Exact Mass: 297.18593080000005

Exact Mass Matches: 297.18593080000005

Found 324 metabolites which its exact mass value is equals to given mass value 297.18593080000005, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

3-oxo-C12 homoserine lactone

N-3-oxo-dodecanoyl-L-homoserine lactone

C16H27NO4 (297.1939982)


CONFIDENCE standard compound; INTERNAL_ID 211

   

Oripavine

14-methoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10,14,16-pentaen-10-ol

C18H19NO3 (297.13648639999997)


Alkaloid from opium poppy (Papaver somniferum). Oripavine is found in many foods, some of which are redcurrant, teff, muscadine grape, and date. D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids Oripavine is an alkaloid from opium poppy (Papaver somniferum

   

neopinone

(4R,12bS)-9-methoxy-3-methyl-1,2,4,6,7a,13-hexahydro-4,12-methanobenzofuro[3,2-e]isoquinolin-7-one

C18H19NO3 (297.13648639999997)


The beta,gamma-unsaturated ketone resulting from the hydrolysis of the methyl enol ether group of thebaine. It is a key intermediate in the biosynthesis of codeine and morphine in the opium poppy, Papaver somniferum.

   

Codeinone

(5α)-7,8-Didehydro-4,5-epoxy-3-methoxy-17-methylmorphinan-6-one

C18H19NO3 (297.13648639999997)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids

   
   

Suavedol

Spiro[2,5-cyclohexadiene-1,7(1H)-cyclopent[ij]isoquinolin]-4-one,2,3,8,8a-tetrahydro-6-hydroxy-5-methoxy-1-methyl-

C18H19NO3 (297.13648639999997)


C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent

   
   

3-Hydroxyestra-1,3,5(10),7-tetraene-16,17-dione 16-oxime

3-Hydroxyestra-1,3,5(10),7-tetraene-16,17-dione 16-oxime

C18H19NO3 (297.13648639999997)


   

Tuduranine

1,2-Dimethoxy-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinolin-10-ol

C18H19NO3 (297.13648639999997)


   

N-3-oxo-dodecanoyl-L-homoserine lactone

N-3-oxo-dodecanoyl-L-homoserine lactone

C16H27NO4 (297.1939982)


   

(±)-Aegeline

2-PROPENAMIDE, N-(2-HYDROXY-2-(4-METHOXYPHENYL)ETHYL)-3-PHENYL-, (E)-(+/-)-

C18H19NO3 (297.13648639999997)


(±)-Aegeline is found in fruits. (±)-Aegeline is an alkaloid from the leaves of Aegle marmelos (bael). Alkaloid from the leaves of Aegle marmelos (bael). (±)-Aegeline is found in fruits. Aegeline, a main alkaloid, mimics the yeast SNARE protein Sec22p in suppressing α-synuclein and Bax toxicity in yeast. Aegeline restores growth of yeast cells suppressed by either αsyn or Bax. Antioxidant activity[1]. Aegeline, a main alkaloid, mimics the yeast SNARE protein Sec22p in suppressing α-synuclein and Bax toxicity in yeast. Aegeline restores growth of yeast cells suppressed by either αsyn or Bax. Antioxidant activity[1].

   

(±)-Clausenamide

3-hydroxy-5-[hydroxy(phenyl)methyl]-1-methyl-4-phenylpyrrolidin-2-one

C18H19NO3 (297.13648639999997)


Neoclausenamide is found in fruits. Neoclausenamide is isolated from Clausena lansium (wampee). Isolated from the leaves of Clausena lansium (wampee). (±)-Clausenamide is found in fruits.

   

Lansamide 3

3,6-Dihydroxy-1-methyl-4,5-diphenyl-2-piperidinone

C18H19NO3 (297.13648639999997)


Lansamide 3 is found in fruits. Lansamide 3 is a constituent of Clausena lansium (wampee) Constituent of Clausena lansium (wampee). Lansamide 3 is found in fruits.

   

(+)-Erythraline

19-methoxy-5,7-dioxa-13-azapentacyclo[11.7.0.0¹,¹⁶.0²,¹⁰.0⁴,⁸]icosa-2(10),3,8,15,17-pentaene

C18H19NO3 (297.13648639999997)


(+)-Erythraline is found in green vegetables. (+)-Erythraline is an alkaloid from Erythrina glauca (gallito) Alitretinoin (9-cis-retinoic acid) is a naturally-occurring endogenous retinoid indicated for topical treatment of cutaneous lesions in patients with AIDS-related Kaposis sarcoma. Alitretinoin inhibits the growth of Kaposis sarcoma (KS) cells in vitro. Retinoic acid is the oxidized form of Vitamin A. It functions in determining position along embryonic anterior/posterior axis in chordates. It acts through Hox genes, which ultimately control anterior/posterior patterning in early developmental stages. Retinoic acid acts by binding to heterodimers of the retinoic acid receptor (RAR) and the retinoid X receptor (RXR), which then bind to retinoic acid response elements (RAREs) in the regulatory regions of direct targets (including Hox genes), thereby activating gene transcription. Retinoic acid receptors mediate transcription of different sets of genes of cell differentiation, thus it also depends on the target cells. (+)-Erythraline is one of the target genes is the gene of the retinoic acid receptor itself which occurs during positive regulation. Control of retinoic acid levels is maintained by a suite of proteins. Retinoic acid is the oxidized form of Vitamin A. It functions in determining position along embryonic anterior/posterior axis in chordates. It acts through Hox genes, which ultimately controls anterior/posterior patterning in early developmental stages (PMID: 17495912). It is an important regulator of gene expression during growth and development, and in neoplasms. Tretinoin, also known as retinoic acid and derived from maternal vitamin A, is essential for normal growth and embryonic development. (+)-Erythraline is an excess of tretinoin can be teratogenic. It is used in the treatment of psoriasis; acne vulgaris; and several other skin diseases. It has also been approved for use in promyelocytic leukemia (leukemia, promyelocytic, acute)

   

2-(4-Methyl-5-thiazolyl)ethyl decanoate

2-(4-Methyl-1,3-thiazol-5-yl)ethyl decanoic acid

C16H27NO2S (297.1762402)


2-(4-Methyl-5-thiazolyl)ethyl decanoate is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") It is used as a food additive .

   

mono-isopropyl-disopyramide

2-phenyl-4-[(propan-2-yl)amino]-2-(pyridin-2-yl)butanimidic acid

C18H23N3O (297.1841028)


mono-isopropyl-disopyramide is a metabolite of disopyramide. Disopyramide (trade names Norpace and Rythmodan) is an antiarrhythmic medication used in the treatment of Ventricular Tachycardia. It is a sodium channel blocker and therefor classified as a Class 1a anti-arrhythmic agent. ’ Disopyramide has a negative inotropic effect on the ventricular myocardium, significantly decreasing the contractility. Disopyramide also has an anticholinergic effect on the heart which accounts for many adverse side effects. (Wikipedia) D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics

   

Nona-4,6-dienoylcarnitine

3-(nona-4,6-dienoyloxy)-4-(trimethylazaniumyl)butanoate

C16H27NO4 (297.1939982)


Nona-4,6-dienoylcarnitine is an acylcarnitine. More specifically, it is an nona-4,6-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. nona-4,6-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine nona-4,6-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Nona-2,5-dienoylcarnitine

3-(Nona-2,5-dienoyloxy)-4-(trimethylazaniumyl)butanoic acid

C16H27NO4 (297.1939982)


Nona-2,5-dienoylcarnitine is an acylcarnitine. More specifically, it is an nona-2,5-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. nona-2,5-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine nona-2,5-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Nona-5,7-dienoylcarnitine

3-(Nona-5,7-dienoyloxy)-4-(trimethylazaniumyl)butanoic acid

C16H27NO4 (297.1939982)


Nona-5,7-dienoylcarnitine is an acylcarnitine. More specifically, it is an nona-5,7-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. nona-5,7-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine nona-5,7-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Nona-3,6-dienoylcarnitine

3-(nona-3,6-dienoyloxy)-4-(trimethylazaniumyl)butanoate

C16H27NO4 (297.1939982)


Nona-3,6-dienoylcarnitine is an acylcarnitine. More specifically, it is an nona-3,6-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. nona-3,6-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine nona-3,6-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Nona-4,7-dienoylcarnitine

3-(nona-4,7-dienoyloxy)-4-(trimethylazaniumyl)butanoate

C16H27NO4 (297.1939982)


Nona-4,7-dienoylcarnitine is an acylcarnitine. More specifically, it is an nona-4,7-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. nona-4,7-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine nona-4,7-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Nona-3,5-dienoylcarnitine

3-(nona-3,5-dienoyloxy)-4-(trimethylazaniumyl)butanoate

C16H27NO4 (297.1939982)


Nona-3,5-dienoylcarnitine is an acylcarnitine. More specifically, it is an nona-3,5-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. nona-3,5-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine nona-3,5-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Nona-3,7-dienoylcarnitine

3-(nona-3,7-dienoyloxy)-4-(trimethylazaniumyl)butanoate

C16H27NO4 (297.1939982)


Nona-3,7-dienoylcarnitine is an acylcarnitine. More specifically, it is an nona-3,7-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. nona-3,7-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine nona-3,7-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Nona-2,7-dienoylcarnitine

3-(Nona-2,7-dienoyloxy)-4-(trimethylazaniumyl)butanoic acid

C16H27NO4 (297.1939982)


Nona-2,7-dienoylcarnitine is an acylcarnitine. More specifically, it is an nona-2,7-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. nona-2,7-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine nona-2,7-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(2E,6E)-Nona-2,6-dienoylcarnitine

3-(nona-2,6-dienoyloxy)-4-(trimethylazaniumyl)butanoate

C16H27NO4 (297.1939982)


(2E,6E)-nona-2,6-dienoylcarnitine is an acylcarnitine. More specifically, it is an (2E,6E)-nona-2,6-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E,6E)-nona-2,6-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2E,6E)-nona-2,6-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Nona-2,4-dienoylcarnitine

3-(Nona-2,4-dienoyloxy)-4-(trimethylazaniumyl)butanoic acid

C16H27NO4 (297.1939982)


Nona-2,4-dienoylcarnitine is an acylcarnitine. More specifically, it is an nona-2,4-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. nona-2,4-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine nona-2,4-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

N-Lauroyl Proline

1-dodecanoylpyrrolidine-2-carboxylic acid

C17H31NO3 (297.2303816)


N-lauroyl proline belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Lauric acid amide of Proline. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Lauroyl Proline is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Lauroyl Proline is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

(-)-alpha-5,9-Dimethyl-2-(3-furylmethyl)-2'-hydroxy-6,7-benzomorphane

10-[(furan-3-yl)methyl]-1,13-dimethyl-10-azatricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5-trien-4-ol

C19H23NO2 (297.1728698)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists

   

Decadienyl-l-carnitine

3-hydroxy-3-[(trimethylazaniumyl)methyl]trideca-4,6-dienoate

C17H31NO3 (297.2303816)


   

Glaziovine

11-hydroxy-10-methoxy-5-methyl-5-azaspiro[cyclohexane-1,2-tricyclo[6.3.1.0⁴,¹²]dodecane]-1(11),2,5,8(12),9-pentaen-4-one

C18H19NO3 (297.13648639999997)


C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent

   

Glycyl-proline-1-naphthylamide

N-(2-aminoacetyl)-1-(naphthalen-1-yl)pyrrolidine-2-carboxamide

C17H19N3O2 (297.14771939999997)


   

Ibuprofen piconol

(Pyridin-2-yl)methyl 2-[4-(2-methylpropyl)phenyl]propanoic acid

C19H23NO2 (297.1728698)


C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic

   

codeinone

10-methoxy-4-methyl-14-oxo-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7,9,11(18),15-tetraen-4-ium-4-yl

C18H19NO3 (297.13648639999997)


Codeinone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Codeinone can be found in a number of food items such as japanese chestnut, leek, squashberry, and redcurrant, which makes codeinone a potential biomarker for the consumption of these food products. Codeinone is 1/3 as active as codeine as an analgesic but it is an important intermediate in the production of hydrocodone, a painkiller about 3/4 the potency of morphine; as well as of oxycodone. The latter can also be synthesized from thebaine, however .

   

neopinone

10-methoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7,9,11(18),16-tetraen-14-one

C18H19NO3 (297.13648639999997)


Neopinone is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Neopinone can be found in a number of food items such as root vegetables, fig, green bean, and cucurbita (gourd), which makes neopinone a potential biomarker for the consumption of these food products.

   

Stepharine

Spiro(2,5-cyclohexadiene-1,7(1H)-cyclopent(ij)isoquinolin)-4-one, 2,3,8,8a-tetrahydro-5,6-dimethoxy-, (R)-

C18H19NO3 (297.13648639999997)


An isoquinoline alkaloid with formula C18H19NO3 that is isolated from several species of Stephania. Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Aporphine alkaloids, Proaporphine alkaloids Stepharine is a natural product found in Cocculus, Cocculus laurifolius, and other organisms with data available.

   
   
   
   
   
   
   
   
   
   
   
   
   

Callimorphine

O9-(2-Methyl-2-acetoxybutanoyl)retronecine

C15H23NO5 (297.1576148)


   

Glaziovine

L-(-)-N-Methylcrotsparine

C18H19NO3 (297.13648639999997)


   
   

1-(2-morpholin-4-ylphenyl)-3-phenylurea

1-(2-morpholin-4-ylphenyl)-3-phenylurea

C17H19N3O2 (297.14771939999997)


   
   
   
   

(2S,3S,4S)-3,4-dihydroxy-6-methoxy-3-methyl-7-methylidene-2-pentyl-2,4-dihydropyrano[2,3-c]pyrrol-5-one

(2S,3S,4S)-3,4-dihydroxy-6-methoxy-3-methyl-7-methylidene-2-pentyl-2,4-dihydropyrano[2,3-c]pyrrol-5-one

C15H23NO5 (297.1576148)


   
   
   
   

(+-)-northebaine|(+/-)-Northebain|4,5alpha-epoxy-3,6-dimethoxy-morphina-6,8(14)-diene|Northebain|northebaine|rac-4,5alpha-epoxy-3,6-dimethoxy-morphina-6,8(14)-diene|Thebain

(+-)-northebaine|(+/-)-Northebain|4,5alpha-epoxy-3,6-dimethoxy-morphina-6,8(14)-diene|Northebain|northebaine|rac-4,5alpha-epoxy-3,6-dimethoxy-morphina-6,8(14)-diene|Thebain

C18H19NO3 (297.13648639999997)


   
   
   

(E, E, E)-1-Piperettylpyrrolidine|1-piperettyl pyrrolidine|1-[1-Oxo-7(3,4-methylenedioxyphenyl)-2E,4E,6E-heptatrienyl]pyrrolidine|1-[1-oxo-7-(3,4-methylenedioxyphenyl)-2E,4E,6E-heptatrienyl]-pyrrolidine|N-pyrrolidyl-7-(3,4-methylenedioxyphenyl)hepta-2,4,6-trienamide

(E, E, E)-1-Piperettylpyrrolidine|1-piperettyl pyrrolidine|1-[1-Oxo-7(3,4-methylenedioxyphenyl)-2E,4E,6E-heptatrienyl]pyrrolidine|1-[1-oxo-7-(3,4-methylenedioxyphenyl)-2E,4E,6E-heptatrienyl]-pyrrolidine|N-pyrrolidyl-7-(3,4-methylenedioxyphenyl)hepta-2,4,6-trienamide

C18H19NO3 (297.13648639999997)


   
   
   
   
   

(2E,6E,8E)-2,6,8-Hexadecatrien-10-insaeure-(2,3-didehydropyrrolidid)|(2E,6E,8E)-2,6,8-Hexadecatrien-10-insaeure-<2,3-didehydropyrrolidid>

(2E,6E,8E)-2,6,8-Hexadecatrien-10-insaeure-(2,3-didehydropyrrolidid)|(2E,6E,8E)-2,6,8-Hexadecatrien-10-insaeure-<2,3-didehydropyrrolidid>

C20H27NO (297.20925320000003)


   

(6RS,11SR)-(2E,7E,9E)-6,11-dihydroxy-N-(2-hydroxy-2-methylpropyl)-2,7,9-dodecatrienamide|ZP-amide E

(6RS,11SR)-(2E,7E,9E)-6,11-dihydroxy-N-(2-hydroxy-2-methylpropyl)-2,7,9-dodecatrienamide|ZP-amide E

C16H27NO4 (297.1939982)


   

2-methoxy-6-methyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline-1,11-diol|Isothebaidin

2-methoxy-6-methyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline-1,11-diol|Isothebaidin

C18H19NO3 (297.13648639999997)


   
   
   

(2E,9Z)-pentadeca-2,9-dien-12,14-diynoic acid piperidine

(2E,9Z)-pentadeca-2,9-dien-12,14-diynoic acid piperidine

C20H27NO (297.20925320000003)


   
   
   

(-)-[(3-hydroxy-6-pyridinyl) methyl]cytisine

(-)-[(3-hydroxy-6-pyridinyl) methyl]cytisine

C17H19N3O2 (297.14771939999997)


   
   
   

2-benzyl-5-hydroxy-3-methyl-6-phenyl-1,3-oxazinan-4-one|claulansamide A

2-benzyl-5-hydroxy-3-methyl-6-phenyl-1,3-oxazinan-4-one|claulansamide A

C18H19NO3 (297.13648639999997)


   

(2E,7Z,12Z)-2,7,12-Hexadecatrien-10-insaeure-(2,3-didehydropyrrolidid)|(2E,7Z,12Z)-2,7,12-Hexadecatrien-10-insaeure-<2,3-didehydropyrrolidid>

(2E,7Z,12Z)-2,7,12-Hexadecatrien-10-insaeure-(2,3-didehydropyrrolidid)|(2E,7Z,12Z)-2,7,12-Hexadecatrien-10-insaeure-<2,3-didehydropyrrolidid>

C20H27NO (297.20925320000003)


   

2,2-dimethyl-10-(3-methyl-but-2-enyl)-2,3,4,10-tetrahydro-pyrano[2,3-b]quinolin-5-one|Haplobucharin|Haplobucharine

2,2-dimethyl-10-(3-methyl-but-2-enyl)-2,3,4,10-tetrahydro-pyrano[2,3-b]quinolin-5-one|Haplobucharin|Haplobucharine

C19H23NO2 (297.1728698)


   

hexadeca-2E, 7Z-dien-10-ynoic acid pyrrolide

hexadeca-2E, 7Z-dien-10-ynoic acid pyrrolide

C20H27NO (297.20925320000003)


   
   

S-(+)-1-hydroxy-2,9-dimethoxynoraporphine

S-(+)-1-hydroxy-2,9-dimethoxynoraporphine

C18H19NO3 (297.13648639999997)


   

4-ethyl-9,13-dihydroxy-10-methoxy-5-methyl-11-oxa-4-aza-tricyclo[8.2.1.02,5]tridec-1-en-3-one|phyllostictine B

4-ethyl-9,13-dihydroxy-10-methoxy-5-methyl-11-oxa-4-aza-tricyclo[8.2.1.02,5]tridec-1-en-3-one|phyllostictine B

C15H23NO5 (297.1576148)


   

9-Hydroxy-1,2-dimethoxy-noraporphin

9-Hydroxy-1,2-dimethoxy-noraporphin

C18H19NO3 (297.13648639999997)


   

3-formamido-8-methoxybisabolane-9-en-10-ol

3-formamido-8-methoxybisabolane-9-en-10-ol

C17H31NO3 (297.2303816)


   

N-Methyl tyramine-O-??-L-rhamnopyranoside

N-Methyl tyramine-O-??-L-rhamnopyranoside

C15H23NO5 (297.1576148)


   
   

(-)-Roemeronin|(1S)-3-methyl-(1rC2,2ac)-2a,3,4,5-tetrahydro-2H-spiro[cyclohex-2-ene-1,1-cyclopenta[ij][1,3]dioxolo[4,5-g]isoquinolin]-4-one|remeronine|Roemeronin|roemeronine

(-)-Roemeronin|(1S)-3-methyl-(1rC2,2ac)-2a,3,4,5-tetrahydro-2H-spiro[cyclohex-2-ene-1,1-cyclopenta[ij][1,3]dioxolo[4,5-g]isoquinolin]-4-one|remeronine|Roemeronin|roemeronine

C18H19NO3 (297.13648639999997)


   
   
   
   

Buchapine

Buchapine

C19H23NO2 (297.1728698)


A natural product found in Haplophyllum tuberculatum and Euodia roxburghiana.

   

N-(2-oxooxolan-3-yl)tridecanamide

N-(2-oxooxolan-3-yl)tridecanamide

C17H31NO3 (297.2303816)


   
   
   

L-Clausenamide

(3S,4R,5R)-3-hydroxy-5-[(S)-hydroxy(phenyl)methyl]-1-methyl-4-phenylpyrrolidin-2-one

C18H19NO3 (297.13648639999997)


L-Clausenamide is a natural product found in Clausena lansium with data available.

   

C11:db-UHQ aka 2-undecenyl-quinoloin-4(1H)-one position of double bond unknown

C11:db-UHQ aka 2-undecenyl-quinoloin-4(1H)-one position of double bond unknown

C20H27NO (297.20925320000003)


   

(E)-N-[2-hydroxy-2-(4-methoxyphenyl)ethyl]-3-phenylprop-2-enamide

NCGC00169378-02!(E)-N-[2-hydroxy-2-(4-methoxyphenyl)ethyl]-3-phenylprop-2-enamide

C18H19NO3 (297.13648639999997)


   

2-(3-hexyl-4-methyl-2,5-dioxopyrrol-1-yl)-3-hydroxybutanoic acid

NCGC00385456-01!2-(3-hexyl-4-methyl-2,5-dioxopyrrol-1-yl)-3-hydroxybutanoic acid

C15H23NO5 (297.1576148)


   

(2S,3S,4S)-3,4-dihydroxy-6-methoxy-3-methyl-7-methylidene-2-pentyl-2,4-dihydropyrano[2,3-c]pyrrol-5-one

NCGC00169585-02!(2S,3S,4S)-3,4-dihydroxy-6-methoxy-3-methyl-7-methylidene-2-pentyl-2,4-dihydropyrano[2,3-c]pyrrol-5-one

C15H23NO5 (297.1576148)


   

2-(undec-1-en-1-yl)quinolin-4-ol:Series 2 HAQ C11:1

2-(undec-1-en-1-yl)quinolin-4-ol:Series 2 HAQ C11:1

C20H27NO (297.20925320000003)


   

Mono-isopropyl disopyramide

Mono-isopropyl disopyramide

C18H23N3O (297.1841028)


   
   

N-(3-Oxododecanoyl)-L-homoserine lactone

N-(3-Oxododecanoyl)-L-homoserine lactone

C16H27NO4 (297.1939982)


An N-acyl-L-homoserine lactone having 3-oxododecanoyl as the acyl substituent.

   
   

(2S,3S,4S)-3,4-dihydroxy-6-methoxy-3-methyl-7-methylidene-2-pentyl-2,4-dihydropyrano[2,3-c]pyrrol-5-one [IIN-based on: CCMSLIB00000847050]

NCGC00169585-02!(2S,3S,4S)-3,4-dihydroxy-6-methoxy-3-methyl-7-methylidene-2-pentyl-2,4-dihydropyrano[2,3-c]pyrrol-5-one [IIN-based on: CCMSLIB00000847050]

C15H23NO5 (297.1576148)


   

(E)-N-[2-hydroxy-2-(4-methoxyphenyl)ethyl]-3-phenylprop-2-enamide [IIN-based on: CCMSLIB00000845287]

NCGC00169378-02!(E)-N-[2-hydroxy-2-(4-methoxyphenyl)ethyl]-3-phenylprop-2-enamide [IIN-based on: CCMSLIB00000845287]

C18H19NO3 (297.13648639999997)


   

(E)-N-[2-hydroxy-2-(4-methoxyphenyl)ethyl]-3-phenylprop-2-enamide [IIN-based: Match]

NCGC00169378-02!(E)-N-[2-hydroxy-2-(4-methoxyphenyl)ethyl]-3-phenylprop-2-enamide [IIN-based: Match]

C18H19NO3 (297.13648639999997)


   

(2S,3S,4S)-3,4-dihydroxy-6-methoxy-3-methyl-7-methylidene-2-pentyl-2,4-dihydropyrano[2,3-c]pyrrol-5-one [IIN-based: Match]

NCGC00169585-02!(2S,3S,4S)-3,4-dihydroxy-6-methoxy-3-methyl-7-methylidene-2-pentyl-2,4-dihydropyrano[2,3-c]pyrrol-5-one [IIN-based: Match]

C15H23NO5 (297.1576148)


   

CP-409092

CP-409092

C17H19N3O2 (297.14771939999997)


CONFIDENCE standard compound; INTERNAL_ID 538; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3075; ORIGINAL_PRECURSOR_SCAN_NO 3073 CONFIDENCE standard compound; INTERNAL_ID 538; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3089; ORIGINAL_PRECURSOR_SCAN_NO 3087 CONFIDENCE standard compound; INTERNAL_ID 538; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3061; ORIGINAL_PRECURSOR_SCAN_NO 3060 CONFIDENCE standard compound; INTERNAL_ID 538; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3079; ORIGINAL_PRECURSOR_SCAN_NO 3077 CONFIDENCE standard compound; INTERNAL_ID 538; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3075; ORIGINAL_PRECURSOR_SCAN_NO 3074 CONFIDENCE standard compound; INTERNAL_ID 538; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3072; ORIGINAL_PRECURSOR_SCAN_NO 3071

   

Oripavine

Oripavine

C18H19NO3 (297.13648639999997)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids A morphinane alkaloid with formula C18H19NO3. It is the major metabolite of thebaine.

   

Erythraline

19-methoxy-5,7-dioxa-13-azapentacyclo[11.7.0.0^{1,16}.0^{2,10}.0^{4,8}]icosa-2(10),3,8,15,17-pentaene

C18H19NO3 (297.13648639999997)


   

UHQ C11:1 aka 2-undecenyl-quinoloin-4(1H)-one position of double bond unknown

UHQ C11:1 aka 2-undecenyl-quinoloin-4(1H)-one position of double bond unknown

C20H27NO (297.20925320000003)


   

4-(2-Hydroxy-3-isopropylaminoproxy)-benzyloxy acetic acid

4-(2-Hydroxy-3-isopropylaminoproxy)-benzyloxy acetic acid

C15H23NO5 (297.1576148)


   
   

10,11-Dihydro-10,11-dihydroxyprotriptyline

10,11-Dihydro-10,11-dihydroxyprotriptyline

C19H23NO2 (297.1728698)


   

Mono-N-desisopropyldisopyramide

Mono-N-desisopropyldisopyramide

C18H23N3O (297.1841028)


   

N-(3-oxododecanoyl) homoserine lactone

N-3-oxo-dodecanoyl-L-homoserine lactone

C16H27NO4 (297.1939982)


   
   

N-tridecanoyl-L-Homserine lactone

N-[(3S)-tetrahydro-2-oxo-3-furanyl]-tridecanamide

C17H31NO3 (297.2303816)


   

2-(4-Methyl-5-Thiazolyl)Ethyl Decanoate

2-(4-methyl-1,3-thiazol-5-yl)ethyl decanoate

C16H27NO2S (297.1762402)


   

(±)-Aegeline

(2E)-N-[2-hydroxy-2-(4-methoxyphenyl)ethyl]-3-phenylprop-2-enamide

C18H19NO3 (297.13648639999997)


   

Lansimide 3?

3,6-Dihydroxy-1-methyl-4,5-diphenyl-2-piperidinone

C18H19NO3 (297.13648639999997)


   

Clausenamide

3-hydroxy-5-[hydroxy(phenyl)methyl]-1-methyl-4-phenylpyrrolidin-2-one

C18H19NO3 (297.13648639999997)


   

(2S,3S,4S)-3,4-Dihydroxy-6-methoxy-3-methyl-7-methylene-2-pentyl-3,4,6,7-tetrahydropyrano[2,3-c]pyrrol-5(2H)-one

(2S,3S,4S)-3,4-Dihydroxy-6-methoxy-3-methyl-7-methylene-2-pentyl-3,4,6,7-tetrahydropyrano[2,3-c]pyrrol-5(2H)-one

C15H23NO5 (297.1576148)


   

Dinor-7-NO2-CLA

7-nitro-7Z,9E-hexadecadienoic acid

C16H27NO4 (297.1939982)


   

Dinor-10-NO2-CLA

10-nitro-7E,9Z-hexadecadienoic acid

C16H27NO4 (297.1939982)


   

(2S,3S)-1,2-Epoxy-3-(Cbz-amino)-4-phenylbutane

(2S,3S)-1,2-Epoxy-3-(Cbz-amino)-4-phenylbutane

C18H19NO3 (297.13648639999997)


   

7-methoxy-8-methyl-2-(3-propan-2-ylpyrazol-1-yl)-1H-quinolin-4-one

7-methoxy-8-methyl-2-(3-propan-2-ylpyrazol-1-yl)-1H-quinolin-4-one

C17H19N3O2 (297.14771939999997)


   

ammonium tridecan-1-yl sulphate

ammonium tridecan-1-yl sulphate

C13H31NO4S (297.1973686)


   
   

1-TERT-BUTYL 4-ETHYL 4-ALLYLPIPERIDINE-1,4-DICARBOXYLATE

1-TERT-BUTYL 4-ETHYL 4-ALLYLPIPERIDINE-1,4-DICARBOXYLATE

C16H27NO4 (297.1939982)


   

6,7-Dimethoxy-1-(4-methoxyphenyl)-3,4-dihydroisoquinoline

6,7-Dimethoxy-1-(4-methoxyphenyl)-3,4-dihydroisoquinoline

C18H19NO3 (297.13648639999997)


   
   

1,3-Piperidinedicarboxylic acid, 3-(2-propen-1-yl)-, 1-(1,1-dimethylethyl) 3-ethyl ester

1,3-Piperidinedicarboxylic acid, 3-(2-propen-1-yl)-, 1-(1,1-dimethylethyl) 3-ethyl ester

C16H27NO4 (297.1939982)


   

(S)-(+)-2-(N,N-DIBENZYLAMINO)-4-METHYLPENTANOL, 90

(S)-(+)-2-(N,N-DIBENZYLAMINO)-4-METHYLPENTANOL, 90

C20H27NO (297.20925320000003)


   

3-[(tert-butoxy)carbonyl]-3-azaspiro[5.5]undecane-9-carboxylic acid

3-[(tert-butoxy)carbonyl]-3-azaspiro[5.5]undecane-9-carboxylic acid

C16H27NO4 (297.1939982)


   

(S)-2-(4-TRIFLUOROMETHYLPHENYLAMINO)PROPAN-1-OL

(S)-2-(4-TRIFLUOROMETHYLPHENYLAMINO)PROPAN-1-OL

C20H27NO (297.20925320000003)


   

Tranexamic Acid Dimer

Tranexamic Acid Dimer

C16H27NO4 (297.1939982)


   
   

Atolide

2-amino-N-[4-(diethylamino)-2-methylphenyl]benzamide

C18H23N3O (297.1841028)


C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent

   
   
   

3-(Benzyl(methyl)amino)-1-(3-methoxyphenyl)-2-methylpropan-1-one

3-(Benzyl(methyl)amino)-1-(3-methoxyphenyl)-2-methylpropan-1-one

C19H23NO2 (297.1728698)


   

tetrahydropentyl furfuryl acetate

tetrahydropentyl furfuryl acetate

C12H28NO5P (297.1705008)


   

4-[(4-ethoxyphenyl)azo]-N,N-diethylaniline

4-[(4-ethoxyphenyl)azo]-N,N-diethylaniline

C18H23N3O (297.1841028)


   

9-Azabicyclo[3.3.1]nonane-9-aceticacid, 3-(ethoxycarbonyl)-7-oxo-, ethyl ester

9-Azabicyclo[3.3.1]nonane-9-aceticacid, 3-(ethoxycarbonyl)-7-oxo-, ethyl ester

C15H23NO5 (297.1576148)


   

Boc-(S)-3-Amino-4-(4-fluorophenyl)-butyric acid

Boc-(S)-3-Amino-4-(4-fluorophenyl)-butyric acid

C15H20FNO4 (297.1376292)


   

(2RS)-2-Cyclohexyl-2-(4-Methoxyphenyl)-N,NdimethylethanamineHydrochloride

(2RS)-2-Cyclohexyl-2-(4-Methoxyphenyl)-N,NdimethylethanamineHydrochloride

C17H28ClNO (297.18593080000005)


   

3-(dimethylamino)-2-methyl-1-(3-phenylmethoxyphenyl)propan-1-one

3-(dimethylamino)-2-methyl-1-(3-phenylmethoxyphenyl)propan-1-one

C19H23NO2 (297.1728698)


   

9-(1-benzothiophen-2-yl)-3-methyl-3-azaspiro[5.5]undec-9-ene

9-(1-benzothiophen-2-yl)-3-methyl-3-azaspiro[5.5]undec-9-ene

C19H23NS (297.15511180000004)


   

5-(dibenzylamino)-2-methylpentan-2-ol

5-(dibenzylamino)-2-methylpentan-2-ol

C20H27NO (297.20925320000003)


   

Boc-(R)-3-amino-4-(2-fluorophenyl)-butyric acid

Boc-(R)-3-amino-4-(2-fluorophenyl)-butyric acid

C15H20FNO4 (297.1376292)


   

N,N-dimethyl-1-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]methanamine,hydrochloride

N,N-dimethyl-1-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]methanamine,hydrochloride

C15H25BClNO2 (297.166677)


   

Elucaine

Elucaine

C19H23NO2 (297.1728698)


C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Ethyl red

Benzoic acid,2-[2-[4-(diethylamino)phenyl]diazenyl]-

C17H19N3O2 (297.14771939999997)


   

(5-TRIFLUOROMETHYL-PYRIDIN-3-YL)-METHANOL

(5-TRIFLUOROMETHYL-PYRIDIN-3-YL)-METHANOL

C18H19NO3 (297.13648639999997)


   
   

1-(3-Carboxypyrid-2-yl)-2-phenyl-4-methyl-piperazine

1-(3-Carboxypyrid-2-yl)-2-phenyl-4-methyl-piperazine

C17H19N3O2 (297.14771939999997)


   

5-[(4-aminophenyl)methyl]-1-methyl-3-propyl-4H-pyrazolo[4,3-d]pyrimidin-7-one

5-[(4-aminophenyl)methyl]-1-methyl-3-propyl-4H-pyrazolo[4,3-d]pyrimidin-7-one

C16H19N5O (297.1589524)


   

N-(1-hydroxy-1-phenylpropan-2-yl)-N-methyl-3-phenylpropanamide

N-(1-hydroxy-1-phenylpropan-2-yl)-N-methyl-3-phenylpropanamide

C19H23NO2 (297.1728698)


   

tert-Butyl [[4-(2-pyridinyl)phenyl]methylene]hydrazinecarboxylate

tert-Butyl [[4-(2-pyridinyl)phenyl]methylene]hydrazinecarboxylate

C17H19N3O2 (297.14771939999997)


   

boc-(r)-3-amino-4-(3-fluoro-phenyl)-butyric acid

boc-(r)-3-amino-4-(3-fluoro-phenyl)-butyric acid

C15H20FNO4 (297.1376292)


   

Boc-(S)-3-Amino-4-(2-fluorophenyl)-butyric acid

Boc-(S)-3-Amino-4-(2-fluorophenyl)-butyric acid

C15H20FNO4 (297.1376292)


   
   

TERT-BUTYL (7-CYANO-1,2,3,4-TETRAHYDROCYCLOPENTA[B]INDOL-2-YL)CARBAMATE

TERT-BUTYL (7-CYANO-1,2,3,4-TETRAHYDROCYCLOPENTA[B]INDOL-2-YL)CARBAMATE

C17H19N3O2 (297.14771939999997)


   

(2S,4R)-1-TERT-BUTYL 2-ETHYL 4-ALLYL-5-OXOPYRROLIDINE-1,2-DICARBOXYLATE

(2S,4R)-1-TERT-BUTYL 2-ETHYL 4-ALLYL-5-OXOPYRROLIDINE-1,2-DICARBOXYLATE

C15H23NO5 (297.1576148)


   

tert-butyl 4-benzoylphenylcarbamate

tert-butyl 4-benzoylphenylcarbamate

C18H19NO3 (297.13648639999997)


   

2-[(4-methylbenzoyl)amino]ethyl 4-methylbenzoate

2-[(4-methylbenzoyl)amino]ethyl 4-methylbenzoate

C18H19NO3 (297.13648639999997)


   

4-FLUORO-3-FORMYLBENZENEBORONICACID

4-FLUORO-3-FORMYLBENZENEBORONICACID

C16H27NO4 (297.1939982)


   

4-(Hexahydro-5-oxo-1H-1,4-diazepin-1-yl)-1-piperidinecarboxylic acid tert-butyl ester

4-(Hexahydro-5-oxo-1H-1,4-diazepin-1-yl)-1-piperidinecarboxylic acid tert-butyl ester

C15H27N3O3 (297.20523119999996)


   

1-Benzyl-4-(4-nitrophenyl)piperazine

1-Benzyl-4-(4-nitrophenyl)piperazine

C17H19N3O2 (297.14771939999997)


   

4-Piperidinecarbonitrile,4-(cyclohexylamino)-1-(phenylmethyl)-

4-Piperidinecarbonitrile,4-(cyclohexylamino)-1-(phenylmethyl)-

C19H27N3 (297.2204862)


   

2-Methyl-2-propanyl 3-ethyl-3-methyl-1-oxo-2-oxa-7-azaspiro[4.5]d ecane-7-carboxylate

2-Methyl-2-propanyl 3-ethyl-3-methyl-1-oxo-2-oxa-7-azaspiro[4.5]d ecane-7-carboxylate

C16H27NO4 (297.1939982)


   

N-Dodecanoyl-proline

N-Dodecanoyl-L-proline

C17H31NO3 (297.2303816)


   

4-tert-butyl-2-(diethylaminomethyl)-3-dimethylsilyloxycyclopent-2-en-1-one

4-tert-butyl-2-(diethylaminomethyl)-3-dimethylsilyloxycyclopent-2-en-1-one

C16H31NO2Si (297.2123946)


   

4-[2-(Diphenylmethoxy)ethyl]morpholine

4-[2-(Diphenylmethoxy)ethyl]morpholine

C19H23NO2 (297.1728698)


   

P-HEXYLOXYBENZYLIDENE P-AMINOPHENOL

P-HEXYLOXYBENZYLIDENE P-AMINOPHENOL

C19H23NO2 (297.1728698)


   

2-(4-cyclohexylpiperazin-1-yl)-2-oxoethanamine dihydrochloride

2-(4-cyclohexylpiperazin-1-yl)-2-oxoethanamine dihydrochloride

C12H25Cl2N3O (297.13745800000004)


   

5-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-2-PHENOXYPYRIDINE

5-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-2-PHENOXYPYRIDINE

C17H20BNO3 (297.15361600000006)


   

Boc-(R)-3-Amino-4-(4-fluorophenyl)-butyric acid

Boc-(R)-3-Amino-4-(4-fluorophenyl)-butyric acid

C15H20FNO4 (297.1376292)


   

1-dodecyl-5-oxopyrrolidine-3-carboxylic acid

1-dodecyl-5-oxopyrrolidine-3-carboxylic acid

C17H31NO3 (297.2303816)


   

Benzenamine,4-(9H-fluoren-9-ylidenemethyl)-N,N-dimethyl-

Benzenamine,4-(9H-fluoren-9-ylidenemethyl)-N,N-dimethyl-

C22H19N (297.15174140000005)


   

1-Benzyl-3-(4-methoxyphenyl)-3-piperidinol

1-Benzyl-3-(4-methoxyphenyl)-3-piperidinol

C19H23NO2 (297.1728698)


   

2-(4-amino-3-pyridyl)-N,N-diisopropyl-benzamide

2-(4-amino-3-pyridyl)-N,N-diisopropyl-benzamide

C18H23N3O (297.1841028)


   

buta-1,3-diene,2-methylprop-2-enoic acid,prop-2-enenitrile,styrene

buta-1,3-diene,2-methylprop-2-enoic acid,prop-2-enenitrile,styrene

C19H23NO2 (297.1728698)


   

1-benzyl-4-(2-nitrophenyl)piperazine

1-benzyl-4-(2-nitrophenyl)piperazine

C17H19N3O2 (297.14771939999997)


   

bis((naphthalen-2-yl)methyl)amine

bis((naphthalen-2-yl)methyl)amine

C22H19N (297.15174140000005)


   

N,N-DIMETHYL-1-(3-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PHENYL)METHANAMINE HYDROCHLORIDE

N,N-DIMETHYL-1-(3-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PHENYL)METHANAMINE HYDROCHLORIDE

C15H25BClNO2 (297.166677)


   
   
   

4-[4-(cyclopentylamino)-2-methylpyrimidin-5-yl]benzoic acid

4-[4-(cyclopentylamino)-2-methylpyrimidin-5-yl]benzoic acid

C17H19N3O2 (297.14771939999997)


   

5-(1,3-benzodioxol-5-yl)-N-cyclopentyl-2-methylpyrimidin-4-amine

5-(1,3-benzodioxol-5-yl)-N-cyclopentyl-2-methylpyrimidin-4-amine

C17H19N3O2 (297.14771939999997)


   

1-(3,3-Diphenyl-N-methylpropylamino)-2-methyl-2-propanol

1-(3,3-Diphenyl-N-methylpropylamino)-2-methyl-2-propanol

C20H27NO (297.20925320000003)


   

1-(Isopropylamino)-3-{4-[(2-methoxyethoxy)methyl]phenoxy}-2-propanol

1-(Isopropylamino)-3-{4-[(2-methoxyethoxy)methyl]phenoxy}-2-propanol

C16H27NO4 (297.1939982)


   

Benzenemethanamine, α-[[(1R)-1-[3,5-bis(trifluoromethyl)phenyl]ethoxy]methyl]-α-ethenyl-, (αS)-

Benzenemethanamine, α-[[(1R)-1-[3,5-bis(trifluoromethyl)phenyl]ethoxy]methyl]-α-ethenyl-, (αS)-

C18H23N3O (297.1841028)


   

5-methoxy-2-((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)-1H-benzo[d]imidazole

5-methoxy-2-((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)-1H-benzo[d]imidazole

C17H19N3O2 (297.14771939999997)


   

(1-Methyl-4-piperidinyl)[1-(2-phenylethyl)-1H-imidazol-2-yl]methanone

(1-Methyl-4-piperidinyl)[1-(2-phenylethyl)-1H-imidazol-2-yl]methanone

C18H23N3O (297.1841028)


   

2-Azaspiro[5.5]undecan-2,9-dicarboxylic acid 2-tert-butyl ester

2-Azaspiro[5.5]undecan-2,9-dicarboxylic acid 2-tert-butyl ester

C16H27NO4 (297.1939982)


   

N,N-Dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine

N,N-Dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine

C18H24BNO2 (297.1899994)


   

boc-(s)-3-amino-4-(3-fluorophenyl)butyric acid

boc-(s)-3-amino-4-(3-fluorophenyl)butyric acid

C15H20FNO4 (297.1376292)


   

4-(PIPERIDINE-4-CARBONYL)-PIPERAZINE-1-CARBOXYLIC ACID TERT-BUTYL ESTER

4-(PIPERIDINE-4-CARBONYL)-PIPERAZINE-1-CARBOXYLIC ACID TERT-BUTYL ESTER

C15H27N3O3 (297.20523119999996)


   

Phenyl(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrol-1-yl)methanone

Phenyl(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrol-1-yl)methanone

C17H20BNO3 (297.15361600000006)


   

N-Phenyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrimidin-2-amine

N-Phenyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrimidin-2-amine

C16H20BN3O2 (297.164849)


   
   

4,4-BIPHENYLALANINE-1,1-DIMETHYL ETHYL ESTER

4,4-BIPHENYLALANINE-1,1-DIMETHYL ETHYL ESTER

C19H23NO2 (297.1728698)


   

8-methylnonoxy-oxo-phenoxyphosphanium

8-methylnonoxy-oxo-phenoxyphosphanium

C16H26O3P+ (297.1619476)


   

manganese(2+),1,2,3,5-tetramethylcyclopenta-1,3-diene

manganese(2+),1,2,3,5-tetramethylcyclopenta-1,3-diene

C18H26Mn (297.1414856)


   

(2R,3S)-1,2-Epoxy-3-(Cbz-amino)-4-phenylbutane

(2R,3S)-1,2-Epoxy-3-(Cbz-amino)-4-phenylbutane

C18H19NO3 (297.13648639999997)


   

4-cyano-4-n-propyl-p-terphenyl

4-cyano-4-n-propyl-p-terphenyl

C22H19N (297.15174140000005)


   

1-Piperidinecarboxylic acid, 4-(3-ethoxy-3-oxo-1-propyn-1-yl)-4-hydroxy-, 1,1-dimethylethyl ester

1-Piperidinecarboxylic acid, 4-(3-ethoxy-3-oxo-1-propyn-1-yl)-4-hydroxy-, 1,1-dimethylethyl ester

C15H23NO5 (297.1576148)


   

Hexylcaine hydrochloride

Hexylcaine hydrochloride

C16H24ClNO2 (297.14954739999996)


C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

(3S,4aR,6R,8aR)-6-(2-(1H-Tetrazol-5-yl)ethyl)decahydroisoquinoline-3-carboxylic acid monohydrate

(3S,4aR,6R,8aR)-6-(2-(1H-Tetrazol-5-yl)ethyl)decahydroisoquinoline-3-carboxylic acid monohydrate

C13H23N5O3 (297.18008080000004)


C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant

   

2-Chloro-N-(2-ethyl-6-methylphenyl)-N-(2-propoxyethyl)acetamide

2-Chloro-N-(2-ethyl-6-methylphenyl)-N-(2-propoxyethyl)acetamide

C16H24ClNO2 (297.14954739999996)


   

2(1H)-Quinolinone, 3-(3-methyl-2-butenyl)-4-[(3-methyl-2-butenyl)oxy]-

2(1H)-Quinolinone, 3-(3-methyl-2-butenyl)-4-[(3-methyl-2-butenyl)oxy]-

C19H23NO2 (297.1728698)


   
   
   

N-benzyl-2-(4-methoxyphenyl)-N-propan-2-ylacetamide

N-benzyl-2-(4-methoxyphenyl)-N-propan-2-ylacetamide

C19H23NO2 (297.1728698)


   

(N-(3-Fluorophenyl)ethyl-4-azahexacyclo[5.4.1.02,6.03,10.05,9.08,11]dodecan-3-ol

(N-(3-Fluorophenyl)ethyl-4-azahexacyclo[5.4.1.02,6.03,10.05,9.08,11]dodecan-3-ol

C19H20FNO (297.1528842)


   

(2S)-2-[[(2S)-2-[[(2S)-2-aminopropanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]propanoic acid

(2S)-2-[[(2S)-2-[[(2S)-2-aminopropanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]propanoic acid

C12H19N5O4 (297.1436974)


   

1-(2,3-dimethyl-1H-indol-1-yl)-3-(3,5-dimethyl-1H-pyrazol-1-yl)propan-2-ol

1-(2,3-dimethyl-1H-indol-1-yl)-3-(3,5-dimethyl-1H-pyrazol-1-yl)propan-2-ol

C18H23N3O (297.1841028)


   

1H-Indole-3-carboxamide, 4,5,6,7-tetrahydro-N-(4-((methylamino)methyl)phenyl)-4-oxo-

1H-Indole-3-carboxamide, 4,5,6,7-tetrahydro-N-(4-((methylamino)methyl)phenyl)-4-oxo-

C17H19N3O2 (297.14771939999997)


   

9-(4-Dimethylaminophenyl)anthracene

9-(4-Dimethylaminophenyl)anthracene

C22H19N (297.15174140000005)


   

N-[2-(1-phenyl-1H-pyrazol-3-yl)ethyl]cyclohexanecarboxamide

N-[2-(1-phenyl-1H-pyrazol-3-yl)ethyl]cyclohexanecarboxamide

C18H23N3O (297.1841028)


   

4-Spiro-(N-methylpiperidyl)-2,2,9-trimethyl-1,2,3,4-tetrahydro-gamma-carboline

4-Spiro-(N-methylpiperidyl)-2,2,9-trimethyl-1,2,3,4-tetrahydro-gamma-carboline

C19H27N3 (297.2204862)


   

4-{[(2R)-2-(2-methylphenyl)pyrrolidin-1-yl]carbonyl}benzene-1,3-diol

4-{[(2R)-2-(2-methylphenyl)pyrrolidin-1-yl]carbonyl}benzene-1,3-diol

C18H19NO3 (297.13648639999997)


   

3-[(4-Amino-1-tert-butyl-1H-pyrazolo[3,4-D]pyrimidin-3-YL)methyl]phenol

3-[(4-Amino-1-tert-butyl-1H-pyrazolo[3,4-D]pyrimidin-3-YL)methyl]phenol

C16H19N5O (297.1589524)


   

Ibuprofen piconol

2-Pyridinylmethyl 2-(4-isobutylphenyl)propanoate

C19H23NO2 (297.1728698)


C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic

   

3,4-Dihydroxy-6-methoxy-3-methyl-7-methylidene-2-pentyl-2,4-dihydropyrano[2,3-c]pyrrol-5-one

3,4-Dihydroxy-6-methoxy-3-methyl-7-methylidene-2-pentyl-2,4-dihydropyrano[2,3-c]pyrrol-5-one

C15H23NO5 (297.1576148)


   

4-[(2-aminoacetyl)amino]-N-(2,6-dimethylphenyl)benzamide

4-[(2-aminoacetyl)amino]-N-(2,6-dimethylphenyl)benzamide

C17H19N3O2 (297.14771939999997)


   
   

2-chloro-N-(2,6-diethylphenyl)-N-(isopropoxymethyl)acetamide

2-chloro-N-(2,6-diethylphenyl)-N-(isopropoxymethyl)acetamide

C16H24ClNO2 (297.14954739999996)


   

(2R,3R,4S,5S)-4-amino-2-[6-(dimethylamino)-6,7-dihydro-3H-purin-9-ium-9-yl]-5-(hydroxymethyl)oxolan-3-ol

(2R,3R,4S,5S)-4-amino-2-[6-(dimethylamino)-6,7-dihydro-3H-purin-9-ium-9-yl]-5-(hydroxymethyl)oxolan-3-ol

C12H21N6O3+ (297.1675056)


   

(2S)-2-[[(2E,6E)-3,7-dimethyl-8-oxoocta-2,6-dienyl]amino]pentanedioic acid

(2S)-2-[[(2E,6E)-3,7-dimethyl-8-oxoocta-2,6-dienyl]amino]pentanedioic acid

C15H23NO5 (297.1576148)


   

(4E,6E)-3-hydroxy-3-[(trimethylazaniumyl)methyl]trideca-4,6-dienoate

(4E,6E)-3-hydroxy-3-[(trimethylazaniumyl)methyl]trideca-4,6-dienoate

C17H31NO3 (297.2303816)


   

Nona-4,6-dienoylcarnitine

Nona-4,6-dienoylcarnitine

C16H27NO4 (297.1939982)


   

Nona-2,5-dienoylcarnitine

Nona-2,5-dienoylcarnitine

C16H27NO4 (297.1939982)


   

Nona-5,7-dienoylcarnitine

Nona-5,7-dienoylcarnitine

C16H27NO4 (297.1939982)


   

Nona-3,6-dienoylcarnitine

Nona-3,6-dienoylcarnitine

C16H27NO4 (297.1939982)


   

Nona-4,7-dienoylcarnitine

Nona-4,7-dienoylcarnitine

C16H27NO4 (297.1939982)


   

Nona-3,5-dienoylcarnitine

Nona-3,5-dienoylcarnitine

C16H27NO4 (297.1939982)


   

Nona-3,7-dienoylcarnitine

Nona-3,7-dienoylcarnitine

C16H27NO4 (297.1939982)


   

Nona-2,7-dienoylcarnitine

Nona-2,7-dienoylcarnitine

C16H27NO4 (297.1939982)


   

Nona-2,4-dienoylcarnitine

Nona-2,4-dienoylcarnitine

C16H27NO4 (297.1939982)


   

(2E,6E)-Nona-2,6-dienoylcarnitine

(2E,6E)-Nona-2,6-dienoylcarnitine

C16H27NO4 (297.1939982)


   
   

4H-Dibenzo(de,g)quinolin-3-ol, 5,6,6a,7-tetrahydro-1,2-dimethoxy-, (R)-

4H-Dibenzo(de,g)quinolin-3-ol, 5,6,6a,7-tetrahydro-1,2-dimethoxy-, (R)-

C18H19NO3 (297.13648639999997)


   

3-methyl-N-[oxo-[(2,4,6-trimethyl-3-pyridinyl)amino]methyl]benzamide

3-methyl-N-[oxo-[(2,4,6-trimethyl-3-pyridinyl)amino]methyl]benzamide

C17H19N3O2 (297.14771939999997)


   

N-(3-oxododecanoyl)-D-homoserine lactone

N-(3-oxododecanoyl)-D-homoserine lactone

C16H27NO4 (297.1939982)


   

1-(1-Naphthalenyl)-3-[3-(1-pyrrolidinyl)propyl]urea

1-(1-Naphthalenyl)-3-[3-(1-pyrrolidinyl)propyl]urea

C18H23N3O (297.1841028)


   

N-{(E)-[4-(dimethylamino)phenyl]methylidene}-2-phenoxyacetohydrazide

N-{(E)-[4-(dimethylamino)phenyl]methylidene}-2-phenoxyacetohydrazide

C17H19N3O2 (297.14771939999997)


   
   

2-(4,5,6,7-tetrahydroindazol-2-yl)-N-(2,4,6-trimethylphenyl)acetamide

2-(4,5,6,7-tetrahydroindazol-2-yl)-N-(2,4,6-trimethylphenyl)acetamide

C18H23N3O (297.1841028)


   

5-tert-butyl-N-(2,3-dihydro-1H-inden-2-yl)-2-methyluran-3-carboxamide

5-tert-butyl-N-(2,3-dihydro-1H-inden-2-yl)-2-methyluran-3-carboxamide

C19H23NO2 (297.1728698)


   
   

1-[(2-Methoxyphenyl)methyl]-4-(3-pyridinylmethyl)piperazine

1-[(2-Methoxyphenyl)methyl]-4-(3-pyridinylmethyl)piperazine

C18H23N3O (297.1841028)


   
   
   

Noribogaine(1+)

Noribogaine(1+)

C19H25N2O+ (297.196678)


A tertiary ammonium ion resulting from the protonation of the tertiary amino group of noribogaine.

   
   
   

(4R,7aR,12bS)-9-methoxy-3-methyl-2,4,7a,13-tetrahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-ol

(4R,7aR,12bS)-9-methoxy-3-methyl-2,4,7a,13-tetrahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-ol

C18H19NO3 (297.13648639999997)


   

1-(4-Fluorophenyl)-2-phenyl-3-(1-pyrrolidinyl)-1-propanone

1-(4-Fluorophenyl)-2-phenyl-3-(1-pyrrolidinyl)-1-propanone

C19H20FNO (297.1528842)


   

(2S)-4-(4-hydroxy-3,5-dimethoxyphenyl)-2-(trimethylazaniumyl)butanoate

(2S)-4-(4-hydroxy-3,5-dimethoxyphenyl)-2-(trimethylazaniumyl)butanoate

C15H23NO5 (297.1576148)


   

(1S,7R,14S)-9-hydroxy-15,17-diazatetracyclo[12.2.2.1(3,7).1(8,12)]icosa-3(20),4,6,10,12(19)-pentaen-6-one

(1S,7R,14S)-9-hydroxy-15,17-diazatetracyclo[12.2.2.1(3,7).1(8,12)]icosa-3(20),4,6,10,12(19)-pentaen-6-one

C18H21N2O2+ (297.1602946)


   

N-[(4E,8E)-1,3-dihydroxydodeca-4,8-dien-2-yl]pentanamide

N-[(4E,8E)-1,3-dihydroxydodeca-4,8-dien-2-yl]pentanamide

C17H31NO3 (297.2303816)


   

N-[(4E,8E)-1,3-dihydroxytetradeca-4,8-dien-2-yl]propanamide

N-[(4E,8E)-1,3-dihydroxytetradeca-4,8-dien-2-yl]propanamide

C17H31NO3 (297.2303816)


   

N-[(4E,8E)-1,3-dihydroxytrideca-4,8-dien-2-yl]butanamide

N-[(4E,8E)-1,3-dihydroxytrideca-4,8-dien-2-yl]butanamide

C17H31NO3 (297.2303816)


   

N-[(4E,8E)-1,3-dihydroxypentadeca-4,8-dien-2-yl]acetamide

N-[(4E,8E)-1,3-dihydroxypentadeca-4,8-dien-2-yl]acetamide

C17H31NO3 (297.2303816)


   

3,3,5-Trimethyl-1,2,3,4-tetrahydro-gamma-carboline-1-spiro-4-(1-methyl)piperidine(2-D)

3,3,5-Trimethyl-1,2,3,4-tetrahydro-gamma-carboline-1-spiro-4-(1-methyl)piperidine(2-D)

C19H27N3 (297.2204862)


   

2-(3-Hexyl-4-methyl-2,5-dioxopyrrol-1-yl)-3-hydroxybutanoic acid

2-(3-Hexyl-4-methyl-2,5-dioxopyrrol-1-yl)-3-hydroxybutanoic acid

C15H23NO5 (297.1576148)


   
   

4-(Isopropylamino)-2-(2-pyridyl)-2-phenylbutyramide

4-(Isopropylamino)-2-(2-pyridyl)-2-phenylbutyramide

C18H23N3O (297.1841028)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics

   

N-(3-Oxododecanoyl)homoserine lactone

N-(3-Oxododecanoyl)homoserine lactone

C16H27NO4 (297.1939982)


   

R-(-)-3-hydroxynornuciferine

R-(-)-3-hydroxynornuciferine

C18H19NO3 (297.13648639999997)


A natural product found in Annona glabra.

   

1,2-dimethoxy-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline-10-ol

1,2-dimethoxy-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline-10-ol

C18H19NO3 (297.13648639999997)


   

GA

4-[(2-aminoacetyl)amino]-N-(2,6-dimethylphenyl)benzamide

C17H19N3O2 (297.14771939999997)


   

all-trans-3,4-didehydroretinoate(1-)

all-trans-3,4-didehydroretinoate(1-)

C20H25O2 (297.18544499999996)


A monocarboxylic acid anion derived from 3,4-desaturation of beta-ionone ring of all-trans-retinoate; major species at pH 7.3.

   

(8R)-13-methoxy-7-methyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline-2,14-diol

(8R)-13-methoxy-7-methyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline-2,14-diol

C18H19NO3 (297.13648639999997)


   

3-(3-methylbut-2-enyl)-4-(3-methylbut-2-enyloxy)quinolin-2(1H)-one (Structural isomer of Buchapine)

3-(3-methylbut-2-enyl)-4-(3-methylbut-2-enyloxy)quinolin-2(1H)-one (Structural isomer of Buchapine)

C19H23NO2 (297.1728698)


A natural product found in Haplophyllum tuberculatum and Euodia roxburghiana.

   
   
   
   
   

Bufuralol (hydrochloride)

Bufuralol (hydrochloride)

C16H24ClNO2 (297.14954739999996)


Bufuralol (Ro 3-4787) hydrochloride is a potent non-selective, orally active β-adrenoreceptor antagonist with partial agonist activity. Bufuralol hydrochloride is a CYP2D6 probe substrate[1][2].

   

(1r,5s,13s)-10,14-dimethoxy-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7,9,11(18),14,16-pentaene

(1r,5s,13s)-10,14-dimethoxy-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7,9,11(18),14,16-pentaene

C18H19NO3 (297.13648639999997)


   

15,16-dimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaen-14-ol

15,16-dimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaen-14-ol

C18H19NO3 (297.13648639999997)


   

(2e,6z,8e,10r,11s)-10,11-dihydroxy-n-(2-hydroxy-2-methylpropyl)dodeca-2,6,8-trienimidic acid

(2e,6z,8e,10r,11s)-10,11-dihydroxy-n-(2-hydroxy-2-methylpropyl)dodeca-2,6,8-trienimidic acid

C16H27NO4 (297.1939982)


   

(2e)-n-[2-hydroxy-2-(4-methoxyphenyl)ethyl]-3-phenylprop-2-enimidic acid

(2e)-n-[2-hydroxy-2-(4-methoxyphenyl)ethyl]-3-phenylprop-2-enimidic acid

C18H19NO3 (297.13648639999997)


   

6-methoxy-1-[(4-methoxyphenyl)methyl]-2-methyl-3,4-dihydro-1h-isoquinoline

6-methoxy-1-[(4-methoxyphenyl)methyl]-2-methyl-3,4-dihydro-1h-isoquinoline

C19H23NO2 (297.1728698)


   

3,4-dihydroxy-6-methoxy-3-methyl-7-methylidene-2-pentyl-2h,4h-pyrano[2,3-c]pyrrol-5-one

3,4-dihydroxy-6-methoxy-3-methyl-7-methylidene-2-pentyl-2h,4h-pyrano[2,3-c]pyrrol-5-one

C15H23NO5 (297.1576148)


   

2-(undec-1-en-1-yl)-1h-quinolin-4-one

2-(undec-1-en-1-yl)-1h-quinolin-4-one

C20H27NO (297.20925320000003)


   

6-hydroxy-4-[2-hydroxy-2-(5-hydroxy-3,5-dimethyl-2-oxocyclohexyl)ethyl]-4,5-dihydro-3h-pyridin-2-one

6-hydroxy-4-[2-hydroxy-2-(5-hydroxy-3,5-dimethyl-2-oxocyclohexyl)ethyl]-4,5-dihydro-3h-pyridin-2-one

C15H23NO5 (297.1576148)


   

(12bs)-10-methoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphene-4,11-diol

(12bs)-10-methoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphene-4,11-diol

C18H19NO3 (297.13648639999997)


   

(4's)-11'-hydroxy-10'-methoxy-5'-methyl-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,5,8'(12'),9'-pentaen-4-one

(4's)-11'-hydroxy-10'-methoxy-5'-methyl-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,5,8'(12'),9'-pentaen-4-one

C18H19NO3 (297.13648639999997)


   

2-[(4z)-undec-4-en-1-yl]-1h-quinolin-4-one

2-[(4z)-undec-4-en-1-yl]-1h-quinolin-4-one

C20H27NO (297.20925320000003)


   

10'-hydroxy-11'-methoxy-5'-methyl-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(12'),2,5,8',10'-pentaen-4-one

10'-hydroxy-11'-methoxy-5'-methyl-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(12'),2,5,8',10'-pentaen-4-one

C18H19NO3 (297.13648639999997)


   

(2s,4r)-1-(2,4-dihydroxy-5,6-dimethoxypyridin-3-yl)-2,4-dimethylhexan-1-one

(2s,4r)-1-(2,4-dihydroxy-5,6-dimethoxypyridin-3-yl)-2,4-dimethylhexan-1-one

C15H23NO5 (297.1576148)


   

(2s,4e)-5-hydroxy-4-(1-hydroxydecylidene)-2-(2-hydroxyethyl)-2h-pyrrol-3-one

(2s,4e)-5-hydroxy-4-(1-hydroxydecylidene)-2-(2-hydroxyethyl)-2h-pyrrol-3-one

C16H27NO4 (297.1939982)


   

11'-methyl-3',5'-dioxa-11'-azaspiro[cyclohexane-1,14'-tetracyclo[6.6.1.0²,⁶.0¹²,¹⁵]pentadecane]-1'(15'),2,2'(6'),7'-tetraen-4-one

11'-methyl-3',5'-dioxa-11'-azaspiro[cyclohexane-1,14'-tetracyclo[6.6.1.0²,⁶.0¹²,¹⁵]pentadecane]-1'(15'),2,2'(6'),7'-tetraen-4-one

C18H19NO3 (297.13648639999997)


   

14-methoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7,9,11(18),14,16-pentaen-10-ol

14-methoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7,9,11(18),14,16-pentaen-10-ol

C18H19NO3 (297.13648639999997)


   

10',11'-dimethoxy-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,5,8'(12'),9'-pentaen-4-one

10',11'-dimethoxy-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,5,8'(12'),9'-pentaen-4-one

C18H19NO3 (297.13648639999997)


   

(3r,4r,5s)-3-hydroxy-5-[(s)-hydroxy(phenyl)methyl]-1-methyl-4-phenylpyrrolidin-2-one

(3r,4r,5s)-3-hydroxy-5-[(s)-hydroxy(phenyl)methyl]-1-methyl-4-phenylpyrrolidin-2-one

C18H19NO3 (297.13648639999997)


   

10-methoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphene-2,11-diol

10-methoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphene-2,11-diol

C18H19NO3 (297.13648639999997)


   

(9s)-15,16-dimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaen-4-ol

(9s)-15,16-dimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaen-4-ol

C18H19NO3 (297.13648639999997)


   

(3s,4s,5s)-3-hydroxy-5-[(r)-hydroxy(phenyl)methyl]-1-methyl-4-phenylpyrrolidin-2-one

(3s,4s,5s)-3-hydroxy-5-[(r)-hydroxy(phenyl)methyl]-1-methyl-4-phenylpyrrolidin-2-one

C18H19NO3 (297.13648639999997)


   

(7as)-5,6,7,7a-tetrahydro-3h-pyrrolizin-1-ylmethyl (2r,3s)-2-hydroxy-2-[(1r)-1-hydroxyethyl]-3-methylpentanoate

(7as)-5,6,7,7a-tetrahydro-3h-pyrrolizin-1-ylmethyl (2r,3s)-2-hydroxy-2-[(1r)-1-hydroxyethyl]-3-methylpentanoate

C16H27NO4 (297.1939982)


   

15-methoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaene-3,16-diol

15-methoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaene-3,16-diol

C18H19NO3 (297.13648639999997)


   

(2r,3s)-1-(4-hydroxyphenyl)-4-(1h-indol-3-yl)butane-2,3-diol

(2r,3s)-1-(4-hydroxyphenyl)-4-(1h-indol-3-yl)butane-2,3-diol

C18H19NO3 (297.13648639999997)


   

(5s)-3-[(2r)-1-hydroxy-2-methyloctylidene]-5-[(1s)-1-hydroxyethyl]-1-methylpyrrolidine-2,4-dione

(5s)-3-[(2r)-1-hydroxy-2-methyloctylidene]-5-[(1s)-1-hydroxyethyl]-1-methylpyrrolidine-2,4-dione

C16H27NO4 (297.1939982)


   

(3r,4r,5r)-3-hydroxy-5-[(r)-hydroxy(phenyl)methyl]-1-methyl-4-phenylpyrrolidin-2-one

(3r,4r,5r)-3-hydroxy-5-[(r)-hydroxy(phenyl)methyl]-1-methyl-4-phenylpyrrolidin-2-one

C18H19NO3 (297.13648639999997)


   

(3r,4s,5r)-3-hydroxy-5-[(s)-hydroxy(phenyl)methyl]-1-methyl-4-phenylpyrrolidin-2-one

(3r,4s,5r)-3-hydroxy-5-[(s)-hydroxy(phenyl)methyl]-1-methyl-4-phenylpyrrolidin-2-one

C18H19NO3 (297.13648639999997)