Exact Mass: 342.1103
Exact Mass Matches: 342.1103
Found 323 metabolites which its exact mass value is equals to given mass value 342.1103
,
within given mass tolerance error 0.0002 dalton. Try search metabolite list with more accurate mass tolerance error
4.0E-5 dalton.
Tetramethylscutellarein
Tetramethylscutellarein, also known as 4,5,6,7-tetramethoxyflavone or 5-methoxysalvigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, tetramethylscutellarein is considered to be a flavonoid lipid molecule. Tetramethylscutellarein is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, tetramethylscutellarein is found, on average, in the highest concentration within sweet oranges. Tetramethylscutellarein has also been detected, but not quantified, in herbs, spices, tea. This could make tetramethylscutellarein a potential biomarker for the consumption of these foods. Tetramethylscutellarein is isolated from Salvia officinalis (sage) leaves. Isolated from Salvia officinalis (sage) leaves. Tetramethylscutellarein is found in tea, sweet orange, and herbs and spices. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) is a bioactive component of Siam weed extract. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) exhibits anti-inflammatory activity through NF-κB pathway[1]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) modulats of bacterial agent resistance via efflux pump inhibition[2]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) can enhance blood coagulation[3]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) is a bioactive component of Siam weed extract. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) exhibits anti-inflammatory activity through NF-κB pathway[1]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) modulats of bacterial agent resistance via efflux pump inhibition[2]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) can enhance blood coagulation[3].
SCHEMBL12391563
(+)-Sesamin monocatechol
A catechol resulting from the hydrolysis of one of the two methylene acetal groups in (+)-sesamin. Found as a product of (+)-sesamin in rat liver homogenate and also produced from sesamin by an enzyme (SesA) found in Sinomonas species. no. 22 growing on sesamin.
1,5,8-Trihydroxy-3-methyl-2-prenylxanthone
1,5,8-Trihydroxy-3-methyl-2-prenylxanthone is found in fruits. 1,5,8-Trihydroxy-3-methyl-2-prenylxanthone is a constituent of Garcinia mangostana (mangosteen). Constituent of Garcinia mangostana (mangosteen). 1,5,8-Trihydroxy-3-methyl-2-prenylxanthone is found in fruits.
Dulxanthone A
Dulxanthone A is found in fruits. Dulxanthone A is a constituent of the stem bark of Garcinia dulcis (mundu)
Dulxanthone D
Dulxanthone D is found in fruits. Dulxanthone D is a constituent of the stem bark of Garcinia dulcis (mundu). Constituent of the stem bark of Garcinia dulcis (mundu). Dulxanthone D is found in fruits.
(1R,2S,5R,6S)-6-(3,4-Dihydroxyphenyl)-2-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo-[3,3,0]octane
(1R,2S,5R,6S)-6-(3,4-Dihydroxyphenyl)-2-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo-[3,3,0]octane belongs to the family of Furofuran Lignans. These are lignans whose structure is based on 1,4-diphenyl-hexahydrofuro[3,4-c]furan skeleton.
3-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxy-8-methyl-4H-chromen-4-one
1,4,6-Trihydroxy-5-methoxy-7-prenylxanthone
1,4,6-Trihydroxy-5-methoxy-7-prenylxanthone is a constituent of the branches of Garcinia dulcis (mandu)
(9R)-4,5,6,7-Tetrahydroxy-1,8,8,9-tetramethyl-9H-phenaleno[1,2-b]furan-3-one
Tetramethoxyluteolin
Tetramethoxyluteolin, also known as 3457-tetramethoxyflavone or 3,4,5,7-tetramethyl-luteolin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, tetramethoxyluteolin is considered to be a flavonoid lipid molecule. Tetramethoxyluteolin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Tetramethoxyluteolin can be found in mandarin orange (clementine, tangerine), which makes tetramethoxyluteolin a potential biomarker for the consumption of this food product. 5,7,3',4'-Tetramethoxyflavone, one of the major polymethoxyflavones (PMFs) isolated from M. exotica, possesses various bioactivities, including anti-fungal, anti-malarial, anti-mycobacterial, and anti-inflammatory activities. 5,7,3',4'-Tetramethoxyflavone exhibits chondroprotective activity by targeting β-catenin signaling[1]. 5,7,3',4'-Tetramethoxyflavone, one of the major polymethoxyflavones (PMFs) isolated from M. exotica, possesses various bioactivities, including anti-fungal, anti-malarial, anti-mycobacterial, and anti-inflammatory activities. 5,7,3',4'-Tetramethoxyflavone exhibits chondroprotective activity by targeting β-catenin signaling[1].
Tetramethylisoscutellarein
Tetramethylisoscutellarein, also known as 5784-tetramethoxyflavone, is a member of the class of compounds known as 8-o-methylated flavonoids. 8-o-methylated flavonoids are flavonoids with methoxy groups attached to the C8 atom of the flavonoid backbone. Thus, tetramethylisoscutellarein is considered to be a flavonoid lipid molecule. Tetramethylisoscutellarein is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Tetramethylisoscutellarein can be found in sweet orange, which makes tetramethylisoscutellarein a potential biomarker for the consumption of this food product. 6-Demethoxytangeretin is a citrus flavonoid isolated from Citrus reticulata. 6-Demethoxytangeretin exerts anti-inflammatory activity and anti-allergic activity, suppresses production and gene expression of interleukin-6 in human mast cell-1 via anaplastic lymphoma kinase (ALK) and mitogen-activated protein kinase (MAPK) pathways[1]. 6-Demethoxytangeretin facilitates the CRE-mediated transcription associated with learning and memory in cultured hippocampal neurons[2]. 6-Demethoxytangeretin is a citrus flavonoid isolated from Citrus reticulata. 6-Demethoxytangeretin exerts anti-inflammatory activity and anti-allergic activity, suppresses production and gene expression of interleukin-6 in human mast cell-1 via anaplastic lymphoma kinase (ALK) and mitogen-activated protein kinase (MAPK) pathways[1]. 6-Demethoxytangeretin facilitates the CRE-mediated transcription associated with learning and memory in cultured hippocampal neurons[2].
Methylophiopogonanone A
Methylophiopogonanone A is a homoflavonoid. Methylophiopogonanone A is a natural product found in Ophiopogon japonicus with data available. Methylophiopogonanone A, a major homoisoflavonoid in Ophiopogon japonicas, has both anti-oxidative and anti-inflammatory properties[1]. Methylophiopogonanone A, a major homoisoflavonoid in Ophiopogon japonicas, has both anti-oxidative and anti-inflammatory properties[1].
2U2U884D0P
6-Demethoxytangeretin is a natural product found in Juncus effusus, Neoraputia alba, and other organisms with data available. See also: Tangerine peel (part of); Citrus aurantium fruit rind (part of). 6-Demethoxytangeretin is a citrus flavonoid isolated from Citrus reticulata. 6-Demethoxytangeretin exerts anti-inflammatory activity and anti-allergic activity, suppresses production and gene expression of interleukin-6 in human mast cell-1 via anaplastic lymphoma kinase (ALK) and mitogen-activated protein kinase (MAPK) pathways[1]. 6-Demethoxytangeretin facilitates the CRE-mediated transcription associated with learning and memory in cultured hippocampal neurons[2]. 6-Demethoxytangeretin is a citrus flavonoid isolated from Citrus reticulata. 6-Demethoxytangeretin exerts anti-inflammatory activity and anti-allergic activity, suppresses production and gene expression of interleukin-6 in human mast cell-1 via anaplastic lymphoma kinase (ALK) and mitogen-activated protein kinase (MAPK) pathways[1]. 6-Demethoxytangeretin facilitates the CRE-mediated transcription associated with learning and memory in cultured hippocampal neurons[2].
Methylophiopogonanone
Methylophiopogonanone A is a homoflavonoid. Methylophiopogonanone A is a natural product found in Ophiopogon japonicus with data available. Methylophiopogonanone A, a major homoisoflavonoid in Ophiopogon japonicas, has both anti-oxidative and anti-inflammatory properties[1]. Methylophiopogonanone A, a major homoisoflavonoid in Ophiopogon japonicas, has both anti-oxidative and anti-inflammatory properties[1].
MUNDUSERONE
Vitexdoin A
Vitexdoin A is a natural product found in Vitex negundo with data available.
3-(2-Hydroxy-3-methylbut-3-enyl)-4,2,4-trihydroxychalcone
celebixanthone
A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 3, 4 and 8, a methoxy group at position 2 and a prenyl group at position 1. Isolated from Cratoxylum celebicum and the roots of Cratoxylum cochinchinense, it exhibits cytotoxic and antimalarial activities.
1,3,5-trihydroxy-6-methoxy-7-(3-methylbut-2-enyl)xanthone
Garciniaxanthone H
A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 2, 5 and 8, methoxy group at position 1 and a 2-methylbut-3-en-2-yl group at position 4. Isolated from the woods of Garcinia subelliptica, it exhibits antioxidant activity.
6-Demethoxytangeritin
6-Demethoxytangeretin is a citrus flavonoid isolated from Citrus reticulata. 6-Demethoxytangeretin exerts anti-inflammatory activity and anti-allergic activity, suppresses production and gene expression of interleukin-6 in human mast cell-1 via anaplastic lymphoma kinase (ALK) and mitogen-activated protein kinase (MAPK) pathways[1]. 6-Demethoxytangeretin facilitates the CRE-mediated transcription associated with learning and memory in cultured hippocampal neurons[2]. 6-Demethoxytangeretin is a citrus flavonoid isolated from Citrus reticulata. 6-Demethoxytangeretin exerts anti-inflammatory activity and anti-allergic activity, suppresses production and gene expression of interleukin-6 in human mast cell-1 via anaplastic lymphoma kinase (ALK) and mitogen-activated protein kinase (MAPK) pathways[1]. 6-Demethoxytangeretin facilitates the CRE-mediated transcription associated with learning and memory in cultured hippocampal neurons[2].
3,4,5,7-Tetramethoxyflavone
5,7,3',4'-Tetramethoxyflavone, one of the major polymethoxyflavones (PMFs) isolated from M. exotica, possesses various bioactivities, including anti-fungal, anti-malarial, anti-mycobacterial, and anti-inflammatory activities. 5,7,3',4'-Tetramethoxyflavone exhibits chondroprotective activity by targeting β-catenin signaling[1]. 5,7,3',4'-Tetramethoxyflavone, one of the major polymethoxyflavones (PMFs) isolated from M. exotica, possesses various bioactivities, including anti-fungal, anti-malarial, anti-mycobacterial, and anti-inflammatory activities. 5,7,3',4'-Tetramethoxyflavone exhibits chondroprotective activity by targeting β-catenin signaling[1].
Tetramethylscutellarein
Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) is a bioactive component of Siam weed extract. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) exhibits anti-inflammatory activity through NF-κB pathway[1]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) modulats of bacterial agent resistance via efflux pump inhibition[2]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) can enhance blood coagulation[3]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) is a bioactive component of Siam weed extract. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) exhibits anti-inflammatory activity through NF-κB pathway[1]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) modulats of bacterial agent resistance via efflux pump inhibition[2]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) can enhance blood coagulation[3].
(8,8-dimethyl-2,10-dioxo-9H-pyrano[2,3-f]chromen-9-yl) (Z)-2-methylbut-2-enoate
(E)-3-(4-hydroxy-3-((E)-4-hydroxy-3-methoxystyryl)-5-methoxyphenyl)acrylic acid
(E)-4alpha-hydroxy-5,8-dimethyl-3-(4-methyl-5-oxo-2,5-dihydrofuran-2-yloxymethylene)-3a,4-dihydro-3H-indeno[1,2-b]furan-2(8bH)-one|solanacol
(3E)-2,3-dihydro-6,7-dimethoxy-3-[(3-hydroxy-4-methoxyphenyl)-methylene]-4H-1-benzopyran-4-one
(E)-7-hydroxy-3-(3,4,5-trimethoxybenzylidene)chroman-4-one|(E)-7-hydroxy-3-(3,4,5-trimethoxybenzylidene)chroman-4-one
6-Demethoxytangeretin
6-Demethoxytangeretin is a citrus flavonoid isolated from Citrus reticulata. 6-Demethoxytangeretin exerts anti-inflammatory activity and anti-allergic activity, suppresses production and gene expression of interleukin-6 in human mast cell-1 via anaplastic lymphoma kinase (ALK) and mitogen-activated protein kinase (MAPK) pathways[1]. 6-Demethoxytangeretin facilitates the CRE-mediated transcription associated with learning and memory in cultured hippocampal neurons[2]. 6-Demethoxytangeretin is a citrus flavonoid isolated from Citrus reticulata. 6-Demethoxytangeretin exerts anti-inflammatory activity and anti-allergic activity, suppresses production and gene expression of interleukin-6 in human mast cell-1 via anaplastic lymphoma kinase (ALK) and mitogen-activated protein kinase (MAPK) pathways[1]. 6-Demethoxytangeretin facilitates the CRE-mediated transcription associated with learning and memory in cultured hippocampal neurons[2].
1,3,6-Trihydroxy-4-prenyl-5-methoxy-9H-xanthene-9-one
luzonidial B
An iridoid monoterpenoid that is cyclopentene substituted by a formyl group at position 3, a hydroxymethyl group at position 2, 3-oxopropen-2yl group at position 4 and a cis-4-coumaroyloxy moiety at position 1 (the 1S,4R stereoisomer). Isolated from the leaves of Viburnum luzonicum, it exhibits antineoplastic activity.
1,3,5-Trihydroxy-2-prenyl-6-methoxy-9H-xanthene-9-one
(3R)-3-(1,3-benzodioxol-5-ylmethyl)-2,3-dihydro-7-hydroxy-5-methoxy-6-methyl-4H-chromen--4-one|5-O-methylophiopogonanone A
15-Aldehyde,8-(methylpropenoyl)-(5alpha,6alpha,8alpha)-8,15-Dihydroxy-2-oxo-1(10),3,11(13)-guaiatrien-12,6-olide|15-dehydrolactucin-8-O-methacrylate
(2E)-1-(2,4,7-trimethoxyphenyl)-3-(1,3-benzodioxol-5-yl)-2-propen-1-one|2,4,6-trimethoxy-3,4-methylenedioxychalcone
1,2,6-Trihydroxy-5-methoxy-7-(3-methyl-2-butenyl)xanthone
1,6,8-trihydroxy-3-(2-hydroxy-pentyl)-9,10-anthraquinone
4,5,6,7-Tetrahydroxy-1,8,8,9-tetramethyl-8,9-dihydrophenaleno[1,2-b]furan-3-one
(+)-2,3,10-tri-O-methylpeltogynone|(+)-4,5,7-tri-O-methyl-2,3-trans-peltogynone|(6aR)-2,3,10-Trimethoxy-(6ar,12at)-6a,12a-dihydro-5H-isochromeno[4,3-b]chromen-7-on|(6aR)-2,3,10-trimethoxy-(6ar,12at)-6a,12a-dihydro-5H-isochromeno[4,3-b]chromen-7-one|Peltogynon trimethylether|Peltogynon-trimethylaether
Isobutyric acid (2,4-dihydro-5,7-dihydroxy-4-oxo-2-phenyl-3H-1-benzopyran)-3-yl ester
6-O-Methyl-2-deprenylrheediaxanthone B
An organic heterotetracyclic compound that is 1,2-dihydro-6H-furo[2,3-c]xanthene substituted by hydroxy groups at positions 5 and 10, a methoxy group at position 9 and methyl groups at positions 1, 1 and 2 and an oxo group at position 6. Isolated from the stem barks of Garcinia vieillardii, it exhibits antioxidant activity.
vieillardixanthone
A member of the class of xanthones that is xanthone substituted by hydroxy groups at positions 1, 5 and 6, a methoxy group at position 3 and a 3-methylbut-1-en-2-yl group at position 4. Isolated from the stem barks of Garcinia vieillardii, it exhibits antioxidant activity.
3-(3,4-dimethoxyphenyl)-7,8-dimethoxy-4H-chromen-4-one
2,6,7,8-tetramethoxy-9,10-dihydro-5H-phenanthro[4,5-bcd|coeloginin dimethyl ether|coeloginone|dimethyl coeloginin|]pyran-5-one
2,4-Dihydroxy-5-methoxy-7-(2-hydroxy-3-methyl-3-butenyloxy)-9H-fluorene-9-one
(3R)-3,4-dihydro-5,7-dihydroxy-3-[(4-methoxyphenyl)methyl]-6-methyl-4-oxo-2H-1-benzopyran-8-carboxaldehyde|8-formylophiopogonanone B
1-[2-(2-hydroxy-4,6-dimethoxyphenyl)benzofuran-5-yl]propan-1-one|fargesilignan A
1,5,8-trihydroxy-3-methoxy-4-(3-methylbut-2-enyl)xanthone|pedunxanthone A
6-Hydroxy-7-methoxy-2-[2-(3-hydroxy-4-methoxyphenyl)ethyl]chromone
1,4-Dihydroxy-5-methoxy-7-(2-hydroxy-3-methyl-3-butenyloxy)-9H-fluorene-9-one
(-)-3,4-O,O-demethylenehinokinin|(3R,4R)-3-(1,3-benzodioxol-5-ylmethyl)-4-[(3,4-dihydroxyphenyl)methyl]dihydrofuran-2(3H)-one|3,4-de-O-methylenehinokinin|3,4-O,O-demethylenehinokinin
taiwaninolide|trans-4-(1,3-benzodioxol-5-ylmethyl)dihydro-3-[hydroxy(4-hydroxyphenyl)methyl]dihydrofuran-2(3H)-one
5,9-Dihydroxy-10-methoxy-1,1,2-trimethyl-2H-furo[2,3-c]xanthen-6-one
5,7,8-Trimethoxy-2-(2-methoxyphenyl)-4H-chromen-4-one
2,3-dihydro-2-(4-hydroxy-3-methoxyphenyl)-3-hydroxymethyl-5-(2-formylvinyl)-7-hydroxybenzofuran
2-(2,4-Dimethoxyphenyl)-5,7-dimethoxy-4H-1-benzopyran-4-one
Tetramethylscutellarein
Tetramethylscutellarein, also known as 4,5,6,7-tetramethoxyflavone or 5-methoxysalvigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, tetramethylscutellarein is considered to be a flavonoid lipid molecule. Tetramethylscutellarein is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, tetramethylscutellarein is found, on average, in the highest concentration within sweet oranges. Tetramethylscutellarein has also been detected, but not quantified, in herbs, spices, tea. This could make tetramethylscutellarein a potential biomarker for the consumption of these foods. Tetramethylscutellarein is isolated from Salvia officinalis (sage) leaves. 4,5,6,7-tetramethoxyflavone is a tetramethoxyflavone that is the tetra-O-methyl derivative of scutellarein. It has a role as an antimutagen and a plant metabolite. It is functionally related to a scutellarein. 4,5,6,7-Tetramethoxyflavone is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. See also: Tangerine peel (part of); Citrus aurantium fruit rind (part of). Isolated from Salvia officinalis (sage) leaves. Tetramethylscutellarein is found in tea, sweet orange, and herbs and spices. A tetramethoxyflavone that is the tetra-O-methyl derivative of scutellarein. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) is a bioactive component of Siam weed extract. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) exhibits anti-inflammatory activity through NF-κB pathway[1]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) modulats of bacterial agent resistance via efflux pump inhibition[2]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) can enhance blood coagulation[3]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) is a bioactive component of Siam weed extract. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) exhibits anti-inflammatory activity through NF-κB pathway[1]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) modulats of bacterial agent resistance via efflux pump inhibition[2]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) can enhance blood coagulation[3].
Tetramethylluteolin
3,4,5,7-Tetramethoxyflavone is a natural product found in Orthosiphon aristatus, Bryobium eriaeoides, and other organisms with data available. 5,7,3',4'-Tetramethoxyflavone, one of the major polymethoxyflavones (PMFs) isolated from M. exotica, possesses various bioactivities, including anti-fungal, anti-malarial, anti-mycobacterial, and anti-inflammatory activities. 5,7,3',4'-Tetramethoxyflavone exhibits chondroprotective activity by targeting β-catenin signaling[1]. 5,7,3',4'-Tetramethoxyflavone, one of the major polymethoxyflavones (PMFs) isolated from M. exotica, possesses various bioactivities, including anti-fungal, anti-malarial, anti-mycobacterial, and anti-inflammatory activities. 5,7,3',4'-Tetramethoxyflavone exhibits chondroprotective activity by targeting β-catenin signaling[1].
(8,8-dimethyl-2,10-dioxo-9H-pyrano[2,3-f]chromen-9-yl) (Z)-2-methylbut-2-enoate
2-(2,6-dimethoxyphenyl)-5,6-dimethoxychromen-4-one
5,6,7-trimethoxy-2-(4-methoxyphenyl)chromen-4-one
C19H18O6_Benz[3,4]anthra[1,2-b]oxirene-5,6-dione, 1a,2,3,4,5b,11,11a,11b-octahydro-10,11,11a-trihydroxy-3-methyl
C19H18O6_1,3-Cyclobutanedicarboxylic acid, 2,4-bis(4-hydroxyphenyl)-, monomethyl ester
1,17,19-trihydroxy-7-methyl-3-oxapentacyclo[9.8.0.0²,⁴.0⁵,¹⁰.0¹³,¹⁸]nonadeca-5(10),13,15,17-tetraene-9,12-dione
4-{2,6-Dihydroxy-3-[(2E)-3-(4-hydroxyphenyl)-2-propenoyl]phenyl}-3-hydroxy-2-butanone
1,4,6-Trihydroxy-5-methoxy-7-prenylxanthone
1,5,8-Trihydroxy-3-methyl-2-prenylxanthone
2,4,6-CYCLOHEPTATRIEN-1-ONE, 2-HYDROXY-3-[1-OXO-3-(3,4,5-TRIMETHOXYPHENYL)-2-PROPENYL]-
Poacic acid
A hydroxycinnamic acid that is (2E)-3-phenylprop-2-enoic acid in which the hydrogens at positions 3, 4 and 5 are replaced by 2-(4-hydroxy-3-methoxyphenyl)ethenyl, hydroxy and methoxy groups, respectively. It is a natural product found in maize bran which exhibits antifungal activities against several fungal and oomycete pathogens including Sclerotinia sclerotiorum, Alternaria solani, and Phytophthora sojae. It inhibits beta-1,3-glucan synthesis in cells walls resulting in rapid cell lysis.
3,5,6,7-Tetrahydroxy-1,8,8,9-tetramethyl-9H-phenaleno(1,2-b)furan-4-one
4H-1-Benzopyran-4-one, 5,6,7-trimethoxy-3-(2-methoxyphenyl)-
2-Benzo[1,3]dioxol-5-ylmethyl-3-benzyl-succinic acid
855-97-0
5,7,3',4'-Tetramethoxyflavone, one of the major polymethoxyflavones (PMFs) isolated from M. exotica, possesses various bioactivities, including anti-fungal, anti-malarial, anti-mycobacterial, and anti-inflammatory activities. 5,7,3',4'-Tetramethoxyflavone exhibits chondroprotective activity by targeting β-catenin signaling[1]. 5,7,3',4'-Tetramethoxyflavone, one of the major polymethoxyflavones (PMFs) isolated from M. exotica, possesses various bioactivities, including anti-fungal, anti-malarial, anti-mycobacterial, and anti-inflammatory activities. 5,7,3',4'-Tetramethoxyflavone exhibits chondroprotective activity by targeting β-catenin signaling[1].
3-(3,4-Dimethoxyphenyl)-5-hydroxy-7-methoxy-8-methylchromen-4-one
(3R,4aR,12bR)-3,4a,7,8-tetrahydroxy-3-methyl-2,4,5,12b-tetrahydrotetraphene-1,6-dione
(3E,3aS,4R,8bS)-4-hydroxy-7,8-dimethyl-3-[[(2R)-4-methyl-5-oxo-2H-furan-2-yl]oxymethylidene]-4,8b-dihydro-3aH-indeno[1,2-b]furan-2-one
4,6,3,4-Tetramethoxyaurone
A methoxyaurone that is aureusidin in which the hydroxy groups at positions 4, 6, 3 and 4 have been replaced by methoxy groups respectively. It has been isolated from the roots of Cyperus teneriffae.
4,6,7,8,9-Pentahydroxy-3-methyl-5-(2-methylbut-3-en-2-yl)phenalen-1-one
4,5,6,7-Tetrahydroxy-9-methyl-2-(2-methylbut-3-en-2-yl)phenalene-1,3-dione
(3R,4aR)-3,4a,7,8-tetrahydroxy-3-methyl-2,4,5,12b-tetrahydrobenzo[a]anthracene-1,6-dione
1,5,8-Trihydroxy-3-methoxy-2-prenylxanthone
(6ar,12ar)-2,3,9-trimethoxy-6a,12a-dihydro-6h-5,7-dioxatetraphen-12-one
(3s)-6,7-dihydroxy-8-[3-hydroxy-2-(hydroxymethyl)benzoyl]-3-methyl-3,4-dihydro-2h-naphthalen-1-one
7-({3-methyl-3-[(4-methyl-5-oxo-2h-furan-2-yl)methyl]oxiran-2-yl}methoxy)chromen-2-one
7-{[(2r)-2-hydroxy-3-[(4-methyl-5-oxo-2h-furan-2-yl)methyl]but-3-en-1-yl]oxy}chromen-2-one
6,7-dihydroxy-4-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-3,4-dihydronaphthalene-2-carbaldehyde
3-(3,4-dimethoxyphenyl)-6,7-dimethoxychromen-4-one
(2r)-6,9,11-trihydroxy-2,4,4-trimethyl-2,3-dihydro-1,5-dioxatetraphen-10-one
(5ar,11ar)-3,8,9-trimethoxy-10,11a-dihydro-5ah-5,11-dioxatetraphen-12-one
4-[(2s,3r)-2-(hydroxymethyl)-2h,3h,9h-[1,4]dioxino[2,3-g]chromen-3-yl]-2-methoxyphenol
methyl (2e,3e)-4-(3,4-dihydroxyphenyl)-2-[2-(3,4-dihydroxyphenyl)ethylidene]but-3-enoate
1,3,6-trihydroxy-5-methoxy-4-(2-methylbut-3-en-2-yl)xanthen-9-one
2,5,6-trihydroxy-1-methoxy-4-(2-methylbut-3-en-2-yl)xanthen-9-one
4-[2-(hydroxymethyl)-2h,3h,9h-[1,4]dioxino[2,3-g]chromen-3-yl]-2-methoxyphenol
2-(3,4-dimethoxyphenyl)-5,6-dimethoxychromen-4-one
2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-5-[(1e)-3-hydroxyprop-1-en-1-yl]-1-benzofuran-7-ol
(2r)-5,9-dihydroxy-10-methoxy-1,1,2-trimethyl-2h-furo[2,3-c]xanthen-6-one
4-[(1s,3ar,4s,6ar)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]benzene-1,2-diol
2-(2,3-dimethoxyphenyl)-5,7-dimethoxychromen-4-one
7-({3-methyl-3-[(4-methylidene-5-oxooxolan-2-yl)methyl]oxiran-2-yl}methoxy)chromen-2-one
(1r,2r,3r,4s)-1,2,4,6-tetrahydroxy-7-methoxy-3-methyl-1h,2h,3h,4h-cyclohexa[a]fluoren-11-one
(3s,4r)-4-(2h-1,3-benzodioxol-5-ylmethyl)-3-[(r)-hydroxy(4-hydroxyphenyl)methyl]oxolan-2-one
6,9,11-trihydroxy-2,4,4-trimethyl-2,3-dihydro-1,5-dioxatetraphen-10-one
(3s)-5,7-dihydroxy-3-[(4-methoxyphenyl)methyl]-8-methyl-4-oxo-2,3-dihydro-1-benzopyran-6-carbaldehyde
2',3'-epoxyisocapnolactone
{"Ingredient_id": "HBIN004092","Ingredient_name": "2',3'-epoxyisocapnolactone","Alias": "NA","Ingredient_formula": "C19H18O6","Ingredient_Smile": "CC1(C(O1)COC2=CC3=C(C=C2)C=CC(=O)O3)CC4CC(=C)C(=O)O4","Ingredient_weight": "342.3 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "7148","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "12097136","DrugBank_id": "NA"}
5,7,8,4-tetramethoxyflavone
{"Ingredient_id": "HBIN011248","Ingredient_name": "5,7,8,4-tetramethoxyflavone","Alias": "NA","Ingredient_formula": "C19H18O6","Ingredient_Smile": "COC1=CC=C(C=C1)C2=CC(=O)C3=C(O2)C(=C(C=C3OC)OC)OC","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "40862","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
5-hydroxy-3',4', 7-trimethoxyspiro{2h-1-benzo-pyran-7'-bicyclo[4.2.0]octa[1,3,5]-trien}-4-one
{"Ingredient_id": "HBIN011602","Ingredient_name": "5-hydroxy-3',4', 7-trimethoxyspiro{2h-1-benzo-pyran-7'-bicyclo[4.2.0]octa[1,3,5]-trien}-4-one","Alias": "NA","Ingredient_formula": "C19H18O6","Ingredient_Smile": "COC1=CC(=C2C(=C1)OCC3(C2=O)CC4=CC(=C(C=C34)OC)OC)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "10675","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
6-formylisoophiopogonanone b
{"Ingredient_id": "HBIN012347","Ingredient_name": "6-formylisoophiopogonanone b","Alias": "NA","Ingredient_formula": "C19H18O6","Ingredient_Smile": "NA","Ingredient_weight": "342.348","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "7569","PubChem_id": "NA","DrugBank_id": "NA"}