Exact Mass: 178.0266

Exact Mass Matches: 178.0266

Found 46 metabolites which its exact mass value is equals to given mass value 178.0266, within given mass tolerance error 4.0E-5 dalton. Try search metabolite list with more accurate mass tolerance error 8.0E-6 dalton.

5,7-Dihydroxy-4H-1-benzopyran-4-one

4H-1-Benzopyran-4-one, 5,7-dihydroxy-

C9H6O4 (178.0266)


5,7-Dihydroxychromone is a member of chromones. 5,7-Dihydroxychromone is a natural product found in Calluna vulgaris, Leucosidea sericea, and other organisms with data available. 5,7-Dihydroxy-4H-1-benzopyran-4-one is found in nuts. 5,7-Dihydroxy-4H-1-benzopyran-4-one is isolated from peanut shells. Isolated from peanut shells. 5,7-Dihydroxy-4H-1-benzopyran-4-one is found in peanut and nuts. 5,7-Dihydroxychromone, the extract of Cudrania tricuspidata, activates Nrf2/ARE signal and exerts neuroprotective effects against 6-hydroxydopamine (6-OHDA)-induced oxidative stress and apoptosis. 5,7-Dihydroxychromone inhibits the expression of activated caspase-3 and caspase-9 and cleaved PARP in 6-OHDA-induced SH-SY5Y cells[1]. 5,7-Dihydroxychromone, the extract of Cudrania tricuspidata, activates Nrf2/ARE signal and exerts neuroprotective effects against 6-hydroxydopamine (6-OHDA)-induced oxidative stress and apoptosis. 5,7-Dihydroxychromone inhibits the expression of activated caspase-3 and caspase-9 and cleaved PARP in 6-OHDA-induced SH-SY5Y cells[1].

   

Aesculetin

6,7-dihydroxychromen-2-one

C9H6O4 (178.0266)


Aesculetin, also known as cichorigenin or cichoriin aglucon, belongs to the class of organic compounds known as 6,7-dihydroxycoumarins. These are coumarins bearing two hydroxyl groups at positions 6 and 7 of the coumarin skeleton, respectively. Aesculetin is found, on average, in the highest concentration within sherries. Aesculetin has also been detected, but not quantified, in several different foods, such as horseradish, carrots, dandelions, grape wines, and highbush blueberries. This could make aesculetin a potential biomarker for the consumption of these foods. Esculetin is a hydroxycoumarin that is umbelliferone in which the hydrogen at position 6 is substituted by a hydroxy group. It is used in filters for absorption of ultraviolet light. It has a role as an antioxidant, an ultraviolet filter and a plant metabolite. Esculetin is a natural product found in Artemisia eriopoda, Euphorbia decipiens, and other organisms with data available. A hydroxycoumarin that is umbelliferone in which the hydrogen at position 6 is substituted by a hydroxy group. It is used in filters for absorption of ultraviolet light. Metabolite of infected sweet potato. Aesculetin is found in many foods, some of which are root vegetables, wild carrot, sweet basil, and carrot. D020011 - Protective Agents > D000975 - Antioxidants Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB031_Aesculetin_pos_20eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_10eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_40eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_50eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_30eV_CB000017.txt [Raw Data] CB031_Aesculetin_neg_10eV_000010.txt [Raw Data] CB031_Aesculetin_neg_20eV_000010.txt [Raw Data] CB031_Aesculetin_neg_30eV_000010.txt CONFIDENCE standard compound; ML_ID 39 Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1].

   

Daphnetol

7,8-dihydroxychromen-2-one

C9H6O4 (178.0266)


7,8-dihydroxycoumarin is a hydroxycoumarin. Daphnetin is a natural product found in Euphorbia dracunculoides, Rhododendron lepidotum, and other organisms with data available. Acquisition and generation of the data is financially supported in part by CREST/JST. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research Daphnetin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=486-35-1 (retrieved 2024-09-04) (CAS RN: 486-35-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Caffeoquinone

3,4-dioxocinnamic acid

C9H6O4 (178.0266)


An alpha,beta-unsaturated monocarboxylic acid that is acrylic acid in which one of the olefinic hydrogens at position 3 has been replaced by a 3,4-dioxocyclohexa-1,5-dien-1-yl group.

   

5,7-dihydroxy-2H-chromen-2-one

5,7-dihydroxy-2H-chromen-2-one

C9H6O4 (178.0266)


   

3,7-dihydroxychromen-2-one

3,7-dihydroxychromen-2-one

C9H6O4 (178.0266)


   

4,7-Dihydroxy-2H-1-benzopyran-2-one

2H-1-Benzopyran-2-one,4,7-dihydroxy-

C9H6O4 (178.0266)


4,7-Dihydroxy-2H-1-benzopyran-2-one is found in green vegetables. 4,7-Dihydroxy-2H-1-benzopyran-2-one is a constituent of the seeds of Corchorus olitorius (Jews mallow). Constituent of the seeds of Corchorus olitorius (Jews mallow). 4,7-Dihydroxy-2H-1-benzopyran-2-one is found in tea, herbs and spices, and green vegetables.

   

Ninhydrin

2,2-dihydroxy-2,3-dihydro-1H-indene-1,3-dione

C9H6O4 (178.0266)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D011838 - Radiation-Sensitizing Agents

   

5,7-Dihydroxycoumarin

5,7-Dihydroxycoumarin

C9H6O4 (178.0266)


5,7-Dihydroxycoumarin is a coumarin isolated from the inflorescences of Macaranga triloba. 5,7-Dihydroxycoumarin has antibacterial activities[1][2]. 5,7-Dihydroxycoumarin is a coumarin isolated from the inflorescences of Macaranga triloba. 5,7-Dihydroxycoumarin has antibacterial activities[1][2].

   

5,8-dihydroxycoumarin

5,8-dihydroxycoumarin

C9H6O4 (178.0266)


   

4-Hydroxybenzofuran-5-carboxylic acid

4-Hydroxybenzofuran-5-carboxylic acid

C9H6O4 (178.0266)


   

Coryhumolide

Coryhumolide

C9H6O4 (178.0266)


   

3,7-dihydroxychromen-4-one

3,7-dihydroxychromen-4-one

C9H6O4 (178.0266)


A natural product found in Caesalpinia sappan.

   

6,7-Dihydroxy-4H-1-benzopyran-4-one

6,7-Dihydroxy-4H-1-benzopyran-4-one

C9H6O4 (178.0266)


   

6,7-Methylenedioxyphthalide

6,7-Methylenedioxyphthalide

C9H6O4 (178.0266)


   

7,8-dihydroxychromen-4-one

7,8-dihydroxychromen-4-one

C9H6O4 (178.0266)


   

4,8-Dihydroxycoumarin

4,8-Dihydroxycoumarin

C9H6O4 (178.0266)


   

Coumarin derivative, 1a

InChI=1/C9H6O4/c10-5-3-7(11)6-1-2-9(12)13-8(6)4-5/h1-4,10-11

C9H6O4 (178.0266)


5,7-Dihydroxycoumarin is a natural product found in Fagopyrum megacarpum, Murraya siamensis, and other organisms with data available. 5,7-Dihydroxycoumarin is a coumarin isolated from the inflorescences of Macaranga triloba. 5,7-Dihydroxycoumarin has antibacterial activities[1][2]. 5,7-Dihydroxycoumarin is a coumarin isolated from the inflorescences of Macaranga triloba. 5,7-Dihydroxycoumarin has antibacterial activities[1][2].

   

Esculetin

InChI=1\C9H6O4\c10-6-3-5-1-2-9(12)13-8(5)4-7(6)11\h1-4,10-11

C9H6O4 (178.0266)


D020011 - Protective Agents > D000975 - Antioxidants relative retention time with respect to 9-anthracene Carboxylic Acid is 0.434 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.428 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.430 Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1].

   

Daphnetin

Daphnetin

C9H6O4 (178.0266)


7,8-dihydroxy-2h-chromen-2-one, also known as daphnetin or 7,8-dihydroxycoumarin, is a member of the class of compounds known as 7,8-dihydroxycoumarins. 7,8-dihydroxycoumarins are coumarins bearing two hydroxyl groups at the C7- and C8-positions of the coumarin skeleton, respectively. 7,8-dihydroxy-2h-chromen-2-one is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 7,8-dihydroxy-2h-chromen-2-one can be found in chickpea and watermelon, which makes 7,8-dihydroxy-2h-chromen-2-one a potential biomarker for the consumption of these food products. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 15 INTERNAL_ID 15; CONFIDENCE Reference Standard (Level 1) Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4].

   

6,7-dihydroxychromen-2-one

NCGC00016425-09!6,7-dihydroxychromen-2-one

C9H6O4 (178.0266)


   

6,7-dihydroxycoumarin

6,7-dihydroxycoumarin

C9H6O4 (178.0266)


Annotation level-1

   

7,8-Dihydroxycoumarin

7,8-Dihydroxycoumarin

C9H6O4 (178.0266)


Annotation level-1

   

7,8-Dihydroxy-2H-chromen-2-one

7,8-Dihydroxy-2H-chromen-2-one

C9H6O4 (178.0266)


Annotation level-1

   

6,7-dihydroxychromen-2-one [IIN-based: Match]

NCGC00016425-09!6,7-dihydroxychromen-2-one [IIN-based: Match]

C9H6O4 (178.0266)


   

6,7-dihydroxychromen-2-one [IIN-based on: CCMSLIB00000845335]

NCGC00016425-09!6,7-dihydroxychromen-2-one [IIN-based on: CCMSLIB00000845335]

C9H6O4 (178.0266)


   

4,7-Dihydroxycoumarin

2H-1-Benzopyran-2-one,4,7-dihydroxy-

C9H6O4 (178.0266)


   

2,2-BIFURAN]-5-CARBOXYLIC ACID

2,2-BIFURAN]-5-CARBOXYLIC ACID

C9H6O4 (178.0266)


   

4,6-Dihydroxy-2H-1-benzopyran-2-one

4,6-Dihydroxy-2H-1-benzopyran-2-one

C9H6O4 (178.0266)


   

2-Oxo-2,3-dihydrobenzofuran-4-carboxylic acid

2-Oxo-2,3-dihydrobenzofuran-4-carboxylic acid

C9H6O4 (178.0266)


   

6-Methoxy-1-benzofuran-2,3-dione

6-Methoxy-1-benzofuran-2,3-dione

C9H6O4 (178.0266)


   

6-HYDROXYBENZOFURAN-2-CARBOXYLIC ACID

6-HYDROXYBENZOFURAN-2-CARBOXYLIC ACID

C9H6O4 (178.0266)


   

5-Methoxy-2-benzofuran-1,3-dione

5-Methoxy-2-benzofuran-1,3-dione

C9H6O4 (178.0266)


   

2-HYDROXY-1,3,5-BENZENETRICARBALDEHYDE

2-HYDROXY-1,3,5-BENZENETRICARBALDEHYDE

C9H6O4 (178.0266)


   

5-Carboxyphthalide

5-Carboxyphthalide

C9H6O4 (178.0266)


   

5-HYDROXYBENZOFURAN-2-CARBOXYLIC ACID

5-HYDROXYBENZOFURAN-2-CARBOXYLIC ACID

C9H6O4 (178.0266)


   

Daphnetol

InChI=1/C9H6O4/c10-6-3-1-5-2-4-7(11)13-9(5)8(6)12/h1-4,10,12

C9H6O4 (178.0266)


7,8-dihydroxycoumarin is a hydroxycoumarin. Daphnetin is a natural product found in Euphorbia dracunculoides, Rhododendron lepidotum, and other organisms with data available. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4].

   

31721-94-5

4H-1-Benzopyran-4-one, 5,7-dihydroxy-

C9H6O4 (178.0266)


5,7-Dihydroxychromone, the extract of Cudrania tricuspidata, activates Nrf2/ARE signal and exerts neuroprotective effects against 6-hydroxydopamine (6-OHDA)-induced oxidative stress and apoptosis. 5,7-Dihydroxychromone inhibits the expression of activated caspase-3 and caspase-9 and cleaved PARP in 6-OHDA-induced SH-SY5Y cells[1]. 5,7-Dihydroxychromone, the extract of Cudrania tricuspidata, activates Nrf2/ARE signal and exerts neuroprotective effects against 6-hydroxydopamine (6-OHDA)-induced oxidative stress and apoptosis. 5,7-Dihydroxychromone inhibits the expression of activated caspase-3 and caspase-9 and cleaved PARP in 6-OHDA-induced SH-SY5Y cells[1].

   

2732-18-5

InChI=1\C9H6O4\c10-5-3-7(11)6-1-2-9(12)13-8(6)4-5\h1-4,10-11

C9H6O4 (178.0266)


5,7-Dihydroxycoumarin is a coumarin isolated from the inflorescences of Macaranga triloba. 5,7-Dihydroxycoumarin has antibacterial activities[1][2]. 5,7-Dihydroxycoumarin is a coumarin isolated from the inflorescences of Macaranga triloba. 5,7-Dihydroxycoumarin has antibacterial activities[1][2].

   

Benzylmalonate

Benzylmalonate

C9H6O4-2 (178.0266)


   

(Z)-3-(3,4-dioxocyclohexa-1,5-dien-1-yl)prop-2-enoic acid

(Z)-3-(3,4-dioxocyclohexa-1,5-dien-1-yl)prop-2-enoic acid

C9H6O4 (178.0266)


   

Ninhydrin

Ninhydrin

C9H6O4 (178.0266)


A member of the class of indanones that is indane-1,3-dione bearing two additional hydroxy substituents at position 2. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D011838 - Radiation-Sensitizing Agents

   

3,7-dihydroxychromen-2-one

3,7-dihydroxychromen-2-one

C9H6O4 (178.0266)


   

5,8-dihydroxychromen-2-one

5,8-dihydroxychromen-2-one

C9H6O4 (178.0266)


   

3,5,11-trioxatricyclo[7.3.0.0²,⁶]dodeca-1,6,8-trien-12-one

3,5,11-trioxatricyclo[7.3.0.0²,⁶]dodeca-1,6,8-trien-12-one

C9H6O4 (178.0266)


   

4,8-dihydroxychromen-2-one

4,8-dihydroxychromen-2-one

C9H6O4 (178.0266)