Exact Mass: 191.0556
Exact Mass Matches: 191.0556
Found 320 metabolites which its exact mass value is equals to given mass value 191.0556
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
5-Hydroxyindoleacetic acid
5-Hydroxyindoleacetic acid, also known as 5-hydroxyindole-3-acetate or 5-HIAA, belongs to the class of organic compounds known as indole-3-acetic acid derivatives. Indole-3-acetic acid derivatives are compounds containing an acetic acid (or a derivative) linked to the C3 carbon atom of an indole. 5-Hydroxyindoleacetic acid exists in all living organisms, ranging from bacteria to humans. In humans, 5-hydroxyindoleacetic acid is a breakdown product of serotonin that is excreted in the urine and it also participates in a number of enzymatic reactions. 5-hydroxyindoleacetic acid can be biosynthesized from 5-hydroxyindoleacetaldehyde; which is catalyzed by the mitochondrial enzyme aldehyde dehydrogenase. In addition, 5-hydroxyindoleacetic acid and S-adenosylmethionine can be converted into 5-methoxyindoleacetate and S-adenosylhomocysteine through its interaction with the enzyme acetylserotonin O-methyltransferase. 5-Hydroxyindoleacetic acid is also involved in the metabolism of tryptophan. 5-Hydroxyindoleacetic acid has been found to be associated with several human diseases such as brunner syndrome, friedreichs ataxia, schizophrenia, and olivopontocerebral atrophy; 5-hydroxyindoleacetic acid has also been linked to the inborn metabolic disorder sepiapterin reductase deficiency. Elevated levels of 5-hydroxyindoleacetic acid in urine (>20 uM) are indicative of appendicitis and gastroenteritis (PMID: 11462886). Serotonin and 5-Hydroxyindoleacetic acid are produced in excess amounts by carcinoid tumors, and levels of these substances may be measured in the urine to test for carcinoid tumors (NCI). 5-Hydroxyindoleacetic acid has also been found to be a product of human gut microbiota. 5-Hydroxyindoleacetic acid (5-HIAA) is the main metabolite of serotonin in the human body. In chemical analysis of urine samples, 5-HIAA is used to determine the bodys levels of serotonin. 5-Hydroxyindole-3-acetic acid is found in many foods, some of which are pitanga, dandelion, coconut, and white cabbage. 5-Hydroxyindole-3-acetic acid is the main metabolite of serotonin or metanephrines, which can be used as a biomarker of neuroendocrine tumors.
N-acetylmethionine
N-Acetyl-L-methionine or N-Acetylmethionine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylmethionine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylmethionine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-methionine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\% of all human proteins and 68\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylmethionine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free methionine can also occur. In particular, N-Acetylmethionine can be biosynthesized from L-methionine and acetyl-CoA by the enzyme methionine N-acetyltransferase (EC 2.3.1.66). Excessive amounts N-acetyl amino acids including N-acetylmethionine (as well as N-acetylglycine, N-acetylserine, N-acetylglutamine, N-acetylglutamate, N-acetylalanine, N-acetylleucine and smaller amounts of N-acetylthreonine, N-acetylisoleucine, and N-acetylvaline) can be detected in the urine with individuals with acylase I deficiency, a genetic disorder (PMID: 16465618). Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylmethionine are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). Nutrient supplement used as a source of L-methionine. KEIO_ID A065 N-Acetyl-DL-methionine is an endogenous metabolite. N-Acetyl-L-methionine, a human metabolite, is nutritionally and metabolically equivalent to L-methionine. L-methionine is an indispensable amino acid required for normal growth and development[1].
5-Phenyl-1,3-oxazinane-2,4-dione
5-Phenyl-1,3-oxazinane-2,4-dione is a metabolite of felbamate. Felbamate (marketed under the brand name Felbatol by MedPointe) is an anti-epileptic drug used in the treatment of epilepsy. It is used to treat partial seizures (with and without generalization) in adults and partial and generalized seizures associated with Lennox-Gastaut syndrome in children. However, an increased risk of potentially fatal aplastic anemia and/or liver failure limit the drugs usage to severe refractory epilepsy. (Wikipedia)
(2-oxo-2,3-dihydro-1H-indol-3-yl)acetic acid
D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids
xi-2,3-Dihydro-2-oxo-1H-indole-3-acetic acid
xi-2,3-Dihydro-2-oxo-1H-indole-3-acetic acid is found in brassicas. xi-2,3-Dihydro-2-oxo-1H-indole-3-acetic acid is isolated from Ribes rubrum (currant), Brassica species and Helianthus annuus (sunflower). xi-2,3-Dihydro-2-oxo-1H-indole-3-acetic acid is a product of catabolism of 1H-Indole-3-acetic acid
L-quinate
L-quinate, also known as L-quinic acid, belongs to quinic acids and derivatives class of compounds. Those are compounds containing a quinic acid moiety (or a derivative thereof), which is a cyclitol made up of a cyclohexane ring that bears four hydroxyl groups at positions 1,3.4, and 5, as well as a carboxylic acid at position 1. L-quinate is very soluble (in water) and a weakly acidic compound (based on its pKa). L-quinate can be found in a number of food items such as fireweed, yellow wax bean, japanese walnut, and black cabbage, which makes L-quinate a potential biomarker for the consumption of these food products. Quinic acid is a cyclitol, a cyclic polyol, and a cyclohexanecarboxylic acid. It is a crystalline acid obtained from cinchona bark, coffee beans, and other plant products and made synthetically by hydrolysis of chlorogenic acid. Quinic acid is also implicated in the perceived acidity of coffee. It is a constituent of the tara tannins .
3-urfuryl 2-yrrolecarboxylate
Furan-3-ylmethyl 1H-pyrrole-2-carboxylate is a natural product found in Pseudostellaria heterophylla with data available.
3-Furfuryl
Furan-3-ylmethyl 1H-pyrrole-2-carboxylate is a natural product found in Pseudostellaria heterophylla with data available.
4-oxo-1,2,3,4-tetrahydroquinoline-2-carboxylic acid
5-Hydroxyindole-3-acetic acid
D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids IPB_RECORD: 561; CONFIDENCE confident structure 5-Hydroxyindole-3-acetic acid is the main metabolite of serotonin or metanephrines, which can be used as a biomarker of neuroendocrine tumors.
5-Hydroxyindoleacetate
5-Hydroxyindole-3-acetic acid is the main metabolite of serotonin or metanephrines, which can be used as a biomarker of neuroendocrine tumors.
5-Hydroxyindoleacetic acid
5-Hydroxyindole-3-acetic acid is the main metabolite of serotonin or metanephrines, which can be used as a biomarker of neuroendocrine tumors.
N-acetyl-L-methionine
An L-methionine derivative that is L-methionine in which one of the amine hydrogens is substituted by an acetyl group. N-Acetyl-L-methionine, a human metabolite, is nutritionally and metabolically equivalent to L-methionine. L-methionine is an indispensable amino acid required for normal growth and development[1].
1,2,3,4-Tetrahydro-2-oxo-quinoline-8-carboxylic acid
2,4-Triazole-3-thione,2,4-dihydro-5-methyl-4-phenyl-3H-1
2-OXO-1,2,3,4-TETRAHYDROQUINOLINE-7-CARBOXYLIC ACID
Potassium trifluoro[(pyrrolidin-1-yl)methyl]borate
N-Acetyl-D-methionine
An N-acetyl-D-amino acid in which the amino acid is D-methionine.
2-OXO-1,2,3,4-TETRAHYDROQUINOLINE-3-CARBOXYLIC ACID
2-Propenoic acid,2-cyano-3-(2-furanyl)-, ethyl ester
N-Acetyl-D-penicillamine
N-Acetylpenicillamine is acompounds derived from the amino acid penicillamine.
(4-HYDROXY-3-METHOXY-PHENYL)-MORPHOLIN-4-YL-METHANETHIONE
2-Oxo-1,2,3,4-tetrahydroquinoline-6-carboxylic acid
3-amino-N,N-dimethyl-1H-1,2,4-triazole-5-carboxamide(SALTDATA: 0.8H2O 0.06SiO2)
Methyl 1H-pyrrolo[2,3-b]pyridine-4-carboxylate 1-oxide
(S)-2-amino-2-(4-fluorophenyl)ethanol hydrochloride
1,2-dihydroimidazo[2,1-b][1,3]benzothiazol-7-amine
8-methyl-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-6-carbaldehyde
6-Benzoxazolecarboxylic acid, 2-Methyl-, Methyl ester
(2-FLUORO-4-METHOXYPHENYL)METHANAMINE HYDROCHLORIDE
8-OXO-5,6,7,8-TETRAHYDROQUINOLINE-2-CARBOXYLIC ACID
1-(2-aminoethyl)pyrimidine-2,4-dione,hydrochloride
Amiphenazole
C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D019141 - Respiratory System Agents
2H-1-Benzopyran-2-one, 8-amino-7-hydroxy-4-methyl-
SureCN668028
A nitrile that is phenylacetonitrile substituted by a carboxy and a methoxy group at positions 1 and 3 respectively.
(2S)-2-(carbamoylamino)-4-(methylsulfanyl)butanoate
(2R)-2-(carbamoylamino)-4-(methylsulfanyl)butanoate
2-hydroxy-(indol-3-yl)acetic acid
A member of the class of indole-3-acetic acids that is indole-3-acetic acid in which the hydrogen at position 2 has been replaced by a hydroxy group. This is a very minor tautomer; the major tautomer is the corresponding oxindole.
5-methoxyindole-2-carboxylic acid
An indolecarboxylic acid that is indole-2-carboxylic acid carrying an additional methoxy substituent at position 5.
(5-hydroxyindol-3-yl)acetic acid
A member of the class of indole-3-acetic acids that is indole-3-acetic acid substituted by a hydroxy group at C-5.
2-Oxindole-3-acetic acid
A member of the class of oxindoles that is 2-oxindole carrying a carboxymethyl substituent at position 3.