Exact Mass: 327.23239259999997
Exact Mass Matches: 327.23239259999997
Found 332 metabolites which its exact mass value is equals to given mass value 327.23239259999997
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Butorphanol
Butorphanol is only found in individuals that have used or taken this drug. It is a synthetic morphinan analgesic with narcotic antagonist action. It is used in the management of severe pain. [PubChem]The exact mechanism of action is unknown, but is believed to interact with an opiate receptor site in the CNS (probably in or associated with the limbic system). The opiate antagonistic effect may result from competitive inhibition at the opiate receptor, but may also be a result of other mechanisms. Butorphanol is a mixed agonist-antagonist that exerts antagonistic or partially antagonistic effects at mu opiate receptor sites, but is thought to exert its agonistic effects principally at the kappa and sigma opiate receptors. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AF - Morphinan derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D019141 - Respiratory System Agents > D000996 - Antitussive Agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics
(9E)-9-nitrooctadecenoic Acid
(9E)-9-nitrooctadecenoic Acid, also known as (e)-9-Nitrooctadec-9-enoate, is classified as a member of the Long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. (9E)-9-nitrooctadecenoic Acid is considered to be practically insoluble (in water) and acidic. (9E)-9-nitrooctadecenoic Acid is a fatty acid lipid molecule
(9E)-10-nitrooctadecenoic Acid
(9E)-10-nitrooctadecenoic Acid, also known as 10-Nitroelaidic acid or (e)-10-Nitrooctadec-9-enoate, is classified as a member of the Long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. (9E)-10-nitrooctadecenoic Acid is considered to be practically insoluble (in water) and acidic. (9E)-10-nitrooctadecenoic Acid is a fatty acid lipid molecule
Simulansine
C20H25NO3 (327.18343400000003)
Alkaloid from root bark of Zanthoxylum simulans (Szechuan pepper). Simulansine is found in herbs and spices and fruits. Simulansine is found in fruits. Simulansine is an alkaloid from root bark of Zanthoxylum simulans (Szechuan pepper).
Retrofractamide A
C20H25NO3 (327.18343400000003)
Retrofractamide A is found in herbs and spices. Retrofractamide A is an alkaloid from the above-ground parts of Piper retrofractum (Javanese long pepper) and the fruits of Piper nigrum (pepper). Alkaloid from the above-ground parts of Piper retrofractum (Javanese long pepper) and the fruits of Piper nigrum (pepper). Retrofractamide A is found in herbs and spices and pepper (spice).
(+)-O-Methylarmepavine
C20H25NO3 (327.18343400000003)
(+)-O-Methylarmepavine is found in fruits. (+)-O-Methylarmepavine is an alkaloid from Annona squamosa (sugar apple
(2E,8E)-Piperamide-C9:2
C20H25NO3 (327.18343400000003)
(2E,8E)-Piperamide-C9:2 is found in herbs and spices. (2E,8E)-Piperamide-C9:2 is a constituent of pepper fruits (Piper nigrum). Constituent of pepper fruits (Piper nigrum). (2E,8E)-Piperamide-C9:2 is found in herbs and spices.
Margaroylglycine
C19H37NO3 (327.27732920000005)
Margaroylglycine is an acylglycine with C-17 fatty acid group as the acyl moiety. Acylglycines 1 possess a common amidoacetic acid moiety and are normally minor metabolites of fatty acids. Elevated levels of certain acylglycines appear in the urine and blood of patients with various fatty acid oxidation disorders. They are normally produced through the action of glycine N-acyltransferase which is an enzyme that catalyzes the chemical reaction: acyl-CoA + glycine ↔ CoA + N-acylglycine. Margaroylglycine is an acylglycine with C-17 fatty acid group as the acyl moiety.
Norelgestromin
Norelgestromin is only found in individuals that have used or taken this drug. It is a drug used in contraception. Norelgestromin is the active progestin responsible for the progestational activity that occurs in women after application of ORTHO EVRA patch. Norelgestromin inhibits estrone sulfatase, which converts sulfated steroid precursors to estrogen during pregnancy. Norgelgestromin/ethinylestradiol suppresses follicular development, induces changes to the endometrium, which decreases chances of implantation and thickens the cervical mucus, impeding sperm swimming into the uterus. It also has similar agonisting binding affinities as its parent compound, Norgestimate, for progesterone and estrogen receptors. D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents
(4E,6Z)-3-Hydroxydeca-4,6-dienoylcarnitine
(4E,6Z)-3-Hydroxydeca-4,6-dienoylcarnitine is an acylcarnitine. More specifically, it is an (4E,6Z)-3-hydroxydeca-4,6-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4E,6Z)-3-Hydroxydeca-4,6-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (4E,6Z)-3-Hydroxydeca-4,6-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(6Z,8E)-3-Hydroxydeca-6,8-dienoylcarnitine
(6Z,8E)-3-Hydroxydeca-6,8-dienoylcarnitine is an acylcarnitine. More specifically, it is an (6Z,8E)-3-hydroxydeca-6,8-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (6Z,8E)-3-Hydroxydeca-6,8-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (6Z,8E)-3-Hydroxydeca-6,8-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(4E,7E)-3-Hydroxydeca-4,7-dienoylcarnitine
(4E,7E)-3-Hydroxydeca-4,7-dienoylcarnitine is an acylcarnitine. More specifically, it is an (4E,7E)-3-hydroxydeca-4,7-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4E,7E)-3-Hydroxydeca-4,7-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (4E,7E)-3-Hydroxydeca-4,7-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(5Z,7E)-3-Hydroxydeca-5,7-dienoylcarnitine
(5Z,7E)-3-Hydroxydeca-5,7-dienoylcarnitine is an acylcarnitine. More specifically, it is an (5Z,7E)-3-hydroxydeca-5,7-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (5Z,7E)-3-Hydroxydeca-5,7-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (5Z,7E)-3-Hydroxydeca-5,7-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(6E)-Undec-6-enoylcarnitine
(6E)-Undec-6-enoylcarnitine is an acylcarnitine. More specifically, it is an (6E)-undec-6-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (6E)-Undec-6-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (6E)-Undec-6-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(2E)-Undec-2-enoylcarnitine
(2E)-Undec-2-enoylcarnitine is an acylcarnitine. More specifically, it is an (2E)-undec-2-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E)-Undec-2-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2E)-Undec-2-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(5E)-Undec-5-enoylcarnitine
(5E)-Undec-5-enoylcarnitine is an acylcarnitine. More specifically, it is an (5E)-undec-5-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (5E)-Undec-5-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (5E)-Undec-5-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(4E)-Undec-4-enoylcarnitine
(4E)-Undec-4-enoylcarnitine is an acylcarnitine. More specifically, it is an (4E)-undec-4-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4E)-Undec-4-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (4E)-Undec-4-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(7E)-Undec-7-enoylcarnitine
(7E)-Undec-7-enoylcarnitine is an acylcarnitine. More specifically, it is an (7E)-undec-7-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (7E)-Undec-7-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (7E)-Undec-7-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undec-3-enoylcarnitine
Undec-3-enoylcarnitine is an acylcarnitine. More specifically, it is an undec-3-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undec-3-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undec-3-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undec-9-enoylcarnitine
Undec-9-enoylcarnitine is an acylcarnitine. More specifically, it is an undec-9-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undec-9-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undec-9-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undec-8-enoylcarnitine
Undec-8-enoylcarnitine is an acylcarnitine. More specifically, it is an undec-8-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undec-8-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undec-8-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
undec-10-enoylcarnitine
undec-10-enoylcarnitine is an acylcarnitine. More specifically, it is an undec-10-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. undec-10-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine undec-10-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
N-Palmitoyl Alanine
C19H37NO3 (327.27732920000005)
N-palmitoyl alanine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Palmitic acid amide of Alanine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Palmitoyl Alanine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Palmitoyl Alanine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
N-Myristoyl Valine
C19H37NO3 (327.27732920000005)
N-myristoyl valine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Myristic acid amide of Valine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Myristoyl Valine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Myristoyl Valine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
(S)-Tert-Butyl (3-hydroxy-1,1-diphenylpropan-2-yl)carbamate
C20H25NO3 (327.18343400000003)
BENACTYZINE
C20H25NO3 (327.18343400000003)
C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists
N-Ethylretinamide
Ketotrilostane
C20H25NO3 (327.18343400000003)
Traxoprodil
C20H25NO3 (327.18343400000003)
(8R,9S,10R,13S,14S,17R)-13-Ethyl-17-ethynyl-3-nitroso-2,3,6,7,8,9,10,11,12,14,15,16-dodecahydro-1H-cyclopenta[a]phenanthren-17-ol
2-trans-8-trans-Piperamide-C-9-2
C20H25NO3 (327.18343400000003)
2-trans-8-trans-piperamide-c-9-2 is a member of the class of compounds known as benzodioxoles. Benzodioxoles are organic compounds containing a benzene ring fused to either isomers of dioxole. Dioxole is a five-membered unsaturated ring of two oxygen atoms and three carbon atoms. 2-trans-8-trans-piperamide-c-9-2 is practically insoluble (in water) and a moderately basic compound (based on its pKa). 2-trans-8-trans-piperamide-c-9-2 can be found in pepper (spice), which makes 2-trans-8-trans-piperamide-c-9-2 a potential biomarker for the consumption of this food product.
(+)-O-Methylarmepavine
C20H25NO3 (327.18343400000003)
BENACTYZINE
C20H25NO3 (327.18343400000003)
C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists
(2E,4E,8E,10E)-octadeca-2,4,8,10-tetraen-12-ynoic acid isobutylamine
Fortuneine
C20H25NO3 (327.18343400000003)
N-(14-methylallyl)norgalanthamine|N-14-methylallylnorgalanthamin
C20H25NO3 (327.18343400000003)
17alpha-cyanomethylestra-1,3,5(10)-triene-3,16xi,17-triol
C20H25NO3 (327.18343400000003)
3,20-dioxo-11alpha-hydroxycona-1,4-diene|norkurchamide
C20H25NO3 (327.18343400000003)
3-Oxo-con-4-en|3-oxo-con-4-ene|con-4-en-3-one|Delta4-Conanen-3-on|Latifolinin, Con-4-enin-3-on|latifolinine
17alpha-cyanomethyl-11beta,17-dihydroxy-4,9-estradien-3-one|17alpha-Cyanomethyl-11beta,17beta-dihydroxy-estra-4,9-dien-3-on
C20H25NO3 (327.18343400000003)
Retrofractamide A
C20H25NO3 (327.18343400000003)
3-hydroxy-C14 homoserine lactone
CONFIDENCE standard compound; INTERNAL_ID 218
Brachyamide b
C20H25NO3 (327.18343400000003)
Simulansine
C20H25NO3 (327.18343400000003)
3-[3-(3-aminopropyl)-2,4,8,10-tetraoxaspiro[5.5]undecan-9-yl]propan-1-amine,prop-2-enenitrile
C16H29N3O4 (327.21579540000005)
(2S,3S)-3-(ACETYLOXY)-5-[2-(DIMETHYLAMINO)ETHYL]-2,3-DIHYDRO-2-(4-HYDROXYPHENYL)-1,5-BENZOTHIAZEPIN-4(5H)-ONE
(5-Isopropyl-3-methyl-1,2-oxazol-4-yl)[4-(3-methylphenyl)-1-piper azinyl]methanone
1-HEXYL-4-(4-ISOTHIOCYANATOPHENYL)-BICYC LO(2.2.2)OCTANE
Ammonium dodecyl poly oxyethylene sulfate
C14H33NO5S (327.20793280000004)
1-BOC-4-([2-(MORPHOLIN-4-YL)-ETHYLAMINO]-METHYL)-PIPERIDINE
N-[(1R)-2-[1,1-Biphenyl]-4-yl-1-(hydroxymethyl)ethyl]carbamic acid 1,1-dimethylethyl ester
C20H25NO3 (327.18343400000003)
N-(tert-Butoxycarbonyl)-b-phenyl-L-phenylalaninol
C20H25NO3 (327.18343400000003)
Difemerine
C20H25NO3 (327.18343400000003)
A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AA - Synthetic anticholinergics, esters with tertiary amino group C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent
Methanone, [4-(2,3-dimethylphenyl)-1-piperazinyl](3-ethyl-5-methyl-4-isoxazolyl)
(2-hydroxyethyl)ammonium decyl sulphate
C14H33NO5S (327.20793280000004)
Dimenoxadol
C20H25NO3 (327.18343400000003)
C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent
(2R,3S)-1-CARBOXY-4-TRIFLUOROMETHYL-2,3-DIHYDROXYCYCLOHEXA-4,6-DIENE
CP-101,606
C20H25NO3 (327.18343400000003)
Traxoprodil (CP101,606) is a potent and selective NMDA antagonist and protect hippocampal neurons with an IC50 of 10 nM.
tert-butyl 3-(4-phenyl-1H-imidazol-2-yl)piperidine-1-carboxylate
N-Ethylretinamide
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Ortho Evra
D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents
Isoquinoline, 1,2,3,4-tetrahydro-6,7-dimethoxy-1-((4-methoxyphenyl)methyl)-2-methyl-
C20H25NO3 (327.18343400000003)
3,5-diethyl-2-(2-hydroxyethylamino)-5-methyl-6H-benzo[h]quinazolin-4-one
17-Methyl-androsta-2,4-dieno(2,3-d)isoxazol-17-ol, (17beta)-
2-(beta-Diethylaminopropionyl)-5,7-dimethyl-1,2,3,4-tetrahydropyrimido(3,4-a)indole
Norelgestromin
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents
N-(Trans-4-{(1s,2s)-2-Amino-3-[(3s)-3-Fluoropyrrolidin-1-Yl]-1-Methyl-3-Oxopropyl}cyclohexyl)-N-Methylacetamide
(9S)-9-[(8-Ammoniooctyl)amino]-1,2,3,4,9,10-hexahydroacridinium
C21H33N3+2 (327.26743380000005)
(4Z,7Z,10Z,13Z,16Z,19Z)-Docosahexaenoate
C22H31O2- (327.23239259999997)
A polyunsaturated fatty acid anion that is the conjugate base of (4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.
13-Ethyl-17-ethynyl-3-nitroso-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-ol (non-preferred name)
N-[(E)-1,3-dihydroxyoctadec-4-en-2-yl]formamide
C19H37NO3 (327.27732920000005)
(E)-3-hydroxy-4-oxo-3-[(trimethylazaniumyl)methyl]tetradec-5-enoate
3-[(4-ethoxyphenoxy)methyl]-N,N-diethylbenzamide
C20H25NO3 (327.18343400000003)
N-[(E,1S,2R)-2-hydroxy-1-methylol-heptadec-3-enyl]formamide
C19H37NO3 (327.27732920000005)
Glyoxal-lysine dimer
C15H27N4O4+ (327.20322020000003)
An imidazolium ion formed via cyclo-dimerisation of L-lysine and glyoxal.
3-[[5,5-dimethyl-3-(4-morpholinyl)-1-cyclohex-2-enylidene]amino]-N,N-dimethylaniline
1-(3,5-Dimethylphenyl)-3-(9-prop-2-enyl-9-azabicyclo[3.3.1]nonan-3-yl)urea
7-methyl-3-(3-methylbutylamino)-1-(1-pyrrolidinyl)-6,8-dihydro-5H-2,7-naphthyridine-4-carbonitrile
1-[(2,4-Dimethoxy-3-methylphenyl)methyl]-4-(2-pyridinyl)piperazine
1-[(1-Tert-butyl-5-tetrazolyl)-(4-methylphenyl)methyl]-4-methylpiperidine
N-[2-(3,4-diethoxyphenyl)ethyl]-2-phenylacetamide
C20H25NO3 (327.18343400000003)
[1-(Dimethylamino)-2-methylpropan-2-yl] 2-hydroxy-2,2-diphenylacetate
C20H25NO3 (327.18343400000003)
(2R,3R,4R)-4-(hydroxymethyl)-1-[1-oxo-3-(1-piperidinyl)propyl]-3-phenyl-2-azetidinecarbonitrile
N-cyclobutyl-2-[(2R,5S,6R)-6-(hydroxymethyl)-5-[[oxo(propylamino)methyl]amino]-2-oxanyl]acetamide
C16H29N3O4 (327.21579540000005)
N-cyclobutyl-2-[(2S,5S,6R)-6-(hydroxymethyl)-5-[[oxo(propylamino)methyl]amino]-2-oxanyl]acetamide
C16H29N3O4 (327.21579540000005)
N-cyclobutyl-2-[(2R,5R,6R)-6-(hydroxymethyl)-5-[[oxo(propylamino)methyl]amino]-2-oxanyl]acetamide
C16H29N3O4 (327.21579540000005)
2-[(2R,5R,6S)-5-[[(cyclopentylamino)-oxomethyl]amino]-6-(hydroxymethyl)-2-oxanyl]-N,N-dimethylacetamide
C16H29N3O4 (327.21579540000005)
2-[(2S,5S,6S)-5-[[(cyclopentylamino)-oxomethyl]amino]-6-(hydroxymethyl)-2-oxanyl]-N,N-dimethylacetamide
C16H29N3O4 (327.21579540000005)
2-[(2S,5R,6R)-5-[[(cyclopentylamino)-oxomethyl]amino]-6-(hydroxymethyl)-2-oxanyl]-N,N-dimethylacetamide
C16H29N3O4 (327.21579540000005)
(2R,3S,4R)-4-(hydroxymethyl)-1-[1-oxo-3-(1-piperidinyl)propyl]-3-phenyl-2-azetidinecarbonitrile
N-cyclobutyl-2-[(2S,5R,6S)-6-(hydroxymethyl)-5-[[oxo(propylamino)methyl]amino]-2-oxanyl]acetamide
C16H29N3O4 (327.21579540000005)
N-cyclobutyl-2-[(2R,5R,6S)-6-(hydroxymethyl)-5-[[oxo(propylamino)methyl]amino]-2-oxanyl]acetamide
C16H29N3O4 (327.21579540000005)
N-cyclobutyl-2-[(2S,5S,6S)-6-(hydroxymethyl)-5-[[oxo(propylamino)methyl]amino]-2-oxanyl]acetamide
C16H29N3O4 (327.21579540000005)
N-cyclobutyl-2-[(2R,5S,6S)-6-(hydroxymethyl)-5-[[oxo(propylamino)methyl]amino]-2-oxanyl]acetamide
C16H29N3O4 (327.21579540000005)
N-cyclobutyl-2-[(2S,5R,6R)-6-(hydroxymethyl)-5-[[oxo(propylamino)methyl]amino]-2-oxanyl]acetamide
C16H29N3O4 (327.21579540000005)
2-[(2R,5S,6R)-5-[[(cyclopentylamino)-oxomethyl]amino]-6-(hydroxymethyl)-2-oxanyl]-N,N-dimethylacetamide
C16H29N3O4 (327.21579540000005)
2-[(2S,5R,6S)-5-[[(cyclopentylamino)-oxomethyl]amino]-6-(hydroxymethyl)-2-oxanyl]-N,N-dimethylacetamide
C16H29N3O4 (327.21579540000005)
2-[(2S,5S,6R)-5-[[(cyclopentylamino)-oxomethyl]amino]-6-(hydroxymethyl)-2-oxanyl]-N,N-dimethylacetamide
C16H29N3O4 (327.21579540000005)
2-[(2R,5S,6S)-5-[[(cyclopentylamino)-oxomethyl]amino]-6-(hydroxymethyl)-2-oxanyl]-N,N-dimethylacetamide
C16H29N3O4 (327.21579540000005)
(2S,3S,4R)-4-(hydroxymethyl)-1-[1-oxo-3-(1-piperidinyl)propyl]-3-phenyl-2-azetidinecarbonitrile
(2S,3S,4S)-4-(hydroxymethyl)-1-[1-oxo-3-(1-piperidinyl)propyl]-3-phenyl-2-azetidinecarbonitrile
(12R,13S)-epoxy-(10R)-hydroperoxy-(8E)-octadecenoate
N-[(E)-1,3-dihydroxyheptadec-4-en-2-yl]acetamide
C19H37NO3 (327.27732920000005)
N-[(E)-1,3-dihydroxypentadec-4-en-2-yl]butanamide
C19H37NO3 (327.27732920000005)
N-[(E)-1,3-dihydroxyoct-4-en-2-yl]undecanamide
C19H37NO3 (327.27732920000005)
N-[(E)-1,3-dihydroxytridec-4-en-2-yl]hexanamide
C19H37NO3 (327.27732920000005)
N-[(E)-1,3-dihydroxyhexadec-4-en-2-yl]propanamide
C19H37NO3 (327.27732920000005)
N-[(E)-1,3-dihydroxytetradec-4-en-2-yl]pentanamide
C19H37NO3 (327.27732920000005)
N-[(E)-1,3-dihydroxyundec-4-en-2-yl]octanamide
C19H37NO3 (327.27732920000005)
N-[(E)-1,3-dihydroxydodec-4-en-2-yl]heptanamide
C19H37NO3 (327.27732920000005)
N-[(E)-1,3-dihydroxydec-4-en-2-yl]nonanamide
C19H37NO3 (327.27732920000005)
N-[(E)-1,3-dihydroxynon-4-en-2-yl]decanamide
C19H37NO3 (327.27732920000005)
butorphanol
Levorphanol in which a hydrogen at position 14 of the morphinan skeleton is substituted by hydroxy and one of the hydrogens of the N-methyl group is substituted by cyclopropyl. A semi-synthetic opioid agonist-antagonist analgesic, it is used as its (S,S)-tartaric acid salt for relief or moderate to severe pain. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AF - Morphinan derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D019141 - Respiratory System Agents > D000996 - Antitussive Agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics
(9E)-10-nitrooctadecenoic Acid
A nitro fatty acid that is (9E)-octadec-9-enoic (elaidic) acid substituted by a nitro group at position 10.
1-[(2E,8E)-9-(3,4-methylenedioxyphenyl)-2,8-nonadienoyl]pyrrolidine
C20H25NO3 (327.18343400000003)
A natural product found in Piper boehmeriaefolium.
17-Methylandrosta-2,4-dieno[2,3-d]isoxazol-17beta-ol
Docosahexaenoate
A polyunsaturated fatty acid anion that is the conjugate base of docosahexaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.
O-undecenoylcarnitine
An O-acylcarnitine in which the acyl group is specified as undecenoyl (position of double bond not specified).
O-(dimethylnonenoyl)carnitine
An O-acylcarnitine in which the acyl group is specified as dimethylnonenoyl (positions of double bond and methyl groups not specified).
(9E)-9-nitrooctadecenoic Acid
A nitro fatty acid that is (9E)-octadec-9-enoic (elaidic) acid substituted by a nitro group at position 9.
AcCa(11:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
undecenoylcarnitine
new metabolite created
9-methoxy-4-(2-methylprop-2-en-1-yl)-11-oxa-4-azatetracyclo[8.6.1.0¹,¹².0⁶,¹⁷]heptadeca-6(17),7,9,15-tetraen-14-ol
C20H25NO3 (327.18343400000003)
4-(5-ethyl-3-methyloxolan-2-yl)-4-hydroxy-n-(1-hydroxy-3-methylpentan-2-yl)pent-2-enimidic acid
(1r)-7-methoxy-1-[(4-methoxyphenyl)methyl]-2,2-dimethyl-3,4-dihydro-1h-isoquinolin-2-ium-8-olate
C20H25NO3 (327.18343400000003)
7,9,21-triazahexacyclo[11.9.1.1¹,¹⁵.0²,⁷.0⁹,²³.0¹⁶,²¹]tetracos-13-ene
(1s,5s,8r,9s,10s,11r,14r,16s,17r,18r,19r)-10,19-dihydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-3-one
C20H25NO3 (327.18343400000003)
n-(1-hydroxy-3-methylpentan-2-yl)-3-[3-(4-hydroxyhexan-2-yl)-2-methyloxiran-2-yl]prop-2-enimidic acid
n-(4-amino-13-carbamimidamido-5-oxotridecyl)guanidine
(2s)-2-({[(2s)-1-[(2s)-2-amino-3-methylbutanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-4-methylpentanoic acid
C16H29N3O4 (327.21579540000005)
(1r,2s,3s,5r,8r,9s,10s,13r,16r,17s)-11-ethyl-13-methyl-4-methylidene-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-16-ol
2-dodecyl-1-methyl-4(1h)-quinolinone
{"Ingredient_id": "HBIN005536","Ingredient_name": "2-dodecyl-1-methyl-4(1h)-quinolinone","Alias": "NA","Ingredient_formula": "C22H33NO","Ingredient_Smile": "NA","Ingredient_weight": "327.5","OB_score": "NA","CAS_id": "182055-94-3","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "8662","PubChem_id": "NA","DrugBank_id": "NA"}
2-tridecyl-4(1h)-quinolinone
{"Ingredient_id": "HBIN006842","Ingredient_name": "2-tridecyl-4(1h)-quinolinone","Alias": "NA","Ingredient_formula": "C22H33NO","Ingredient_Smile": "NA","Ingredient_weight": "327.509","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "8519","PubChem_id": "NA","DrugBank_id": "NA"}
3-epifortuneine
C20H25NO3 (327.18343400000003)
{"Ingredient_id": "HBIN008478","Ingredient_name": "3-epifortuneine","Alias": "NA","Ingredient_formula": "C20H25NO3","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "6915","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
9-(2h-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)nona-2,8-dien-1-one
C20H25NO3 (327.18343400000003)
(1r,2s,15r,16s,23r)-7,9,21-triazahexacyclo[11.9.1.1¹,¹⁵.0²,⁷.0⁹,²³.0¹⁶,²¹]tetracos-13-ene
6,11-dihydroxy-13-methyl-7-azapentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icosa-6,14,17-trien-16-one
C20H25NO3 (327.18343400000003)
3,16-dihydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-10-one
C20H25NO3 (327.18343400000003)
(1r,2r,4s,7s,8e,13s,14z,16e,18r,19s,20s)-13-methyl-21-oxa-11-azatetracyclo[16.2.1.0⁴,²⁰.0⁷,¹⁹]henicosa-5,8,10,14,16-pentaene-2,10-diol
C20H25NO3 (327.18343400000003)
(1s,5r,8r,9s,10r,11r,14r,16s,17r,18r,19s)-10,19-dihydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-3-one
C20H25NO3 (327.18343400000003)
4-(1r,7as)-hexahydro-1h-pyrrolizin-1-ylmethyl 1-methyl (2r)-2-hydroxy-2-(2-methylpropyl)butanedioate
(1s,2r,4r,7r,8e,13s,14z,16e,18s,19r,20r)-13-methyl-21-oxa-11-azatetracyclo[16.2.1.0⁴,²⁰.0⁷,¹⁹]henicosa-5,8,10,14,16-pentaene-2,10-diol
C20H25NO3 (327.18343400000003)
(1r,5s,8r,9s,11s,13r,14s,16s,17r,18s)-10,13-dihydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-3-one
C20H25NO3 (327.18343400000003)
(2r)-2-[(3r)-3-hydroxy-4-methylpentyl]-2,6-dimethylpyrano[3,2-c]quinolin-5-one
C20H25NO3 (327.18343400000003)
(1s,2r,15s,16r,23r)-7,9,21-triazahexacyclo[11.9.1.1¹,¹⁵.0²,⁷.0⁹,²³.0¹⁶,²¹]tetracos-13-ene
(1r,15s)-7,9,21-triazahexacyclo[11.9.1.1¹,¹⁵.0²,⁷.0⁹,²³.0¹⁶,²¹]tetracos-13-ene
(1s,5s,8r,9s,11r,14r,16s,17r,18r,19s)-10,19-dihydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-3-one
C20H25NO3 (327.18343400000003)
4-(pent-4-enoyl)-4,7,15-triazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadeca-10,12-dien-14-one
(8e)-n-(2-methylpropyl)octadeca-2,4,8,10-tetraen-12-ynimidic acid
4-hexahydro-1h-pyrrolizin-1-ylmethyl 1-methyl 2-hydroxy-2-(2-methylpropyl)butanedioate
(1r,3s,5s,8r,9s,11s,14r,16r,17r,18r)-3,16-dihydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-10-one
C20H25NO3 (327.18343400000003)
(1r,5s,8r,9s,10s,11s,14r,16r,17r,18r)-10,16-dihydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-3-one
C20H25NO3 (327.18343400000003)
(2e)-n-[(2s,3s)-1-hydroxy-3-methylpentan-2-yl]-3-[(2r)-3-[(2s,4r)-4-hydroxyhexan-2-yl]-2-methyloxiran-2-yl]prop-2-enimidic acid
(2e)-4-[(2r,3s,5r)-5-ethyl-3-methyloxolan-2-yl]-4-hydroxy-n-[(2s,3s)-1-hydroxy-3-methylpentan-2-yl]pent-2-enimidic acid
(4s)-4-[(2r,3s,5r)-5-ethyl-3-methyloxolan-2-yl]-4-hydroxy-n-[(2s,3s)-1-hydroxy-3-methylpentan-2-yl]pent-2-enimidic acid
(2e,4e,8e,10z)-n-(2-methylpropyl)octadeca-2,4,8,10-tetraen-12-ynimidic acid
(1r,7as)-hexahydro-1h-pyrrolizin-1-ylmethyl (2s)-2-[(1r)-1-(acetyloxy)ethyl]-2-hydroxy-3-methylbutanoate
n-(2-methylpropyl)octadeca-2,4,8,10-tetraen-12-ynimidic acid
4,14-dihydroxy-5-isopropyl-6,9-dimethyl-15-azatetracyclo[7.6.1.0²,⁶.0¹³,¹⁶]hexadeca-1,4,12,14-tetraen-3-one
C20H25NO3 (327.18343400000003)
3-hydroxy-6,13-dimethyl-7-azapentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icosa-14,17-dien-16-one
4,5,16-trimethoxy-10-methyl-10-azatricyclo[11.4.0.0²,⁷]heptadeca-1(17),2,4,6,13,15-hexaene
C20H25NO3 (327.18343400000003)
(1s,2r,9s)-4-(pent-4-enoyl)-4,7,15-triazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadeca-10,12-dien-14-one
(1r,3s,5r,8r,9s,11s,14r,16r,17r,18r)-3,16-dihydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-10-one
C20H25NO3 (327.18343400000003)
(1s)-7-methoxy-1-[2-(4-methoxyphenyl)ethyl]-2-methyl-3,4-dihydro-1h-isoquinolin-6-ol
C20H25NO3 (327.18343400000003)
11-hydroxy-6,13-dimethyl-7-azapentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icosa-14,17-dien-16-one
(1s,12s,14r)-9-methoxy-4-(2-methylprop-2-en-1-yl)-11-oxa-4-azatetracyclo[8.6.1.0¹,¹².0⁶,¹⁷]heptadeca-6(17),7,9,15-tetraen-14-ol
C20H25NO3 (327.18343400000003)
(1s,2s,5s,9r,11r,12s,13r)-6,11-dihydroxy-13-methyl-7-azapentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icosa-6,14,17-trien-16-one
C20H25NO3 (327.18343400000003)
(2e,4s)-4-[(2r,3s,5r)-5-ethyl-3-methyloxolan-2-yl]-4-hydroxy-n-[(2s,3s)-1-hydroxy-3-methylpentan-2-yl]pent-2-enimidic acid
(1s,2s,5s,6s,9r,11r,12s,13r)-11-hydroxy-6,13-dimethyl-7-azapentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icosa-14,17-dien-16-one
(1r,5r,8r,9s,10r,11s,13r,14s,16s,17r,18s)-10,13-dihydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-3-one
C20H25NO3 (327.18343400000003)
(2e,4e,8e,10e)-n-(2-methylpropyl)octadeca-2,4,8,10-tetraen-12-ynimidic acid
10,16-dihydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-3-one
C20H25NO3 (327.18343400000003)
(5r,9s,11s,16s,17r,18r)-10,16-dihydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-19-one
C20H25NO3 (327.18343400000003)
9-(2h-1,3-benzodioxol-5-yl)-n-(2-methylpropyl)nona-2,4,8-trienimidic acid
C20H25NO3 (327.18343400000003)
19-hydroxy-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosan-16-one
C20H25NO3 (327.18343400000003)
(1r)-7,8-dimethoxy-1-[(4-methoxyphenyl)methyl]-2-methyl-3,4-dihydro-1h-isoquinoline
C20H25NO3 (327.18343400000003)
8-methyl-16-methylidene-6-oxa-11-azaoctacyclo[8.7.1.1²,¹⁵.1⁵,⁸.0¹,¹³.0³,⁹.0³,¹².0⁷,¹¹]icosane-14,19-diol
C20H25NO3 (327.18343400000003)
3-[2-(dimethylamino)ethyl]-6-methoxy-2-[(1e)-2-(4-methoxyphenyl)ethenyl]phenol
C20H25NO3 (327.18343400000003)
(1s)-6,7-dimethoxy-1-[(4-methoxyphenyl)methyl]-2-methyl-3,4-dihydro-1h-isoquinoline
C20H25NO3 (327.18343400000003)
7-ethyl-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.2¹⁰,¹³.0¹,⁸.0⁵,¹⁶.0¹⁰,¹⁵]nonadecan-11-ol
(1r,2s,3s,5s,6s,9s,12s,13r)-3-hydroxy-6,13-dimethyl-7-azapentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icosa-14,17-dien-16-one
(1r,2r,3s,5r,7r,8r,9s,10s,12r,13s,14r,15r,19s)-8-methyl-16-methylidene-6-oxa-11-azaoctacyclo[8.7.1.1²,¹⁵.1⁵,⁸.0¹,¹³.0³,⁹.0³,¹².0⁷,¹¹]icosane-14,19-diol
C20H25NO3 (327.18343400000003)
(2e)-n-[(2s,3s)-1-hydroxy-3-methylpentan-2-yl]-3-[(2r,3s)-3-[(2s,4r)-4-hydroxyhexan-2-yl]-2-methyloxiran-2-yl]prop-2-enimidic acid
(1r)-6,7-dimethoxy-1-[(4-methoxyphenyl)methyl]-2-methyl-3,4-dihydro-1h-isoquinoline
C20H25NO3 (327.18343400000003)
n-[(2s,3s)-1-hydroxy-3-methylpentan-2-yl]-3-[(2r,3s)-3-[(2s,4r)-4-hydroxyhexan-2-yl]-2-methyloxiran-2-yl]prop-2-enimidic acid
hexahydro-1h-pyrrolizin-1-ylmethyl 3-(acetyloxy)-2-hydroxy-2-isopropylbutanoate
(1r,5r,8r,9s,10s,11s,14r,16r,17r,18r)-10,16-dihydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-3-one
C20H25NO3 (327.18343400000003)
(6r,9s,16s)-4,14-dihydroxy-5-isopropyl-6,9-dimethyl-15-azatetracyclo[7.6.1.0²,⁶.0¹³,¹⁶]hexadeca-1,4,12,14-tetraen-3-one
C20H25NO3 (327.18343400000003)
(2e,4e,8e)-9-(2h-1,3-benzodioxol-5-yl)-n-[(2r)-butan-2-yl]nona-2,4,8-trienimidic acid
C20H25NO3 (327.18343400000003)
(5r,10r,19s)-10,19-dihydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-3-one
C20H25NO3 (327.18343400000003)
10,19-dihydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecan-3-one
C20H25NO3 (327.18343400000003)
(2e,4e,8e)-9-(2h-1,3-benzodioxol-5-yl)-n-(2-methylpropyl)nona-2,4,8-trienimidic acid
C20H25NO3 (327.18343400000003)