Exact Mass: 336.0641
Exact Mass Matches: 336.0641
Found 116 metabolites which its exact mass value is equals to given mass value 336.0641
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Dicumarol
Dicoumarol is a hydroxycoumarin that is methane in which two hydrogens have each been substituted by a 4-hydroxycoumarin-3-yl group. Related to warfarin, it has been used as an anticoagulant. It has a role as a vitamin K antagonist, an anticoagulant, an EC 1.6.5.2 [NAD(P)H dehydrogenase (quinone)] inhibitor and a Hsp90 inhibitor. Dicoumarol is an oral anticoagulant agent that works by interfering with the metabolism of vitamin K. In addition to its clinical use, it is also used in biochemical experiments as an inhibitor of reductases. Dicumarol is a natural product found in Homo sapiens and Viola arvensis with data available. Dicumarol is a hydroxycoumarin originally isolated from molding sweet-clover hay, with anticoagulant and vitamin K depletion activities. Dicumarol is a competitive inhibitor of vitamin K epoxide reductase; thus, it inhibits vitamin K recycling and causes depletion of active vitamin K in blood. This prevents the formation of the active form of prothrombin and several other coagulant enzymes, and inhibits blood clotting. Dicumarol is only found in individuals that have used or taken this drug. It is an oral anticoagulant that interferes with the metabolism of vitamin K. It is also used in biochemical experiments as an inhibitor of reductases. [PubChem] Dicumarol inhibits vitamin K reductase, resulting in depletion of the reduced form of vitamin K (vitamin KH2). As vitamin K is a cofactor for the carboxylation of glutamate residues on the N-terminal regions of vitamin K-dependent proteins, this limits the gamma-carboxylation and subsequent activation of the vitamin K-dependent coagulant proteins. The synthesis of vitamin K-dependent coagulation factors II, VII, IX, and X and anticoagulant proteins C and S is inhibited. Depression of three of the four vitamin K-dependent coagulation factors (factors II, VII, and X) results in decresed prothrombin levels and a decrease in the amount of thrombin generated and bound to fibrin. This reduces the thrombogenicity of clots. An oral anticoagulant that interferes with the metabolism of vitamin K. It is also used in biochemical experiments as an inhibitor of reductases. Dicumarol is only found in individuals that have used or taken this drug. It is an oral anticoagulant that interferes with the metabolism of vitamin K. It is also used in biochemical experiments as an inhibitor of reductases. [PubChem]Dicumarol inhibits vitamin K reductase, resulting in depletion of the reduced form of vitamin K (vitamin KH2). As vitamin K is a cofactor for the carboxylation of glutamate residues on the N-terminal regions of vitamin K-dependent proteins, this limits the gamma-carboxylation and subsequent activation of the vitamin K-dependent coagulant proteins. The synthesis of vitamin K-dependent coagulation factors II, VII, IX, and X and anticoagulant proteins C and S is inhibited. Depression of three of the four vitamin K-dependent coagulation factors (factors II, VII, and X) results in decresed prothrombin levels and a decrease in the amount of thrombin generated and bound to fibrin. This reduces the thrombogenicity of clots. B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AA - Vitamin k antagonists A hydroxycoumarin that is methane in which two hydrogens have each been substituted by a 4-hydroxycoumarin-3-yl group. D006401 - Hematologic Agents > D000925 - Anticoagulants > D015110 - 4-Hydroxycoumarins C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents Isolated from Melilotus alba (white melilot)
Bisphenol AF
CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4798; ORIGINAL_PRECURSOR_SCAN_NO 4796 CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4887; ORIGINAL_PRECURSOR_SCAN_NO 4885 CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4799; ORIGINAL_PRECURSOR_SCAN_NO 4798 CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4824; ORIGINAL_PRECURSOR_SCAN_NO 4819 CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4817; ORIGINAL_PRECURSOR_SCAN_NO 4812 CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4468; ORIGINAL_PRECURSOR_SCAN_NO 4466 D052244 - Endocrine Disruptors
Pachyrrhizin
Pachyrrhizin is found in jicama. Pachyrrhizin is a constituent of Pachyrrhizus erosus (yam bean). Constituent of Pachyrrhizus erosus (yam bean). Pachyrrhizin is found in jicama and pulses.
Dolineone
Dolineone is found in jicama. Dolineone is isolated from roots of Pachyrrhizus erosus (yam bean). Isolated from roots of Pachyrrhizus erosus (yam bean). Dolineone is found in jicama and pulses.
Dehydroneotenone
Dehydroneotenone is found in jicama. Dehydroneotenone is isolated from Pachyrrhizus erosus (yam bean). Isolated from Pachyrrhizus erosus (yam bean). Dehydroneotenone is found in jicama and pulses.
S-Nitrosoglutathione
S-Nitrosoglutathione is a S-nitrosothiol. S-nitrosothiols (RSNOs) are thought to represent a circulating endogenous reservoir of nitric oxide (NO), and may have potential as donors of nitric oxide, distinct from currently used agents. They have the general formula RSNO, and naturally occurring examples include S-nitrosocysteine, S-nitrosoglutathione and S-nitrosoalbumin, in which R is an amino acid, polypeptide and protein respectively. RSNOs have anti-platelet properties, a theoretical role in the treatment of asthma and the potential to be used as agents to treat infectious diseases ranging from the common cold to AIDS. RSNOs are relatively unstable, being degraded to release nitric oxide and the corresponding disulphide. Their stability is influenced by the properties of the R group, heat, light, the presence of transition metal ions (in particular copper) and the presence of other thiols. RSNOs participate in transnitrosation reactions in which the -nitric oxide group is transferred to another thiol to form a more stable RSNO. Potential interactions of RSNOs include that with ascorbic acid (vitamin C), which enhances the ability of copper to catalyse their degradation. Transnitrosation reactions with thiol-containing enzymes can influence protein function, and the intracellular thiol glutathione, levels of which are influenced by many disease states, can also influence stability. Genetic and biochemical data demonstrate a pivotal role for S-nitrosothiols in mediating the actions of nitric oxide synthases (NOSs). RSNOs serve to convey NO bioactivity and to regulate protein function. S-Nitrosoglutathione breakdown is subject to precise regulation. For example, S-Nitrosoglutathione reductase (GSNOR) breaks down cytosolic S-Nitrosoglutathione, ultimately to oxidized GSH and ammonia. GSNOR, in turn, modulates the levels of some S-nitrosylated proteins. S-nitrosoglutathione, formed as nitric oxide moves away from erythrocytes in response to hemoglobin desaturation, may signal hypoxia-inducible factor-1-mediated physiologic and gene regulatory events in pulmonary endothelial cells without profound hypoxia, through a thiol-based reaction. S-Nitrosoglutathione stabilizes the alpha-subunit of hypoxia inducible factor1 (HIF-1) in normoxic cells, but not in the presence of PI3K inhibitors. (PMID: 11749666, 17541013, 16528016). S-Nitrosoglutathione is a S-nitrosothiol. S-nitrosothiols (RSNOs) are thought to represent a circulating endogenous reservoir of nitric oxide (NO), and may have potential as donors of nitric oxide, distinct from currently used agents. They have the general formula RSNO, and naturally occurring examples include S-nitrosocysteine, S-nitrosoglutathione and S-nitrosoalbumin, in which R is an amino acid, polypeptide and protein respectively. RSNOs have anti-platelet properties, a theoretical role in the treatment of asthma and the potential to be used as agents to treat infectious diseases ranging from the common cold to AIDS. RSNOs are relatively unstable, being degraded to release nitric oxide and the corresponding disulphide. Their stability is influenced by the properties of the R group, heat, light, the presence of transition metal ions (in particular copper) and the presence of other thiols. RSNOs participate in transnitrosation reactions in which the -nitric oxide group is transferred to another thiol to form a more stable RSNO. Potential interactions of RSNOs include that with ascorbic acid (vitamin C), which enhances the ability of copper to catalyse their degradation. Transnitrosation reactions with thiol-containing enzymes can influence protein function, and the intracellular thiol glutathione, levels of which are influenced by many disease states, can also influence stability. D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors > D026403 - S-Nitrosothiols D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000890 - Anti-Infective Agents D020011 - Protective Agents Nitrosoglutathione (GSNO), a exogenous NO donor and a substrate for rat alcohol dehydrogenase class III isoenzyme, inhibits cerebrovascular angiotensin II-dependent and -independent AT1 receptor responses[1][2][3][4].
N-(N-L-gamma-Glutamyl-S-nitroso-L-cysteinyl)glycine
Thiamine hydrochloride
Nutrient supplement; flavouring ingredient with a bitter taste. Thiamine hydrochloride is found in many foods, some of which are sesame, cinnamon, garden rhubarb, and nougat. Thiamine hydrochloride (Thiamine chloride hydrochloride) is an essential micronutrient needed as a cofactor for many central metabolic enzymes. Thiamine hydrochloride (Thiamine chloride hydrochloride) is an essential micronutrient needed as a cofactor for many central metabolic enzymes.
Disodium ethylenediaminetetraacetate
Sequestrant, preservative and discolouration inhibitor for foods. Ethylenediaminetetraacetic acid, widely abbreviated as EDTA, is a polyamino carboxylic acid and a colourless, water-soluble solid. Its conjugate base is named ethylenediaminetetraacetate. It is widely used to dissolve limescale. Its usefulness arises because of its role as a hexadentate ("six-toothed") ligand and chelating agent Sequestrant, preservative and discolouration inhibitor for foods
Cyclolaurenol acetate
5-Methoxy-3,4-methylenedioxyfurano[2,3:7,8]flavone
7-hydroxy-3-(7-methoxy-2-oxo-2H-1-benzopyran-8-yl)-2H-1-benzopyran-2-one|daphnogirin
1-O-(alpha-D-mannopyranosyl)chlorogentisyl alcohol
3,13-Dimethyl-6,8-dihydroxy-1,2-(epoxypropano)anthracene-12-ene-9,10,11-trione
(8Z,14Z)-8-bromoheptadeca-8,14-dien-4,16-diynoic acid
4,7-Bis(4-hydroxyphenyl)-5,6-dihydro-1,3-benzodioxole-5,6-dione
Nitrosoglutathione
Nitrosoglutathione (GSNO), a exogenous NO donor and a substrate for rat alcohol dehydrogenase class III isoenzyme, inhibits cerebrovascular angiotensin II-dependent and -independent AT1 receptor responses[1][2][3][4].
3H-Xanthen-3-one,2,6,7-trihydroxy-9-(2-hydroxyphenyl)-
(4-methylsulfinylphenoxy)-di(propan-2-yloxy)-sulfanylidene-λ5-phosphane
[4-(4-chloro-phenyl)-piperazin-1-yl]-thiophen-3-yl-acetic acid
[4-(4-chloro-phenyl)-piperazin-1-yl]-thiophen-2-yl-acetic acid
3-(4-Chlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione
N-(3-cyano-4-methyl-1H-indol-7-yl)-3-cyanobenzene-sulfonamide
C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C2144 - Endothelial-Specific Integrin/Survival Signaling Inhibitor
N-[2-[(4-methyl-1,2,4-triazol-3-yl)sulfanyl]acetyl]-4-nitrobenzohydrazide
EDTA disodium salt
D064449 - Sequestering Agents > D002614 - Chelating Agents > D065096 - Calcium Chelating Agents C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent D000074385 - Food Ingredients > D005503 - Food Additives D006401 - Hematologic Agents > D000925 - Anticoagulants
6-chloro-3-(3-methylisoxazol-5-yl)-4-phenylquinolin-2(1H)-one
Thiamine hydrochloride
Thiamine hydrochloride (Thiamine chloride hydrochloride) is an essential micronutrient needed as a cofactor for many central metabolic enzymes. Thiamine hydrochloride (Thiamine chloride hydrochloride) is an essential micronutrient needed as a cofactor for many central metabolic enzymes.
[5-(3-carbamoyl-4H-pyridin-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate
6-(2-Azaniumyl-2-carboxylatoethyl)-7,8-dioxo-1,2,3,4,7,8-hexahydroquinoline-2,4-dicarboxylate
EDTA disodium
D064449 - Sequestering Agents > D002614 - Chelating Agents > D065096 - Calcium Chelating Agents C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent D000074385 - Food Ingredients > D005503 - Food Additives D006401 - Hematologic Agents > D000925 - Anticoagulants
2-[(2-Phenyl-4-benzofuro[3,2-d]pyrimidinyl)thio]acetic acid
N-(3-fluoro-4-methylphenyl)-3-methyl-2-oxo-1,3-benzoxazole-6-sulfonamide
1-(5-Chloro-2,4-dimethoxyphenyl)-3-(phenylmethyl)thiourea
4-[2-[(4-Chlorophenyl)thio]ethoxy]-3-ethoxybenzaldehyde
[6-hydroxy-2-methoxy-3-[(E)-3-phenylprop-2-enyl]phenyl] hydrogen sulate
[4-[(E)-3-(4-hydroxy-2-methoxyphenyl)prop-1-enyl]phenyl] hydrogen sulate
[3-[(E)-3-(4-hydroxy-2-methoxyphenyl)prop-1-enyl]phenyl] hydrogen sulate
3-cyano-N-(3-methanimidoyl-4-methylindol-7-ylidene)benzenesulfonamide
1-(5-O-phosphono-beta-D-ribofuranosyl)-1,4-dihydropyridine-3-carboxamide
Bisphenol AF
An organofluorine compound that is bisphenol A with its methyl hydrogens replaced by fluorines. D052244 - Endocrine Disruptors
S-nitrosoglutathione
D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors > D026403 - S-Nitrosothiols D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000890 - Anti-Infective Agents D020011 - Protective Agents Nitrosoglutathione (GSNO), a exogenous NO donor and a substrate for rat alcohol dehydrogenase class III isoenzyme, inhibits cerebrovascular angiotensin II-dependent and -independent AT1 receptor responses[1][2][3][4].
NMNH
A nicotinamide mononucleotide that is obtained by addition of hydride to position 4 on the pyridine ring of NMN(+).
ADRA1D receptor antagonist 1
ADRA1D receptor antagonist 1 is a potent, selective and orally active α1D adrenoceptor antagonist, with a Ki of 1.6 nM[1].