3 (343.2147324)


   
   
   

(+)-8,9-dihydroisoroemerialinone

(+)-8,9-dihydroisoroemerialinone

C20H25NO4 (343.178349)


   
   
   
   
   
   
   
   
   

JWH 073 2-hydroxyindole metabolite

JWH 073 2-hydroxyindole metabolite

C23H21NO2 (343.1572206)


   
   
   
   
   
   
   
   
   
   

epi-Wilsonine

(1R,13R,15S,18R)-4,5,18-trimethoxy-14-oxa-11-azapentacyclo[9.8.0.01,15.02,7.013,15]nonadeca-2,4,6,16-tetraene

C20H25NO4 (343.178349)


3-Epiwilsonine is a natural product found in Phelline comosa with data available.

   

Bullatine A

(5R,11R,14S,15R,16R)-7-ethyl-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.210,13.01,8.05,16.010,15]nonadecane-11,14-diol

C22H33NO2 (343.25111580000004)


Bullatine A, a diterpenoid alkaloid of the genus Aconitum, possesses anti-rheumatic, anti-inflammatory and anti-nociceptive effects. Bullatine A is a potent P2X7 antagonist, inhibits ATP-induced cell death/apoptosis and P2X receptor-mediated inflammatory responses[1]. Bullatine A attenuates pain hypersensitivity, regardless of the pain models employed[2]. Bullatine A, a diterpenoid alkaloid of the genus Aconitum, possesses anti-rheumatic, anti-inflammatory and anti-nociceptive effects. Bullatine A is a potent P2X7 antagonist, inhibits ATP-induced cell death/apoptosis and P2X receptor-mediated inflammatory responses[1]. Bullatine A attenuates pain hypersensitivity, regardless of the pain models employed[2].

   

dibucaine

Cinchocaine

C20H29N3O2 (343.2259654)


D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AB - Anesthetics for topical use C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AD - Local anesthetics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics S - Sensory organs > S02 - Otologicals > S02D - Other otologicals > S02DA - Analgesics and anesthetics S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu); Flow Injection CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu) HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu); CONFIDENCE Reference Standard (Level 1) CONFIDENCE standard compound; EAWAG_UCHEM_ID 3294

   

Buflomedil HCl

Buflomedil hydrochloride

C17H26ClNO4 (343.15502660000004)


   
   

(E)-9-(1,3-benzodioxol-5-yl)-1-piperidin-1-ylnon-8-en-1-one

NCGC00180733-02!(E)-9-(1,3-benzodioxol-5-yl)-1-piperidin-1-ylnon-8-en-1-one

C21H29NO3 (343.2147324)


   
   

3-hydroxy-6-[[(E)-3-hydroxy-2,4-dimethylhept-4-enoyl]amino]-2,4-dimethyl-5-oxohexanoic acid

3-hydroxy-6-[[(E)-3-hydroxy-2,4-dimethylhept-4-enoyl]amino]-2,4-dimethyl-5-oxohexanoic acid

C17H29NO6 (343.1994774)


   
   

(E)-9-(1,3-benzodioxol-5-yl)-1-piperidin-1-ylnon-8-en-1-one [IIN-based: Match]

NCGC00180733-02!(E)-9-(1,3-benzodioxol-5-yl)-1-piperidin-1-ylnon-8-en-1-one [IIN-based: Match]

C21H29NO3 (343.2147324)


   

(E)-9-(1,3-benzodioxol-5-yl)-1-piperidin-1-ylnon-8-en-1-one [IIN-based on: CCMSLIB00000848139]

NCGC00180733-02!(E)-9-(1,3-benzodioxol-5-yl)-1-piperidin-1-ylnon-8-en-1-one [IIN-based on: CCMSLIB00000848139]

C21H29NO3 (343.2147324)


   
   

3-hydroxy-6-[[(E)-3-hydroxy-2,4-dimethylhept-4-enoyl]amino]-2,4-dimethyl-5-oxohexanoic acid_major

3-hydroxy-6-[[(E)-3-hydroxy-2,4-dimethylhept-4-enoyl]amino]-2,4-dimethyl-5-oxohexanoic acid_major

C17H29NO6 (343.1994774)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

JWH 073 2-hydroxyindole

(1-butyl-2-hydroxy-1H-indol-3-yl)(naphthalen-1-yl)-methanone

C23H21NO2 (343.1572206)


   

JWH 073 4-hydroxyindole metabolite

(1-butyl-4-hydroxy-1H-indol-3-yl)(naphthalen-1-yl)-methanone

C23H21NO2 (343.1572206)


   

JWH 073 5-hydroxyindole metabolite

(1-butyl-5-hydroxy-1H-indol-3-yl)(naphthalen-1-yl)-methanone

C23H21NO2 (343.1572206)


   

Anomurine

1,2,3,4-Tetrahydro-5,6,7-trimethoxy-1-[(4-methoxyphenyl)methyl]isoquinoline, 9ci

C20H25NO4 (343.178349)


   

Piperolein B

(8E)-9-(2H-1,3-benzodioxol-5-yl)-1-(piperidin-1-yl)non-8-en-1-one

C21H29NO3 (343.2147324)


   

N1-(2,4-Dimethoxybenzyl)-N2-(2-(pyridin-2-YL)ethyl)oxalamide

N-[(2,4-dimethoxyphenyl)methyl]-N-[2-(pyridin-2-yl)ethyl]ethanediamide

C18H21N3O4 (343.15319860000005)


   

Gossyrubilone

6,7-dihydroxy-2-methyl-5-[(1E)-[(3-methylbutyl)imino]methyl]-8-(propan-2-yl)-1,4-dihydronaphthalene-1,4-dione

C20H25NO4 (343.178349)


   

Isopiperolein B

(9E)-10-(2H-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)dec-9-en-1-one

C21H29NO3 (343.2147324)


   

Codamine

1-[(3,4-dimethoxyphenyl)methyl]-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-ol

C20H25NO4 (343.178349)


   

(S)-(+)-JWH 073 N-(3-hydroxybutyl) metabolite

(S)-(+)-JWH 073 N-(3-hydroxybutyl) metabolite

C23H21NO2 (343.1572206)


   

Pyrimido[1,2-a]benzimidazole, 2-methyl-4-(4-phenyl-1-piperazinyl)- (9CI)

Pyrimido[1,2-a]benzimidazole, 2-methyl-4-(4-phenyl-1-piperazinyl)- (9CI)

C21H21N5 (343.1796866)


   

triammonium hydrogen ethylenediaminetetraacetate

triammonium hydrogen ethylenediaminetetraacetate

C10H25N5O8 (343.170305)


   
   

tert-Butyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole-1-carboxylate

tert-Butyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole-1-carboxylate

C19H26BNO4 (343.19547860000006)


   

1-N-(3-INDOLE)ETHYL-4-BOC-AMINOPIPERIDINE

1-N-(3-INDOLE)ETHYL-4-BOC-AMINOPIPERIDINE

C20H29N3O2 (343.2259654)


   

Potassium Cetyl Phosphate

Potassium Cetyl Phosphate

C16H33KO3P (343.1804278)


   
   

methyl 2-[[[3-(4-hydroxy-4-methylpentyl)-3-cyclohexen-1-yl]methylene]amino]benzoate

methyl 2-[[[3-(4-hydroxy-4-methylpentyl)-3-cyclohexen-1-yl]methylene]amino]benzoate

C21H29NO3 (343.2147324)


   

Methyl (S)-N-Tritylaziridine-2-carboxylate

Methyl (S)-N-Tritylaziridine-2-carboxylate

C23H21NO2 (343.1572206)


   

1-TERT-BUTYL 4-ETHYL 4-(2-ETHOXY-2-OXOETHYL)PIPERIDINE-1,4-DICARBOXYLATE

1-TERT-BUTYL 4-ETHYL 4-(2-ETHOXY-2-OXOETHYL)PIPERIDINE-1,4-DICARBOXYLATE

C17H29NO6 (343.1994774)


   

tert-butyl 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole-1-carboxylate

tert-butyl 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole-1-carboxylate

C19H26BNO4 (343.19547860000006)


   
   

(S)-(1-Benzylpyrrolidin-2-yl)diphenylmethanol

(S)-(1-Benzylpyrrolidin-2-yl)diphenylmethanol

C24H25NO (343.193604)


   

R-Tetrahydropapaverine

(R)-(+)-Tetrahydropapaverine

C20H25NO4 (343.178349)


   
   

p-Diethylaminobenzaldehyde-N,N-diphenyl-hydrazone

p-Diethylaminobenzaldehyde-N,N-diphenyl-hydrazone

C23H25N3 (343.204837)


   

1-CBZ-6-(4,4,5,5-TETRAMETHYL-[1,3,2]DIOXABOROLAN-2-YL)-1,2,3,4-TETRAHYDROPYRIDINE

1-CBZ-6-(4,4,5,5-TETRAMETHYL-[1,3,2]DIOXABOROLAN-2-YL)-1,2,3,4-TETRAHYDROPYRIDINE

C19H26BNO4 (343.19547860000006)


   

TERT-BUTYL 4-(2-OXO-4-PHENYL-2,3-DIHYDRO-1H-IMIDAZOL-1-YL)PIPERIDINE-1-CARBOXYLATE

TERT-BUTYL 4-(2-OXO-4-PHENYL-2,3-DIHYDRO-1H-IMIDAZOL-1-YL)PIPERIDINE-1-CARBOXYLATE

C19H25N3O3 (343.189582)


   

ethyl prop-2-enoate,2-methylaziridine,methyl 2-methylprop-2-enoate,2-methylprop-2-enoic acid

ethyl prop-2-enoate,2-methylaziridine,methyl 2-methylprop-2-enoate,2-methylprop-2-enoic acid

C17H29NO6 (343.1994774)


   

TERT-BUTYL 3-((TERT-BUTYLDIMETHYLSILYLOXY)METHYL)-4-OXOPIPERIDINE-1-CARBOXYLATE

TERT-BUTYL 3-((TERT-BUTYLDIMETHYLSILYLOXY)METHYL)-4-OXOPIPERIDINE-1-CARBOXYLATE

C17H33NO4Si (343.2178738)


   

Betaxolol hydrochloride

Betaxolol hydrochloride

C18H30ClNO3 (343.19141)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists C78283 - Agent Affecting Organs of Special Senses > C29705 - Anti-glaucoma Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Betaxolol Hydrochloride is a selective beta1 adrenergic receptor blocker that can be used for the research of hypertension and glaucoma.

   

(+/-)-Tetrahydropapaverine

1-(3,4-Dimethoxybenzyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline

C20H25NO4 (343.178349)


A benzylisoquinoline alkaloid that is norlaudanosoline in which the four phenolic hydrogens have been replaced by methyl groups.

   

tert-Butyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole-1-carboxylate

tert-Butyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole-1-carboxylate

C19H26BNO4 (343.19547860000006)


   

ethyl 3-(benzyl(3-ethoxy-3-oxopropyl)amino)-2,2-difluoropropanoate

ethyl 3-(benzyl(3-ethoxy-3-oxopropyl)amino)-2,2-difluoropropanoate

C17H23F2NO4 (343.1595062)


   

Methyl-1-tritylaziridin-2-carboxylat

Methyl-1-tritylaziridin-2-carboxylat

C23H21NO2 (343.1572206)


   

leerall / methyl anthranilate schiffs base

leerall / methyl anthranilate schiffs base

C21H29NO3 (343.2147324)


   

Fingolimod hydrochloride

Fingolimod hydrochloride

C19H34ClNO2 (343.22779340000005)


D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents > D000081243 - Sphingosine 1 Phosphate Receptor Modulators C308 - Immunotherapeutic Agent

   

Benzyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydro-1(2H)-pyridinecarboxylate

Benzyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydro-1(2H)-pyridinecarboxylate

C19H26BNO4 (343.19547860000006)


   

ammonium dodecylbenzenesulphonate

ammonium dodecylbenzenesulphonate

C18H33NO3S (343.2181028)


   

Acetyldihydrocodeine

[(4R,4aR,7S,7aR,12bS)-9-methoxy-3-methyl-2,4,4a,5,6,7,7a,13-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinoline-7-yl] acetate

C20H25NO4 (343.178349)


R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives

   

p-(Diethylamino)benzaldehyde diphenylhydrazone

p-(Diethylamino)benzaldehyde diphenylhydrazone

C23H25N3 (343.204837)


   

N-(6-aminohexyl)hexane-1,6-diamine,2-(chloromethyl)oxirane,hydrochloride

N-(6-aminohexyl)hexane-1,6-diamine,2-(chloromethyl)oxirane,hydrochloride

C15H35Cl2N3O (343.215704)


   

1-Boc-indole-4-boronic Acid Pinacol Ester

1-Boc-indole-4-boronic Acid Pinacol Ester

C19H26BNO4 (343.19547860000006)


   

1-Ethyl-3-(4-nitrophenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborol an-2-yl)-1H-pyrazole

1-Ethyl-3-(4-nitrophenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborol an-2-yl)-1H-pyrazole

C17H22BN3O4 (343.17032820000003)


   

5-(4-butylphenyl)-6-chloro-N-cyclopentyl-2-methylpyrimidin-4-amine

5-(4-butylphenyl)-6-chloro-N-cyclopentyl-2-methylpyrimidin-4-amine

C20H26ClN3 (343.18151460000007)


   

Ethacridine lactate

Ethacridine lactate

C18H21N3O4 (343.15319860000005)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CA - Antiinfectives D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AA - Acridine derivatives D000890 - Anti-Infective Agents

   

2-[butyl-(8-hydroxyquinolin-2-yl)amino]quinolin-8-ol

2-[butyl-(8-hydroxyquinolin-2-yl)amino]quinolin-8-ol

C22H21N3O (343.1684536)


   

D-α-(4-ethyl-2,3-dioxo-1-piperazinecarboxamido)-β-(S)-tert-butoxybutyric acid

D-α-(4-ethyl-2,3-dioxo-1-piperazinecarboxamido)-β-(S)-tert-butoxybutyric acid

C15H25N3O6 (343.174327)


   

(3S)-3-Methyl-10-(4-methyl-1-piperazinyl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid

(3S)-3-Methyl-10-(4-methyl-1-piperazinyl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid

C18H21N3O4 (343.15319860000005)


   

1-[4-Hydroxy-3-(hydroxymethyl)phenyl]-2-[(4-phenylbutyl)amino]ethyl formate

1-[4-Hydroxy-3-(hydroxymethyl)phenyl]-2-[(4-phenylbutyl)amino]ethyl formate

C20H25NO4 (343.178349)


   
   

4-[3-(Dibutylamino)propoxy]benzoic acid hydrochloride

4-[3-(Dibutylamino)propoxy]benzoic acid hydrochloride

C18H30ClNO3 (343.19141)


   

SB525334

6-(2-(tert-Butyl)-5-(6-methylpyridin-2-yl)-1H-imidazol-4-yl)quinoxaline

C21H21N5 (343.1796866)


   

Ibopamine hydrochloride

Ibopamine hydrochloride

C17H26ClNO4 (343.15502660000004)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D045283 - Natriuretic Agents > D004232 - Diuretics

   

N-(2-Hydroxyethyl)retinamide

N-(2-Hydroxyethyl)retinamide

C22H33NO2 (343.25111580000004)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

6beta-Naltrexol

6beta-Naltrexol

C20H25NO4 (343.178349)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids

   

N,N,N,N-Tetramethylpararosaniline

N,N,N,N-Tetramethylpararosaniline

C23H25N3 (343.204837)


   
   
   

N-[[1-(2-phenoxyethyl)-2-benzimidazolyl]methyl]aniline

N-[[1-(2-phenoxyethyl)-2-benzimidazolyl]methyl]aniline

C22H21N3O (343.1684536)


   

3-Hydroxybutorphanol

3-Hydroxybutorphanol

C21H29NO3 (343.2147324)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids

   

(1R)-1-(4-((2R,6S)-4-(4,6-Dimethyl-1,3,5-triazin-2-yl)-2,6-dimethylpiperazin-1-yl)pyrimidin-2-yl)ethanol

(1R)-1-(4-((2R,6S)-4-(4,6-Dimethyl-1,3,5-triazin-2-yl)-2,6-dimethylpiperazin-1-yl)pyrimidin-2-yl)ethanol

C17H25N7O (343.212048)


   

4-[(2H-1,3-benzodioxol-5-yl)methyl]-N-[(furan-3-yl)methyl]piperazine-1-carboxamide

4-[(2H-1,3-benzodioxol-5-yl)methyl]-N-[(furan-3-yl)methyl]piperazine-1-carboxamide

C18H21N3O4 (343.15319860000005)


   

2-[(1S,2R,4S,5S,6S)-3-oxatricyclo[3.2.1.02,4]octan-6-yl]-4,6-dipropyl-1H-imidazo[4,5-b]pyridine-5,7-dione

2-[(1S,2R,4S,5S,6S)-3-oxatricyclo[3.2.1.02,4]octan-6-yl]-4,6-dipropyl-1H-imidazo[4,5-b]pyridine-5,7-dione

C19H25N3O3 (343.189582)


   

2-(4-cyclohexylphenoxy)-N-(2-propyl-2H-tetrazol-5-yl)acetamide

2-(4-cyclohexylphenoxy)-N-(2-propyl-2H-tetrazol-5-yl)acetamide

C18H25N5O2 (343.200815)


   

17(R)-HDoHE(1-)

17(R)-HDoHE(1-)

C22H31O3- (343.2273076)


A hydroxy polyunsaturated fatty acid anion that is the conjugate base of 17(R)-HDoHE arising from deprotonation of the carboxylic acid function; major species at pH 7.3.

   

3-Oxo-23,24-bisnorchol-4-en-22-oate

3-Oxo-23,24-bisnorchol-4-en-22-oate

C22H31O3- (343.2273076)


   

(4Z,7Z,10Z,13Z,16Z,19Z)-22-hydroxydocosahexaenoate

(4Z,7Z,10Z,13Z,16Z,19Z)-22-hydroxydocosahexaenoate

C22H31O3- (343.2273076)


A polyunsaturated fatty acid anion that is the conjugate base of (4Z,7Z,10Z,13Z,16Z,19Z)-22-hydroxydocosahexaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(4Z,7Z,10Z,13Z,15E,17S,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoate

(4Z,7Z,10Z,13Z,15E,17S,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoate

C22H31O3- (343.2273076)


   
   

beta-Homovaline-beta-homoalanine-beta-homoleucine

beta-Homovaline-beta-homoalanine-beta-homoleucine

C17H33N3O4 (343.2470938)


   

3-Hydroxytetradecane-1,3,4-tricarboxylate

3-Hydroxytetradecane-1,3,4-tricarboxylate

C17H27O7-3 (343.1756692)


   

(3S)-3-[[(3S)-3-[[(3R)-3-amino-4-methylpentanoyl]amino]butanoyl]amino]-5-methylhexanoic acid

(3S)-3-[[(3S)-3-[[(3R)-3-amino-4-methylpentanoyl]amino]butanoyl]amino]-5-methylhexanoic acid

C17H33N3O4 (343.2470938)


   

3-Oxoundecanoylcarnitine

3-Oxoundecanoylcarnitine

C18H33NO5 (343.2358608)


   

2-Hydroxyundec-7-enoylcarnitine

2-Hydroxyundec-7-enoylcarnitine

C18H33NO5 (343.2358608)


   

Dec-4-enedioylcarnitine

Dec-4-enedioylcarnitine

C17H29NO6 (343.1994774)


   

Dec-5-enedioylcarnitine

Dec-5-enedioylcarnitine

C17H29NO6 (343.1994774)


   

Dec-7-enedioylcarnitine

Dec-7-enedioylcarnitine

C17H29NO6 (343.1994774)


   

(2Z)-dec-2-enedioylcarnitine

(2Z)-dec-2-enedioylcarnitine

C17H29NO6 (343.1994774)


   

(4Z)-dec-4-enedioylcarnitine

(4Z)-dec-4-enedioylcarnitine

C17H29NO6 (343.1994774)


   

2-Hydroxyundec-3-enoylcarnitine

2-Hydroxyundec-3-enoylcarnitine

C18H33NO5 (343.2358608)


   

2-Hydroxyundec-8-enoylcarnitine

2-Hydroxyundec-8-enoylcarnitine

C18H33NO5 (343.2358608)


   

2-Hydroxyundec-6-enoylcarnitine

2-Hydroxyundec-6-enoylcarnitine

C18H33NO5 (343.2358608)


   

2-Hydroxyundec-5-enoylcarnitine

2-Hydroxyundec-5-enoylcarnitine

C18H33NO5 (343.2358608)


   

2-Hydroxyundec-2-enoylcarnitine

2-Hydroxyundec-2-enoylcarnitine

C18H33NO5 (343.2358608)


   

2-Hydroxyundec-9-enoylcarnitine

2-Hydroxyundec-9-enoylcarnitine

C18H33NO5 (343.2358608)


   

(4E)-2-Hydroxyundec-4-enoylcarnitine

(4E)-2-Hydroxyundec-4-enoylcarnitine

C18H33NO5 (343.2358608)


   

N,N-Tetramethyl-rosamine

N,N-Tetramethyl-rosamine

C23H23N2O+ (343.1810288)


   

1-[3-(2,4,6-Trimethoxybenzoyl)propyl]pyrrolidinium chloride

1-[3-(2,4,6-Trimethoxybenzoyl)propyl]pyrrolidinium chloride

C17H26ClNO4 (343.15502660000004)


   

3-[Bis(4-fluorophenyl)methoxy]-8-methyl-8-azabicyclo[3.2.1]octane

3-[Bis(4-fluorophenyl)methoxy]-8-methyl-8-azabicyclo[3.2.1]octane

C21H23F2NO (343.1747612)


   

4-(Cyclohexylamino)-2-(3,5-dimethyl-1-pyrazolyl)-5-pyrimidinecarboxylic acid ethyl ester

4-(Cyclohexylamino)-2-(3,5-dimethyl-1-pyrazolyl)-5-pyrimidinecarboxylic acid ethyl ester

C18H25N5O2 (343.200815)


   
   
   

N-Methylgitingensine

N-Methylgitingensine

C22H33NO2 (343.25111580000004)


A natural product found in Kibatalia laurifolia.

   
   

2-[4-(dimethylamino)phenyl]-N-(4-methylphenyl)imidazo[1,2-a]pyrimidin-3-amine

2-[4-(dimethylamino)phenyl]-N-(4-methylphenyl)imidazo[1,2-a]pyrimidin-3-amine

C21H21N5 (343.1796866)


   

(+)-(1R)-1-[4-(4-fluorophenyl)-2,6-diisopropyl-5-propylpyridin-3-yl]ethanol

(+)-(1R)-1-[4-(4-fluorophenyl)-2,6-diisopropyl-5-propylpyridin-3-yl]ethanol

C22H30FNO (343.2311302)


   

14-HDoHE(1-)

14-HDoHE(1-)

C22H31O3- (343.2273076)


A polyunsaturated hydroxy-fatty acid anion that is the conjugate base of 14-HDoHE, arising from deprotonation of the carboxylic acid function; major species at pH 7.3.

   

2-[[[2-Methyl-1-(phenylmethyl)-5-benzimidazolyl]amino]methyl]phenol

2-[[[2-Methyl-1-(phenylmethyl)-5-benzimidazolyl]amino]methyl]phenol

C22H21N3O (343.1684536)


   

1-[4-(4-Tert-butylphenyl)-2-thiazolyl]-4-piperidinecarboxamide

1-[4-(4-Tert-butylphenyl)-2-thiazolyl]-4-piperidinecarboxamide

C19H25N3OS (343.171824)


   
   

2-[[Cyclohexyl(oxo)methyl]amino]acetic acid [2-(4-cyanoanilino)-2-oxoethyl] ester

2-[[Cyclohexyl(oxo)methyl]amino]acetic acid [2-(4-cyanoanilino)-2-oxoethyl] ester

C18H21N3O4 (343.15319860000005)


   

21-HDoHE(1-)

21-HDoHE(1-)

C22H31O3- (343.2273076)


An (omega-1)-hydroxy fatty acid anion that is the conjugate base of 21-HDoHE, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

1-Butyl-5-[1-(2-phenylethylamino)propylidene]-1,3-diazinane-2,4,6-trione

1-Butyl-5-[1-(2-phenylethylamino)propylidene]-1,3-diazinane-2,4,6-trione

C19H25N3O3 (343.189582)


   

(1S,2S)-1-decyl-2-hydroxybutane-1,2,4-tricarboxylate

(1S,2S)-1-decyl-2-hydroxybutane-1,2,4-tricarboxylate

C17H27O7-3 (343.1756692)


   

2-[[4-(2-Hydroxyethylamino)-6-(1-pyrrolidinyl)-1,3,5-triazin-2-yl]amino]benzamide

2-[[4-(2-Hydroxyethylamino)-6-(1-pyrrolidinyl)-1,3,5-triazin-2-yl]amino]benzamide

C16H21N7O2 (343.1756646)


   

N-[1-[(1-amino-4-methyl-1-oxopentan-2-yl)amino]-3-methyl-1-oxopentan-2-yl]carbamic acid tert-butyl ester

N-[1-[(1-amino-4-methyl-1-oxopentan-2-yl)amino]-3-methyl-1-oxopentan-2-yl]carbamic acid tert-butyl ester

C17H33N3O4 (343.2470938)


   

[2-[2-(cyclohexen-1-yl)ethylamino]-2-oxoethyl] (E)-3-(3-methoxyphenyl)prop-2-enoate

[2-[2-(cyclohexen-1-yl)ethylamino]-2-oxoethyl] (E)-3-(3-methoxyphenyl)prop-2-enoate

C20H25NO4 (343.178349)


   

ethyl 5-[[(E)-(3-methoxyphenyl)methylideneamino]carbamoyl]-2,4-dimethyl-1H-pyrrole-3-carboxylate

ethyl 5-[[(E)-(3-methoxyphenyl)methylideneamino]carbamoyl]-2,4-dimethyl-1H-pyrrole-3-carboxylate

C18H21N3O4 (343.15319860000005)


   

(19R,20S)-epoxy-(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate

(19R,20S)-epoxy-(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate

C22H31O3- (343.2273076)


   

(4Z,7Z,10Z)-12-{3-[(2Z,5Z)-octa-2,5-dien-1-yl]oxiran-2-yl}dodeca-4,7,10-trienoate

(4Z,7Z,10Z)-12-{3-[(2Z,5Z)-octa-2,5-dien-1-yl]oxiran-2-yl}dodeca-4,7,10-trienoate

C22H31O3- (343.2273076)


   

(19S,20R)-epoxy-(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate

(19S,20R)-epoxy-(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate

C22H31O3- (343.2273076)


   

(4Z,7Z,10Z,13Z,16Z)-18-(3-ethyloxiran-2-yl)octadeca-4,7,10,13,16-pentaenoate

(4Z,7Z,10Z,13Z,16Z)-18-(3-ethyloxiran-2-yl)octadeca-4,7,10,13,16-pentaenoate

C22H31O3- (343.2273076)


   

(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoate

(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoate

C22H31O3- (343.2273076)


   

(4Z,7Z)-9-{3-[(2Z,5Z,8Z)-undeca-2,5,8-trien-1-yl]oxiran-2-yl}nona-4,7-dienoate

(4Z,7Z)-9-{3-[(2Z,5Z,8Z)-undeca-2,5,8-trien-1-yl]oxiran-2-yl}nona-4,7-dienoate

C22H31O3- (343.2273076)


   
   
   
   
   
   
   
   
   
   
   

N,N-Dibenzyl-5-phenylpentan-1-amine

N,N-Dibenzyl-5-phenylpentan-1-amine

C25H29N (343.2299874)


   

N-[1-(3-ethyl-2-benzo[f][1,3]benzoxazol-3-iumyl)but-1-en-2-yl]aniline

N-[1-(3-ethyl-2-benzo[f][1,3]benzoxazol-3-iumyl)but-1-en-2-yl]aniline

C23H23N2O+ (343.1810288)


   

1-(Isopropylamino)-3-[p-(cyclopropylmethoxyethyl)phenoxy]-2-propanol hydrochloride

1-(Isopropylamino)-3-[p-(cyclopropylmethoxyethyl)phenoxy]-2-propanol hydrochloride

C18H30ClNO3 (343.19141)


   

(2S)-3-{4-[2-(cyclopropylmethoxy)ethyl]phenoxy}-2-hydroxy-N-(propan-2-yl)propan-1-aminium chloride

(2S)-3-{4-[2-(cyclopropylmethoxy)ethyl]phenoxy}-2-hydroxy-N-(propan-2-yl)propan-1-aminium chloride

C18H30ClNO3 (343.19141)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

3-Hydroxyestra-1,3,5(10)-trien-17-one O-(carboxymethyl)oxime

3-Hydroxyestra-1,3,5(10)-trien-17-one O-(carboxymethyl)oxime

C20H25NO4 (343.178349)


   

(2R)-3-{4-[2-(cyclopropylmethoxy)ethyl]phenoxy}-2-hydroxy-N-(propan-2-yl)propan-1-aminium chloride

(2R)-3-{4-[2-(cyclopropylmethoxy)ethyl]phenoxy}-2-hydroxy-N-(propan-2-yl)propan-1-aminium chloride

C18H30ClNO3 (343.19141)


   

(4Z,7Z,10Z,13Z,15E,19Z)-17-Hydroxydocosa-4,7,10,13,15,19-hexaenoate

(4Z,7Z,10Z,13Z,15E,19Z)-17-Hydroxydocosa-4,7,10,13,15,19-hexaenoate

C22H31O3- (343.2273076)


   

7-Hydroxydocosahexaenoate

7-Hydroxydocosahexaenoate

C22H31O3- (343.2273076)


   

Tris(2-phenylethyl)silane

Tris(2-phenylethyl)silane

C24H27Si (343.1881922)


   

(2E)-12-[(3,6-dideoxy-alpha-L-arabino-hexopyranosyl)oxy]dodec-2-enoate

(2E)-12-[(3,6-dideoxy-alpha-L-arabino-hexopyranosyl)oxy]dodec-2-enoate

C18H31O6- (343.2120526)


   

(8E,10Z,13Z,16Z,19Z)-7-oxodocosa-8,10,13,16,19-pentaenoate

(8E,10Z,13Z,16Z,19Z)-7-oxodocosa-8,10,13,16,19-pentaenoate

C22H31O3- (343.2273076)


   

(7Z,10Z,14E,16Z,19Z)-13-oxodocosa-7,10,14,16,19-pentaenoate

(7Z,10Z,14E,16Z,19Z)-13-oxodocosa-7,10,14,16,19-pentaenoate

C22H31O3- (343.2273076)


   

(7Z,10Z,13Z,15E,19Z)-17-oxodocosa-7,10,13,15,19-pentaenoate

(7Z,10Z,13Z,15E,19Z)-17-oxodocosa-7,10,13,15,19-pentaenoate

C22H31O3- (343.2273076)


   

(14R)-hydroxy-(4Z,7Z,10Z,12E,16Z,19Z)-docosahexaenoate

(14R)-hydroxy-(4Z,7Z,10Z,12E,16Z,19Z)-docosahexaenoate

C22H31O3- (343.2273076)


   

(14S)-hydroxy-(4Z,7Z,10Z,12E,16Z,19Z)-docosahexaenoate

(14S)-hydroxy-(4Z,7Z,10Z,12E,16Z,19Z)-docosahexaenoate

C22H31O3- (343.2273076)


   
   

(E,11R)-11-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxydodec-2-enoate

(E,11R)-11-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxydodec-2-enoate

C18H31O6- (343.2120526)


   

(7Z,9E,11E)-12-{3-[(2Z,5Z)-octa-2,5-dien-1-yl]oxiran-2-yl}dodeca-7,9,11-trienoate

(7Z,9E,11E)-12-{3-[(2Z,5Z)-octa-2,5-dien-1-yl]oxiran-2-yl}dodeca-7,9,11-trienoate

C22H31O3- (343.2273076)


   

(7Z,10Z,12E,14E)-15-{(2S,3S)-3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-7,10,12,14-tetraenoate

(7Z,10Z,12E,14E)-15-{(2S,3S)-3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-7,10,12,14-tetraenoate

C22H31O3- (343.2273076)


   

(2R,3R,3aS,9bS)-N-cyclobutyl-3-(hydroxymethyl)-6-oxo-7-[(E)-prop-1-enyl]-1,2,3,3a,4,9b-hexahydropyrrolo[2,3-a]indolizine-2-carboxamide

(2R,3R,3aS,9bS)-N-cyclobutyl-3-(hydroxymethyl)-6-oxo-7-[(E)-prop-1-enyl]-1,2,3,3a,4,9b-hexahydropyrrolo[2,3-a]indolizine-2-carboxamide

C19H25N3O3 (343.189582)


   

8-methoxy-3-(3-morpholin-4-ylpropyl)-5H-pyrimido[5,4-b]indol-1-ium-4-one

8-methoxy-3-(3-morpholin-4-ylpropyl)-5H-pyrimido[5,4-b]indol-1-ium-4-one

C18H23N4O3+ (343.17700679999996)


   

Buflomedil hydrochloride

Buflomedil hydrochloride

C17H26ClNO4 (343.15502660000004)


D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

2-[2-[(1R)-1-(4-chlorophenyl)-1-phenylethoxy]ethyl]-1-methylpyrrolidine

2-[2-[(1R)-1-(4-chlorophenyl)-1-phenylethoxy]ethyl]-1-methylpyrrolidine

C21H26ClNO (343.17028160000007)


   

N-Benzyl-3-menthoxycarbonylpyrrolidine

N-Benzyl-3-menthoxycarbonylpyrrolidine

C22H33NO2 (343.25111580000004)


   

N-Acetylvalylleucylglycine methyl ester

N-Acetylvalylleucylglycine methyl ester

C16H29N3O5 (343.21071040000004)


   

(2S)-2-[1-Hydroxy-4-[(tetrahydro-2H-pyran-2-yl)oxy]butyl]-1-pyrrolidinecarboxylic acid tert-butyl ester

(2S)-2-[1-Hydroxy-4-[(tetrahydro-2H-pyran-2-yl)oxy]butyl]-1-pyrrolidinecarboxylic acid tert-butyl ester

C18H33NO5 (343.2358608)


   

2,4-Dibutyl-4,4A-dihydro-1H-(1,3,5)triazino(1,2-A)quinoline-1,3,6(2H,5H)-trione

2,4-Dibutyl-4,4A-dihydro-1H-(1,3,5)triazino(1,2-A)quinoline-1,3,6(2H,5H)-trione

C19H25N3O3 (343.189582)


   

(S)-tetrahydropapaverine

(1~{s})-1-[(3,4-Dimethoxyphenyl)methyl]-6,7-Dimethoxy-1,2,3,4-Tetrahydroisoquinoline

C20H25NO4 (343.178349)


The S-enantiomer of tetrahydropapaverine.

   
   

Clemastine

Clemastine

C21H26ClNO (343.17028160000007)


D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AA - Aminoalkyl ethers D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D003879 - Dermatologic Agents > D000982 - Antipruritics D018926 - Anti-Allergic Agents

   

(S)-Codamine

(S)-Codamine

C20H25NO4 (343.178349)


A benzylisoquinoline alkaloid that is 1,2,3,4-tetrahydroisoquinolin-7-ol which is substituted by 3,4-dimethoxybenzyl, methyl, and methoxy groups at positions 1, 2, and 6, respectively (the 1S enantiomer).

   

Desdimethyltamoxifen

N,N-Didesmethyltamoxifen

C24H25NO (343.193604)


   

5,6,7-trimethoxy-1-[(4-methoxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline

5,6,7-trimethoxy-1-[(4-methoxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline

C20H25NO4 (343.178349)


   
   

(4Z,7Z,10Z,14E,16Z,19Z)-13-hydroxydocosahexaenoate

(4Z,7Z,10Z,14E,16Z,19Z)-13-hydroxydocosahexaenoate

C22H31O3 (343.2273076)


A hydroxy polyunsaturated fatty acid anion that is the conjugate base of 13-HDoHE arising from deprotonation of the carboxylic acid function; major species at pH 7.3.

   

(4Z,7Z,10Z,13Z,19Z)-16,17-epoxydocosapentaenoate

(4Z,7Z,10Z,13Z,19Z)-16,17-epoxydocosapentaenoate

C22H31O3 (343.2273076)


A docosanoid anion that is the conjugate base of (4Z,7Z,10Z,13Z,19Z)-16,17-epoxydocosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

Estrone 17-O-carboxymethyloxime

3-Hydroxyestra-1,3,5(10)-trien-17-one O-(carboxymethyl)oxime

C20H25NO4 (343.178349)


   

oscr#19(1-)

oscr#19(1-)

C18H31O6 (343.2120526)


A hydroxy fatty acid ascaroside anion that is the conjugate base of oscr#19, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(8E,10Z,13Z,16Z,19Z)-7-oxodocosapentaenoate

(8E,10Z,13Z,16Z,19Z)-7-oxodocosapentaenoate

C22H31O3 (343.2273076)


A docosanoid anion that is the conjugate base of (8E,10Z,13Z,16Z,19Z)-7-oxodocosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

ascr#19(1-)

ascr#19(1-)

C18H31O6 (343.2120526)


Conjugate base of ascr#19

   

(7Z,9E,11E,16Z,19Z)-13,14-epoxydocosapentaenoate

(7Z,9E,11E,16Z,19Z)-13,14-epoxydocosapentaenoate

C22H31O3 (343.2273076)


A docosanoid anion that is the conjugate base of (7Z,9E,11E,16Z,19Z)-13,14-epoxydocosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(7Z,10Z,14E,16Z,19Z)-13-oxodocosapentaenoate

(7Z,10Z,14E,16Z,19Z)-13-oxodocosapentaenoate

C22H31O3 (343.2273076)


A docosanoid anion that is the conjugate base of (7Z,10Z,14E,16Z,19Z)-13-oxodocosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(4Z,7Z,10Z,13Z,15E,19Z)-17-Hydroxydocosahexaenoate

(4Z,7Z,10Z,13Z,15E,19Z)-17-Hydroxydocosahexaenoate

C22H31O3 (343.2273076)


A hydroxydocosahexaenoate that is the conjugate base of (4Z,7Z,10Z,13Z,15E,19Z)-17-hydroxydocosahexaenoic acid, arising from deprotonation of the carboxy group; major species at pH 7.3.

   

(16S,17S)-epoxy-(7Z,10Z,12E,14E,19Z)-docosapentaenoate

(16S,17S)-epoxy-(7Z,10Z,12E,14E,19Z)-docosapentaenoate

C22H31O3 (343.2273076)


A (4Z,7Z,10Z,13Z,19Z)-16,17-epoxydocosapentaenoate in which the chiral centres at positions 16 and 17 both have S-configuration. An intermediate of specialised proresolving mediators

   

(7Z,10Z,13Z,15E,19Z)-17-oxodocosapentaenoate

(7Z,10Z,13Z,15E,19Z)-17-oxodocosapentaenoate

C22H31O3 (343.2273076)


A docosanoid anion that is the conjugate base of (7Z,10Z,13Z,15E,19Z)-17-oxodocosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(4Z,8E,10Z,13Z,16Z,19Z)-7-hydroxydocosahexaenoate

(4Z,8E,10Z,13Z,16Z,19Z)-7-hydroxydocosahexaenoate

C22H31O3 (343.2273076)


A hydroxydocosahexaenoate that is the conjugate base of (4Z,8E,10Z,13Z,16Z,19Z)-7-hydroxydocosahexaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(4Z,7Z,10Z,13Z,16Z,19R,20S)-19,20-epoxydocosapentaenoate

(4Z,7Z,10Z,13Z,16Z,19R,20S)-19,20-epoxydocosapentaenoate

C22H31O3 (343.2273076)


A docosanoid anion that is the conjugate base of (4Z,7Z,10Z,13Z,16Z,19R,20S)-19,20-epoxydocosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(4Z,7Z,10Z,13Z,16Z,19S,20R)-19,20-epoxydocosapentaenoate

(4Z,7Z,10Z,13Z,16Z,19S,20R)-19,20-epoxydocosapentaenoate

C22H31O3 (343.2273076)


A polyunsaturated fatty acid anion that is the conjugate base of (4Z,7Z,10Z,13Z,16Z,19S,20R)-19,20-epoxydocosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(4Z,7Z,10Z,13Z,16Z)-19,20-epoxydocosapentaenoate

(4Z,7Z,10Z,13Z,16Z)-19,20-epoxydocosapentaenoate

C22H31O3 (343.2273076)


A docosanoid anion that is the conjugate base of (4Z,7Z,10Z,13Z,16Z)-19,20-epoxydocosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(4Z,7Z,10Z,16Z,19Z)-13,14-epoxydocosapentaenoate

(4Z,7Z,10Z,16Z,19Z)-13,14-epoxydocosapentaenoate

C22H31O3 (343.2273076)


A docosanoid anion that is the conjugate base of (4Z,7Z,10Z,16Z,19Z)-13,14-epoxydocosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(4Z,7Z,13Z,16Z,19Z)-10,11-epoxydocosapentaenoate

(4Z,7Z,13Z,16Z,19Z)-10,11-epoxydocosapentaenoate

C22H31O3 (343.2273076)


A docosanoid anion that is the conjugate base of (4Z,7Z,13Z,16Z,19Z)-10,11-epoxydocosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

1-[(9E)-10-(3,4-methylenedioxyphenyl)-9-decenoyl]pyrrolidine

1-[(9E)-10-(3,4-methylenedioxyphenyl)-9-decenoyl]pyrrolidine

C21H29NO3 (343.2147324)


A natural product found in Piper boehmeriaefolium.

   

(14R)-HDoHE(1-)

(14R)-HDoHE(1-)

C22H31O3 (343.2273076)


A 14-HDoHE(1-) that is the conjugate base of (14R)-HDoHE, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(14S)-HDoHE(1-)

(14S)-HDoHE(1-)

C22H31O3 (343.2273076)


A 14-HDoHE(1-) that is the conjugate base of (14S)-HDoHE, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(R)-laudanine

(R)-laudanine

C20H25NO4 (343.178349)


The (R)-enantiomer of laudanine

   

(R)-tetrahydropapaverine

(R)-tetrahydropapaverine

C20H25NO4 (343.178349)


The R-enantiomer of tetrahydropapaverine.

   
   
   
   
   
   
   
   
   

AKT-IN-1

AKT-IN-1

C22H21N3O (343.1684536)


AKT-IN-1 is an allosteric AKT inhibitor with an IC50 of 1.042 μM.

   

13-[3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridec-10-en-5-one

13-[3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridec-10-en-5-one

C18H33NO5 (343.2358608)


   

methyl (9bs,11s)-7,11-dimethoxy-1h,2h,4h,5h,10h,11h,12h-indolo[7a,1-a]isoquinoline-8-carboxylate

methyl (9bs,11s)-7,11-dimethoxy-1h,2h,4h,5h,10h,11h,12h-indolo[7a,1-a]isoquinoline-8-carboxylate

C20H25NO4 (343.178349)


   

(1r,18r)-4,5,18-trimethoxy-14-oxa-11-azapentacyclo[9.8.0.0¹,¹⁵.0²,⁷.0¹³,¹⁵]nonadeca-2(7),3,5,16-tetraene

(1r,18r)-4,5,18-trimethoxy-14-oxa-11-azapentacyclo[9.8.0.0¹,¹⁵.0²,⁷.0¹³,¹⁵]nonadeca-2(7),3,5,16-tetraene

C20H25NO4 (343.178349)


   

(6r,9r,12s)-4,12,14-trihydroxy-5-isopropyl-6,9-dimethyl-15-azatetracyclo[7.6.1.0²,⁶.0¹³,¹⁶]hexadeca-1,4,13(16),14-tetraen-3-one

(6r,9r,12s)-4,12,14-trihydroxy-5-isopropyl-6,9-dimethyl-15-azatetracyclo[7.6.1.0²,⁶.0¹³,¹⁶]hexadeca-1,4,13(16),14-tetraen-3-one

C20H25NO4 (343.178349)


   

3-[(1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl)methyl]-5-amino-2-hydroxycyclohexa-2,5-diene-1,4-dione

3-[(1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl)methyl]-5-amino-2-hydroxycyclohexa-2,5-diene-1,4-dione

C21H29NO3 (343.2147324)


   

(3r)-3-hydroxy-2,2,10-trimethyl-9-[(3-methylbut-2-en-1-yl)oxy]-3h,4h-pyrano[2,3-b]quinolin-5-one

(3r)-3-hydroxy-2,2,10-trimethyl-9-[(3-methylbut-2-en-1-yl)oxy]-3h,4h-pyrano[2,3-b]quinolin-5-one

C20H25NO4 (343.178349)


   

(1r,5s,8r,9s,10s,11r,14r,16r,17r,18r,19r)-10,16,19-trihydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-3-one

(1r,5s,8r,9s,10s,11r,14r,16r,17r,18r,19r)-10,16,19-trihydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-3-one

C20H25NO4 (343.178349)


   

4-[(2r)-6-(hydroxymethyl)-9-methoxy-4-methyl-8-(methylamino)-1,2,3,5-tetrahydro-1,4-benzodiazepin-2-yl]phenol

4-[(2r)-6-(hydroxymethyl)-9-methoxy-4-methyl-8-(methylamino)-1,2,3,5-tetrahydro-1,4-benzodiazepin-2-yl]phenol

C19H25N3O3 (343.189582)


   

n-[2-hydroxy-1-(5-hydroxy-6-methyloxan-2-yl)pyrimidin-4-ylidene]-2-phenylacetamide

n-[2-hydroxy-1-(5-hydroxy-6-methyloxan-2-yl)pyrimidin-4-ylidene]-2-phenylacetamide

C18H21N3O4 (343.15319860000005)


   

3-[2-(dimethylamino)ethyl]-2-[(1e)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]-6-methoxyphenol

3-[2-(dimethylamino)ethyl]-2-[(1e)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]-6-methoxyphenol

C20H25NO4 (343.178349)


   

(1r,7as)-hexahydro-1h-pyrrolizin-1-ylmethyl (2r)-2-[(1s)-1-(acetyloxy)ethyl]-2,3-dihydroxy-3-methylbutanoate

(1r,7as)-hexahydro-1h-pyrrolizin-1-ylmethyl (2r)-2-[(1s)-1-(acetyloxy)ethyl]-2,3-dihydroxy-3-methylbutanoate

C17H29NO6 (343.1994774)


   

13-[3,4-dihydroxy-5-(hydroxymethyl)-4,5-dihydro-3h-pyrrol-2-yl]-1-hydroxytridecan-4-one

13-[3,4-dihydroxy-5-(hydroxymethyl)-4,5-dihydro-3h-pyrrol-2-yl]-1-hydroxytridecan-4-one

C18H33NO5 (343.2358608)


   

4,5,13-trimethoxy-17-methyl-17-azatetracyclo[7.5.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,13-tetraen-12-one

4,5,13-trimethoxy-17-methyl-17-azatetracyclo[7.5.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,13-tetraen-12-one

C20H25NO4 (343.178349)


   

(10r)-4,5,12-trimethoxy-17-methyl-17-azatetracyclo[8.4.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,11-tetraen-13-one

(10r)-4,5,12-trimethoxy-17-methyl-17-azatetracyclo[8.4.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,11-tetraen-13-one

C20H25NO4 (343.178349)


   

(1s,10r)-4,5,12-trimethoxy-17-methyl-17-azatetracyclo[8.4.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,11-tetraen-13-one

(1s,10r)-4,5,12-trimethoxy-17-methyl-17-azatetracyclo[8.4.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,11-tetraen-13-one

C20H25NO4 (343.178349)


   

(4ar,5e,7s,8r)-7-ethenyl-8,10-dihydroxy-5-(hydroxyimino)-1,1,4a,7-tetramethyl-6,8-dihydro-2h-phenanthren-9-one

(4ar,5e,7s,8r)-7-ethenyl-8,10-dihydroxy-5-(hydroxyimino)-1,1,4a,7-tetramethyl-6,8-dihydro-2h-phenanthren-9-one

C20H25NO4 (343.178349)


   

9,10-dihydroxy-6,6,9,12-tetramethyl-6ah,7h,8h,10h,10ah-isochromeno[4,3-c]quinolin-11-one

9,10-dihydroxy-6,6,9,12-tetramethyl-6ah,7h,8h,10h,10ah-isochromeno[4,3-c]quinolin-11-one

C20H25NO4 (343.178349)


   

7-ethenyl-8,10-dihydroxy-5-(hydroxyimino)-1,1,4a,7-tetramethyl-6,8-dihydro-2h-phenanthren-9-one

7-ethenyl-8,10-dihydroxy-5-(hydroxyimino)-1,1,4a,7-tetramethyl-6,8-dihydro-2h-phenanthren-9-one

C20H25NO4 (343.178349)


   

(10e)-13-[(2r,3r,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridec-10-en-5-one

(10e)-13-[(2r,3r,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridec-10-en-5-one

C18H33NO5 (343.2358608)


   

13-[(3r,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)-4,5-dihydro-3h-pyrrol-2-yl]-1-hydroxytridecan-5-one

13-[(3r,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)-4,5-dihydro-3h-pyrrol-2-yl]-1-hydroxytridecan-5-one

C18H33NO5 (343.2358608)


   

(6ar,9s,10s,10ar)-9,10-dihydroxy-6,6,9,12-tetramethyl-6ah,7h,8h,10h,10ah-isochromeno[4,3-c]quinolin-11-one

(6ar,9s,10s,10ar)-9,10-dihydroxy-6,6,9,12-tetramethyl-6ah,7h,8h,10h,10ah-isochromeno[4,3-c]quinolin-11-one

C20H25NO4 (343.178349)


   

(6ar,9r,10s,10ar)-9,10-dihydroxy-6,6,9,12-tetramethyl-6ah,7h,8h,10h,10ah-isochromeno[4,3-c]quinolin-11-one

(6ar,9r,10s,10ar)-9,10-dihydroxy-6,6,9,12-tetramethyl-6ah,7h,8h,10h,10ah-isochromeno[4,3-c]quinolin-11-one

C20H25NO4 (343.178349)


   

(1s,9s,10r)-4,5,13-trimethoxy-17-methyl-17-azatetracyclo[7.5.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,13-tetraen-12-one

(1s,9s,10r)-4,5,13-trimethoxy-17-methyl-17-azatetracyclo[7.5.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,13-tetraen-12-one

C20H25NO4 (343.178349)


   

(8s,11s,13e,14s,16s,17s,18r)-13-ethylidene-8,17-dihydroxy-18-(hydroxymethyl)-11-methyl-1,11-diazapentacyclo[12.3.1.0²,⁷.0⁸,¹⁷.0¹¹,¹⁶]octadeca-2,4,6-trien-11-ium

(8s,11s,13e,14s,16s,17s,18r)-13-ethylidene-8,17-dihydroxy-18-(hydroxymethyl)-11-methyl-1,11-diazapentacyclo[12.3.1.0²,⁷.0⁸,¹⁷.0¹¹,¹⁶]octadeca-2,4,6-trien-11-ium

[C20H27N2O3]+ (343.2021572)


   

(1r,5r,8r,9s,11r,13r,14r,17r,18s,19s)-13,19-dihydroxy-5,7-dimethyl-12-methylidene-7-azahexacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-16-one

(1r,5r,8r,9s,11r,13r,14r,17r,18s,19s)-13,19-dihydroxy-5,7-dimethyl-12-methylidene-7-azahexacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-16-one

C21H29NO3 (343.2147324)


   

(1r,13r,15s,18r)-4,5,18-trimethoxy-14-oxa-11-azapentacyclo[9.8.0.0¹,¹⁵.0²,⁷.0¹³,¹⁵]nonadeca-2(7),3,5,16-tetraene

(1r,13r,15s,18r)-4,5,18-trimethoxy-14-oxa-11-azapentacyclo[9.8.0.0¹,¹⁵.0²,⁷.0¹³,¹⁵]nonadeca-2(7),3,5,16-tetraene

C20H25NO4 (343.178349)


   

(1s,13s,15r,18r)-4,5,18-trimethoxy-14-oxa-11-azapentacyclo[9.8.0.0¹,¹⁵.0²,⁷.0¹³,¹⁵]nonadeca-2(7),3,5,16-tetraene

(1s,13s,15r,18r)-4,5,18-trimethoxy-14-oxa-11-azapentacyclo[9.8.0.0¹,¹⁵.0²,⁷.0¹³,¹⁵]nonadeca-2(7),3,5,16-tetraene

C20H25NO4 (343.178349)


   

(13z,14s,16r,17r)-13-ethylidene-16,17-dihydroxy-18-(hydroxymethyl)-11-methyl-1,11-diazapentacyclo[12.3.1.0²,⁷.0⁸,¹⁷.0¹¹,¹⁶]octadeca-2,4,6-trien-11-ium

(13z,14s,16r,17r)-13-ethylidene-16,17-dihydroxy-18-(hydroxymethyl)-11-methyl-1,11-diazapentacyclo[12.3.1.0²,⁷.0⁸,¹⁷.0¹¹,¹⁶]octadeca-2,4,6-trien-11-ium

[C20H27N2O3]+ (343.2021572)


   

4-(2-hydroxyethyl)-13,17-dimethyl-11-azapentacyclo[12.3.1.0¹,⁵.0⁹,¹⁷.0¹¹,¹⁶]octadec-4-ene-6,18-dione

4-(2-hydroxyethyl)-13,17-dimethyl-11-azapentacyclo[12.3.1.0¹,⁵.0⁹,¹⁷.0¹¹,¹⁶]octadec-4-ene-6,18-dione

C21H29NO3 (343.2147324)


   

6,7-dihydroxy-8-isopropyl-2-methyl-5-[(e)-[(3-methylbutyl)imino]methyl]naphthalene-1,4-dione

6,7-dihydroxy-8-isopropyl-2-methyl-5-[(e)-[(3-methylbutyl)imino]methyl]naphthalene-1,4-dione

C20H25NO4 (343.178349)


   

(5r,9bs,11r)-5,7,8,11-tetramethoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinoline

(5r,9bs,11r)-5,7,8,11-tetramethoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinoline

C20H25NO4 (343.178349)


   

(1r,13s,15r,18r)-4,5,18-trimethoxy-14-oxa-11-azapentacyclo[9.8.0.0¹,¹⁵.0²,⁷.0¹³,¹⁵]nonadeca-2(7),3,5,16-tetraene

(1r,13s,15r,18r)-4,5,18-trimethoxy-14-oxa-11-azapentacyclo[9.8.0.0¹,¹⁵.0²,⁷.0¹³,¹⁵]nonadeca-2(7),3,5,16-tetraene

C20H25NO4 (343.178349)


   

3-{[(1s,2r,4ar,8ar)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-5-amino-2-hydroxycyclohexa-2,5-diene-1,4-dione

3-{[(1s,2r,4ar,8ar)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-5-amino-2-hydroxycyclohexa-2,5-diene-1,4-dione

C21H29NO3 (343.2147324)


   

(2e,8e)-9-(2h-1,3-benzodioxol-5-yl)-n-[(2r)-2-methylbutyl]nona-2,8-dienimidic acid

(2e,8e)-9-(2h-1,3-benzodioxol-5-yl)-n-[(2r)-2-methylbutyl]nona-2,8-dienimidic acid

C21H29NO3 (343.2147324)


   

7,19-dihydroxy-14,18-dimethyl-12-azahexacyclo[10.6.1.1¹,⁴.0¹⁰,¹⁸.0¹⁵,¹⁹.0⁷,²⁰]icos-4(20)-en-3-one

7,19-dihydroxy-14,18-dimethyl-12-azahexacyclo[10.6.1.1¹,⁴.0¹⁰,¹⁸.0¹⁵,¹⁹.0⁷,²⁰]icos-4(20)-en-3-one

C21H29NO3 (343.2147324)


   

(10e)-13-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridec-10-en-5-one

(10e)-13-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridec-10-en-5-one

C18H33NO5 (343.2358608)


   

20-(prop-2-en-1-yl)-4,14,20-triazahexacyclo[13.6.2.0²,¹⁴.0³,¹¹.0⁵,¹⁰.0¹⁶,²¹]tricosa-2,4,6,8,10,12-hexaene

20-(prop-2-en-1-yl)-4,14,20-triazahexacyclo[13.6.2.0²,¹⁴.0³,¹¹.0⁵,¹⁰.0¹⁶,²¹]tricosa-2,4,6,8,10,12-hexaene

C23H25N3 (343.204837)


   

4-{[(1r)-5,6,7-trimethoxy-2-methyl-3,4-dihydro-1h-isoquinolin-1-yl]methyl}phenol

4-{[(1r)-5,6,7-trimethoxy-2-methyl-3,4-dihydro-1h-isoquinolin-1-yl]methyl}phenol

C20H25NO4 (343.178349)


   

3-{[(1r,2s,4as,8as)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-5-amino-2-hydroxycyclohexa-2,5-diene-1,4-dione

3-{[(1r,2s,4as,8as)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-5-amino-2-hydroxycyclohexa-2,5-diene-1,4-dione

C21H29NO3 (343.2147324)


   

methyl (12as,12bs)-2,3-dimethoxy-5h,6h,8h,10h,11h,12h,12bh-isoindolo[1,2-a]isoquinoline-12a-carboxylate

methyl (12as,12bs)-2,3-dimethoxy-5h,6h,8h,10h,11h,12h,12bh-isoindolo[1,2-a]isoquinoline-12a-carboxylate

C20H25NO4 (343.178349)


   

9-(2h-1,3-benzodioxol-5-yl)-1-(piperidin-1-yl)non-8-en-1-one

9-(2h-1,3-benzodioxol-5-yl)-1-(piperidin-1-yl)non-8-en-1-one

C21H29NO3 (343.2147324)


   

4-[6-(hydroxymethyl)-9-methoxy-4-methyl-8-(methylamino)-1,2,3,5-tetrahydro-1,4-benzodiazepin-2-yl]phenol

4-[6-(hydroxymethyl)-9-methoxy-4-methyl-8-(methylamino)-1,2,3,5-tetrahydro-1,4-benzodiazepin-2-yl]phenol

C19H25N3O3 (343.189582)


   

7-[2-(dimethylamino)ethyl]-13,14-dimethoxy-2-oxatricyclo[9.4.0.0³,⁸]pentadeca-1(11),3,5,7,12,14-hexaen-4-ol

7-[2-(dimethylamino)ethyl]-13,14-dimethoxy-2-oxatricyclo[9.4.0.0³,⁸]pentadeca-1(11),3,5,7,12,14-hexaen-4-ol

C20H25NO4 (343.178349)


   

(2s,3r,4s)-6-{[(2r,3e,5r)-1,5-dihydroxy-2,4-dimethylhept-3-en-1-ylidene]amino}-3-hydroxy-2,4-dimethyl-5-oxohexanoic acid

(2s,3r,4s)-6-{[(2r,3e,5r)-1,5-dihydroxy-2,4-dimethylhept-3-en-1-ylidene]amino}-3-hydroxy-2,4-dimethyl-5-oxohexanoic acid

C17H29NO6 (343.1994774)


   

12'-hydroxy-3,11'-dimethoxy-6'-methyl-6'-azaspiro[cyclohexane-1,2'-tricyclo[7.3.1.0⁵,¹³]tridecane]-1'(12'),2,9'(13'),10'-tetraen-4-one

12'-hydroxy-3,11'-dimethoxy-6'-methyl-6'-azaspiro[cyclohexane-1,2'-tricyclo[7.3.1.0⁵,¹³]tridecane]-1'(12'),2,9'(13'),10'-tetraen-4-one

C20H25NO4 (343.178349)


   

5-methoxy-2,8-dimethyl-2-(4-methyl-2-oxopent-3-en-1-yl)-3h,4h,9h-pyrano[2,3-e]isoindol-7-one

5-methoxy-2,8-dimethyl-2-(4-methyl-2-oxopent-3-en-1-yl)-3h,4h,9h-pyrano[2,3-e]isoindol-7-one

C20H25NO4 (343.178349)


   

3-{[(1r,2s,4ar,8as)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-5-amino-2-hydroxycyclohexa-2,5-diene-1,4-dione

3-{[(1r,2s,4ar,8as)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-5-amino-2-hydroxycyclohexa-2,5-diene-1,4-dione

C21H29NO3 (343.2147324)


   

2-[(3,4-dimethoxyphenyl)methyl]-6,7-dimethoxy-3,4-dihydro-1h-isoquinoline

2-[(3,4-dimethoxyphenyl)methyl]-6,7-dimethoxy-3,4-dihydro-1h-isoquinoline

C20H25NO4 (343.178349)


   

(1s)-5,6,7-trimethoxy-1-[(4-methoxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline

(1s)-5,6,7-trimethoxy-1-[(4-methoxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline

C20H25NO4 (343.178349)


   

(10e)-13-[(2r,3r,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridec-10-en-4-one

(10e)-13-[(2r,3r,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridec-10-en-4-one

C18H33NO5 (343.2358608)


   

4-{[(1s)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl]methyl}-2-methoxy-5-methylphenol

4-{[(1s)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl]methyl}-2-methoxy-5-methylphenol

C20H25NO4 (343.178349)


   

(2-{4,5-dimethoxy-2-[2-(4-methoxyphenyl)ethyl]phenyl}ethyl)dimethylamine

(2-{4,5-dimethoxy-2-[2-(4-methoxyphenyl)ethyl]phenyl}ethyl)dimethylamine

C21H29NO3 (343.2147324)


   

(2e,8e)-9-(2h-1,3-benzodioxol-5-yl)-n-(2-methylbutyl)nona-2,8-dienimidic acid

(2e,8e)-9-(2h-1,3-benzodioxol-5-yl)-n-(2-methylbutyl)nona-2,8-dienimidic acid

C21H29NO3 (343.2147324)


   

(2s,3r,4s)-6-{[(2r,3r,4e)-1,3-dihydroxy-2,4-dimethylhept-4-en-1-ylidene]amino}-3-hydroxy-2,4-dimethyl-5-oxohexanoic acid

(2s,3r,4s)-6-{[(2r,3r,4e)-1,3-dihydroxy-2,4-dimethylhept-4-en-1-ylidene]amino}-3-hydroxy-2,4-dimethyl-5-oxohexanoic acid

C17H29NO6 (343.1994774)


   

13-[3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridec-10-en-4-one

13-[3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridec-10-en-4-one

C18H33NO5 (343.2358608)


   

10,16,19-trihydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-3-one

10,16,19-trihydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-3-one

C20H25NO4 (343.178349)


   

9-(2h-1,3-benzodioxol-5-yl)-n-(2-methylbutyl)nona-2,8-dienimidic acid

9-(2h-1,3-benzodioxol-5-yl)-n-(2-methylbutyl)nona-2,8-dienimidic acid

C21H29NO3 (343.2147324)


   

(2r,3r,4s)-6-{[(2r,3s,4e)-1,3-dihydroxy-2,4-dimethylhept-4-en-1-ylidene]amino}-3-hydroxy-2,4-dimethyl-5-oxohexanoic acid

(2r,3r,4s)-6-{[(2r,3s,4e)-1,3-dihydroxy-2,4-dimethylhept-4-en-1-ylidene]amino}-3-hydroxy-2,4-dimethyl-5-oxohexanoic acid

C17H29NO6 (343.1994774)


   

(1s,4's)-3,10',11'-trimethoxy-5'-methyl-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,8'(12'),9'-tetraen-4-one

(1s,4's)-3,10',11'-trimethoxy-5'-methyl-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,8'(12'),9'-tetraen-4-one

C20H25NO4 (343.178349)


   

4,15,16-trimethoxy-10-methyl-10-azatricyclo[11.4.0.0²,⁷]heptadeca-1(17),2(7),3,5,13,15-hexaen-5-ol

4,15,16-trimethoxy-10-methyl-10-azatricyclo[11.4.0.0²,⁷]heptadeca-1(17),2(7),3,5,13,15-hexaen-5-ol

C20H25NO4 (343.178349)


   

(2s,3r,4s)-6-{[(2r,3e,5s)-1,5-dihydroxy-2,4-dimethylhept-3-en-1-ylidene]amino}-3-hydroxy-2,4-dimethyl-5-oxohexanoic acid

(2s,3r,4s)-6-{[(2r,3e,5s)-1,5-dihydroxy-2,4-dimethylhept-3-en-1-ylidene]amino}-3-hydroxy-2,4-dimethyl-5-oxohexanoic acid

C17H29NO6 (343.1994774)


   

(2e)-3-[(8r)-8-hydroxy-11-methoxy-2-oxo-3,9-diazatricyclo[8.4.0.0³,⁷]tetradeca-1(10),4,11,13-tetraen-5-yl]-n,n-dimethylprop-2-enamide

(2e)-3-[(8r)-8-hydroxy-11-methoxy-2-oxo-3,9-diazatricyclo[8.4.0.0³,⁷]tetradeca-1(10),4,11,13-tetraen-5-yl]-n,n-dimethylprop-2-enamide

C18H21N3O4 (343.15319860000005)


   

13-[(3s,4s,5s)-3,4-dihydroxy-5-(hydroxymethyl)-4,5-dihydro-3h-pyrrol-2-yl]-1-hydroxytridecan-4-one

13-[(3s,4s,5s)-3,4-dihydroxy-5-(hydroxymethyl)-4,5-dihydro-3h-pyrrol-2-yl]-1-hydroxytridecan-4-one

C18H33NO5 (343.2358608)


   

6-hydroxy-11-[4-(2-hydroxyethyl)phenyl]-3-oxa-11-azatetracyclo[5.5.2.0²,⁶.0⁸,¹²]tetradecan-13-one

6-hydroxy-11-[4-(2-hydroxyethyl)phenyl]-3-oxa-11-azatetracyclo[5.5.2.0²,⁶.0⁸,¹²]tetradecan-13-one

C20H25NO4 (343.178349)


   

1-{6,9-dihydroxy-6,10-dimethyl-9-phenyl-12-azatricyclo[6.3.1.0⁴,¹²]dodecan-5-yl}ethanone

1-{6,9-dihydroxy-6,10-dimethyl-9-phenyl-12-azatricyclo[6.3.1.0⁴,¹²]dodecan-5-yl}ethanone

C21H29NO3 (343.2147324)


   

(3s,11ar)-3,8,9-trimethoxy-,,2,3,4,11-hexahydro-h-5a-azatetraphen-6-one

(3s,11ar)-3,8,9-trimethoxy-,,2,3,4,11-hexahydro-h-5a-azatetraphen-6-one

C20H25NO4 (343.178349)


   

(10e)-13-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridec-10-en-4-one

(10e)-13-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridec-10-en-4-one

C18H33NO5 (343.2358608)


   

3-hydroxy-2,2,10-trimethyl-9-[(3-methylbut-2-en-1-yl)oxy]-3h,4h-pyrano[2,3-b]quinolin-5-one

3-hydroxy-2,2,10-trimethyl-9-[(3-methylbut-2-en-1-yl)oxy]-3h,4h-pyrano[2,3-b]quinolin-5-one

C20H25NO4 (343.178349)


   

1-[(1s,4s,5s,6r,8s,9s,10r)-6,9-dihydroxy-6,10-dimethyl-9-phenyl-12-azatricyclo[6.3.1.0⁴,¹²]dodecan-5-yl]ethanone

1-[(1s,4s,5s,6r,8s,9s,10r)-6,9-dihydroxy-6,10-dimethyl-9-phenyl-12-azatricyclo[6.3.1.0⁴,¹²]dodecan-5-yl]ethanone

C21H29NO3 (343.2147324)


   

(1s,20s)-9,20-dimethoxy-5,7-dioxa-14-azapentacyclo[12.7.0.0¹,¹⁷.0²,¹⁰.0⁴,⁸]henicosa-2,4(8),9,17-tetraene

(1s,20s)-9,20-dimethoxy-5,7-dioxa-14-azapentacyclo[12.7.0.0¹,¹⁷.0²,¹⁰.0⁴,⁸]henicosa-2,4(8),9,17-tetraene

C20H25NO4 (343.178349)


   

(1r,9s,10s)-4,5,12-trimethoxy-17-methyl-17-azatetracyclo[7.5.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,11-tetraen-13-one

(1r,9s,10s)-4,5,12-trimethoxy-17-methyl-17-azatetracyclo[7.5.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,11-tetraen-13-one

C20H25NO4 (343.178349)


   

3-{[(1s,2s,4as,8as)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-5-amino-2-hydroxycyclohexa-2,5-diene-1,4-dione

3-{[(1s,2s,4as,8as)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-5-amino-2-hydroxycyclohexa-2,5-diene-1,4-dione

C21H29NO3 (343.2147324)


   

5,7,8,11-tetramethoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinoline

5,7,8,11-tetramethoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinoline

C20H25NO4 (343.178349)


   

6,7-dihydroxy-8-isopropyl-2-methyl-5-{[(3-methylbutyl)imino]methyl}naphthalene-1,4-dione

6,7-dihydroxy-8-isopropyl-2-methyl-5-{[(3-methylbutyl)imino]methyl}naphthalene-1,4-dione

C20H25NO4 (343.178349)


   

3-{8-hydroxy-11-methoxy-2-oxo-3,9-diazatricyclo[8.4.0.0³,⁷]tetradeca-1(10),4,11,13-tetraen-5-yl}-n,n-dimethylprop-2-enamide

3-{8-hydroxy-11-methoxy-2-oxo-3,9-diazatricyclo[8.4.0.0³,⁷]tetradeca-1(10),4,11,13-tetraen-5-yl}-n,n-dimethylprop-2-enamide

C18H21N3O4 (343.15319860000005)


   

13-[3,4-dihydroxy-5-(hydroxymethyl)-4,5-dihydro-3h-pyrrol-2-yl]-1-hydroxytridecan-5-one

13-[3,4-dihydroxy-5-(hydroxymethyl)-4,5-dihydro-3h-pyrrol-2-yl]-1-hydroxytridecan-5-one

C18H33NO5 (343.2358608)


   

(1r,13r,15s,18s)-4,5,18-trimethoxy-14-oxa-11-azapentacyclo[9.8.0.0¹,¹⁵.0²,⁷.0¹³,¹⁵]nonadeca-2(7),3,5,16-tetraene

(1r,13r,15s,18s)-4,5,18-trimethoxy-14-oxa-11-azapentacyclo[9.8.0.0¹,¹⁵.0²,⁷.0¹³,¹⁵]nonadeca-2(7),3,5,16-tetraene

C20H25NO4 (343.178349)


   

(1s,7s,10s,14s,15r,18s,19r)-7,19-dihydroxy-14,18-dimethyl-12-azahexacyclo[10.6.1.1¹,⁴.0¹⁰,¹⁸.0¹⁵,¹⁹.0⁷,²⁰]icos-4(20)-en-3-one

(1s,7s,10s,14s,15r,18s,19r)-7,19-dihydroxy-14,18-dimethyl-12-azahexacyclo[10.6.1.1¹,⁴.0¹⁰,¹⁸.0¹⁵,¹⁹.0⁷,²⁰]icos-4(20)-en-3-one

C21H29NO3 (343.2147324)


   

4,5,18-trimethoxy-14-oxa-11-azapentacyclo[9.8.0.0¹,¹⁵.0²,⁷.0¹³,¹⁵]nonadeca-2(7),3,5,16-tetraene

4,5,18-trimethoxy-14-oxa-11-azapentacyclo[9.8.0.0¹,¹⁵.0²,⁷.0¹³,¹⁵]nonadeca-2(7),3,5,16-tetraene

C20H25NO4 (343.178349)


   

methyl 7,11-dimethoxy-1h,2h,4h,5h,10h,11h,12h-indolo[7a,1-a]isoquinoline-8-carboxylate

methyl 7,11-dimethoxy-1h,2h,4h,5h,10h,11h,12h-indolo[7a,1-a]isoquinoline-8-carboxylate

C20H25NO4 (343.178349)


   

3,10',11'-trimethoxy-5'-methyl-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,8'(12'),9'-tetraen-4-one

3,10',11'-trimethoxy-5'-methyl-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,8'(12'),9'-tetraen-4-one

C20H25NO4 (343.178349)


   

(1s,9s,13s,14r,16r,17s)-4-(2-hydroxyethyl)-13,17-dimethyl-11-azapentacyclo[12.3.1.0¹,⁵.0⁹,¹⁷.0¹¹,¹⁶]octadec-4-ene-6,18-dione

(1s,9s,13s,14r,16r,17s)-4-(2-hydroxyethyl)-13,17-dimethyl-11-azapentacyclo[12.3.1.0¹,⁵.0⁹,¹⁷.0¹¹,¹⁶]octadec-4-ene-6,18-dione

C21H29NO3 (343.2147324)


   

(1r,2r,6r,7s,8r,12r)-6-hydroxy-11-[4-(2-hydroxyethyl)phenyl]-3-oxa-11-azatetracyclo[5.5.2.0²,⁶.0⁸,¹²]tetradecan-13-one

(1r,2r,6r,7s,8r,12r)-6-hydroxy-11-[4-(2-hydroxyethyl)phenyl]-3-oxa-11-azatetracyclo[5.5.2.0²,⁶.0⁸,¹²]tetradecan-13-one

C20H25NO4 (343.178349)


   

(1s,15r,16s,21r)-20-(prop-2-en-1-yl)-4,14,20-triazahexacyclo[13.6.2.0²,¹⁴.0³,¹¹.0⁵,¹⁰.0¹⁶,²¹]tricosa-2,4,6,8,10,12-hexaene

(1s,15r,16s,21r)-20-(prop-2-en-1-yl)-4,14,20-triazahexacyclo[13.6.2.0²,¹⁴.0³,¹¹.0⁵,¹⁰.0¹⁶,²¹]tricosa-2,4,6,8,10,12-hexaene

C23H25N3 (343.204837)


   

(1s,13s,15r,18s)-4,5,18-trimethoxy-14-oxa-11-azapentacyclo[9.8.0.0¹,¹⁵.0²,⁷.0¹³,¹⁵]nonadeca-2(7),3,5,16-tetraene

(1s,13s,15r,18s)-4,5,18-trimethoxy-14-oxa-11-azapentacyclo[9.8.0.0¹,¹⁵.0²,⁷.0¹³,¹⁵]nonadeca-2(7),3,5,16-tetraene

C20H25NO4 (343.178349)


   

13,19-dihydroxy-5,7-dimethyl-12-methylidene-7-azahexacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-16-one

13,19-dihydroxy-5,7-dimethyl-12-methylidene-7-azahexacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-16-one

C21H29NO3 (343.2147324)


   

3,6-bis(dimethylamino)-9-phenyl-10λ⁴-xanthen-10-ylium

3,6-bis(dimethylamino)-9-phenyl-10λ⁴-xanthen-10-ylium

[C23H23N2O]+ (343.1810288)


   

10-(2h-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)dec-9-en-1-one

10-(2h-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)dec-9-en-1-one

C21H29NO3 (343.2147324)


   

4-[(5,6,7-trimethoxy-2-methyl-3,4-dihydro-1h-isoquinolin-1-yl)methyl]phenol

4-[(5,6,7-trimethoxy-2-methyl-3,4-dihydro-1h-isoquinolin-1-yl)methyl]phenol

C20H25NO4 (343.178349)


   

3,8,9-trimethoxy-,,2,3,4,11-hexahydro-h-5a-azatetraphen-6-one

3,8,9-trimethoxy-,,2,3,4,11-hexahydro-h-5a-azatetraphen-6-one

C20H25NO4 (343.178349)


   
   

(2e,8e,10z)-12-(1,6-dihydropyridin-2-yl)-7-hydroxy-2,6,6,10-tetramethyl-12-oxododeca-2,8,10-trienal

(2e,8e,10z)-12-(1,6-dihydropyridin-2-yl)-7-hydroxy-2,6,6,10-tetramethyl-12-oxododeca-2,8,10-trienal

C21H29NO3 (343.2147324)


   

n-(2,2-diphenylethyl)-2,9-dimethylpurin-6-amine

n-(2,2-diphenylethyl)-2,9-dimethylpurin-6-amine

C21H21N5 (343.1796866)


   

4,12,14-trihydroxy-5-isopropyl-6,9-dimethyl-15-azatetracyclo[7.6.1.0²,⁶.0¹³,¹⁶]hexadeca-1,4,13(16),14-tetraen-3-one

4,12,14-trihydroxy-5-isopropyl-6,9-dimethyl-15-azatetracyclo[7.6.1.0²,⁶.0¹³,¹⁶]hexadeca-1,4,13(16),14-tetraen-3-one

C20H25NO4 (343.178349)


   

hexahydro-1h-pyrrolizin-1-ylmethyl 3-(acetyloxy)-2-hydroxy-2-(2-hydroxypropan-2-yl)butanoate

hexahydro-1h-pyrrolizin-1-ylmethyl 3-(acetyloxy)-2-hydroxy-2-(2-hydroxypropan-2-yl)butanoate

C17H29NO6 (343.1994774)


   

n-{2-hydroxy-1-[(2r,5s,6r)-5-hydroxy-6-methyloxan-2-yl]pyrimidin-4-ylidene}-2-phenylacetamide

n-{2-hydroxy-1-[(2r,5s,6r)-5-hydroxy-6-methyloxan-2-yl]pyrimidin-4-ylidene}-2-phenylacetamide

C18H21N3O4 (343.15319860000005)


   

4-[(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl]-2-methoxy-5-methylphenol

4-[(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl]-2-methoxy-5-methylphenol

C20H25NO4 (343.178349)


   

(1s)-1-[(3,4-dimethoxyphenyl)methyl]-7-methoxy-2-methyl-3,4-dihydro-1h-isoquinolin-6-ol

(1s)-1-[(3,4-dimethoxyphenyl)methyl]-7-methoxy-2-methyl-3,4-dihydro-1h-isoquinolin-6-ol

C20H25NO4 (343.178349)


   

1-[(3,4-dimethoxyphenyl)methyl]-7-methoxy-2-methyl-3,4-dihydro-1h-isoquinolin-6-ol

1-[(3,4-dimethoxyphenyl)methyl]-7-methoxy-2-methyl-3,4-dihydro-1h-isoquinolin-6-ol

C20H25NO4 (343.178349)


   

3-{[(1r,2s,4as,8as)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-5-amino-4-hydroxycyclohexa-3,5-diene-1,2-dione

3-{[(1r,2s,4as,8as)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-5-amino-4-hydroxycyclohexa-3,5-diene-1,2-dione

C21H29NO3 (343.2147324)


   

(1r)-2-[(3,4-dimethoxyphenyl)methyl]-7-methoxy-1-methyl-3,4-dihydro-1h-isoquinolin-6-ol

(1r)-2-[(3,4-dimethoxyphenyl)methyl]-7-methoxy-1-methyl-3,4-dihydro-1h-isoquinolin-6-ol

C20H25NO4 (343.178349)


   

(18s)-4,5,18-trimethoxy-14-oxa-11-azapentacyclo[9.8.0.0¹,¹⁵.0²,⁷.0¹³,¹⁵]nonadeca-2(7),3,5,16-tetraene

(18s)-4,5,18-trimethoxy-14-oxa-11-azapentacyclo[9.8.0.0¹,¹⁵.0²,⁷.0¹³,¹⁵]nonadeca-2(7),3,5,16-tetraene

C20H25NO4 (343.178349)