xi-2,3-Dihydro-2-oxo-1H-indole-3-acetic acid (BioDeep_00000018432)

 

Secondary id: BioDeep_00000015255

human metabolite


代谢物信息卡片


(2-oxo-2,3-dihydro-1H-indol-3-yl)acetic acid

化学式: C10H9NO3 (191.0582)
中文名称: (2-氧代-2,3-二氢-1H-吲哚-3-基)-乙酸
谱图信息: 最多检出来源 Homo sapiens(feces) 13.8%

分子结构信息

SMILES: C1=CC=C2C(=C1)C(C(=O)N2)CC(=O)O
InChI: InChI=1S/C10H9NO3/c12-9(13)5-7-6-3-1-2-4-8(6)11-10(7)14/h1-4,7H,5H2,(H,11,14)(H,12,13)

描述信息

xi-2,3-Dihydro-2-oxo-1H-indole-3-acetic acid is found in brassicas. xi-2,3-Dihydro-2-oxo-1H-indole-3-acetic acid is isolated from Ribes rubrum (currant), Brassica species and Helianthus annuus (sunflower). xi-2,3-Dihydro-2-oxo-1H-indole-3-acetic acid is a product of catabolism of 1H-Indole-3-acetic acid BNC14-M in Zea mays (sweetcorn
Isolated from Ribes rubrum (currant), Brassica subspecies and Helianthus annuus (sunflower). Production of catabolism of 1H-Indole-3-acetic acid BNC14-M in Zea mays (sweetcorn). Oxindole-3-acetic acid is found in many foods, some of which are fats and oils, brassicas, cereals and cereal products, and fruits.
D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids

同义名列表

14 个代谢物同义名

(2-oxo-2,3-dihydro-1H-indol-3-yl)acetic acid; xi-2,3-Dihydro-2-oxo-1H-indole-3-acetic acid; 2,3-Dihydro-2-oxo-1H-indole-3-acetic acid; XI-2,3-dihydro-2-oxo-1H-indole-3-acetate; 2-(2-hydroxy-3H-indol-3-yl)acetic acid; (2-hydroxy-3H-indol-3-yl)acetic acid; 2-Hydroxy-1H-indole-3-acetic acid; 2-(2-oxo-3-Indolinyl)acetic acid; 2-Oxindol-3-yl-acetic acid; 2-Oxindole-3-acetic acid; Oxindole-3-acetic acid; 2-Oxindol-3-yl-acetate; 2-Oxindole-3-acetate; Oxindole-3-acetate



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

7 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Ken-Ichiro Hayashi, Kazushi Arai, Yuki Aoi, Yuka Tanaka, Hayao Hira, Ruipan Guo, Yun Hu, Chennan Ge, Yunde Zhao, Hiroyuki Kasahara, Kosuke Fukui. The main oxidative inactivation pathway of the plant hormone auxin. Nature communications. 2021 11; 12(1):6752. doi: 10.1038/s41467-021-27020-1. [PMID: 34811366]
  • Lenka Záveská Drábková, Petre I Dobrev, Václav Motyka. Phytohormone Profiling across the Bryophytes. PloS one. 2015; 10(5):e0125411. doi: 10.1371/journal.pone.0125411. [PMID: 25974061]
  • Keita Tanaka, Ken-ichiro Hayashi, Masahiro Natsume, Yuji Kamiya, Hitoshi Sakakibara, Hiroshi Kawaide, Hiroyuki Kasahara. UGT74D1 catalyzes the glucosylation of 2-oxindole-3-acetic acid in the auxin metabolic pathway in Arabidopsis. Plant & cell physiology. 2014 Jan; 55(1):218-28. doi: 10.1093/pcp/pct173. [PMID: 24285754]
  • Ales Pencík, Biljana Simonovik, Sara V Petersson, Eva Henyková, Sibu Simon, Kathleen Greenham, Yi Zhang, Mariusz Kowalczyk, Mark Estelle, Eva Zazímalová, Ondrej Novák, Göran Sandberg, Karin Ljung. Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. The Plant cell. 2013 Oct; 25(10):3858-70. doi: 10.1105/tpc.113.114421. [PMID: 24163311]
  • Hsiou-Yu Ding. Extracts and constituents of Rubus chingii with 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. International journal of molecular sciences. 2011; 12(6):3941-9. doi: 10.3390/ijms12063941. [PMID: 21747716]
  • Naoki Midoh, Akihito Tanaka, Makiko Nagayasu, Chie Furuta, Katsuya Suzuki, Takeshi Ichikawa, Takashi Isomura, Kenzo Nomura. Antioxidative activities of Oxindole-3-acetic acid derivatives from supersweet corn powder. Bioscience, biotechnology, and biochemistry. 2010; 74(9):1794-801. doi: 10.1271/bbb.100124. [PMID: 20834171]
  • Marc Morant, Claus Ekstrøm, Peter Ulvskov, Charlotte Kristensen, Mats Rudemo, Carl Erik Olsen, Jørgen Hansen, Kirsten Jørgensen, Bodil Jørgensen, Birger Lindberg Møller, Søren Bak. Metabolomic, transcriptional, hormonal, and signaling cross-talk in superroot2. Molecular plant. 2010 Jan; 3(1):192-211. doi: 10.1093/mp/ssp098. [PMID: 20008451]
  • M Kowalczyk, G Sandberg. Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant physiology. 2001 Dec; 127(4):1845-53. doi: 10.1104/pp.010525. [PMID: 11743128]
  • J C Jaton, K Roulin, K Rose, F M Sirotnak, A Lewenstein, G Brunner, C P Fankhauser, U Burger. The secalosides, novel tumor cell growth inhibitory glycosides from a pollen extract. Journal of natural products. 1997 Apr; 60(4):356-60. doi: 10.1021/np9606557. [PMID: 9134744]
  • H M Nonhebel. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings. Journal of experimental botany. 1986 Nov; 37(184):1691-7. doi: 10.1093/jxb/37.11.1691. [PMID: 11539687]
  • H M Nonhebel, L I Kruse, R S Bandurski. Indole-3-acetic acid catabolism in Zea mays seedlings. Metabolic conversion of oxindole-3-acetic acid to 7-hydroxy-2-oxindole-3-acetic acid 7'-O-beta-D-glucopyranoside. The Journal of biological chemistry. 1985 Oct; 260(23):12685-9. doi: 10.1016/s0021-9258(17)38927-5. [PMID: 4044604]
  • . . . . doi: . [PMID: 11538238]