Exact Mass: 125.0239
Exact Mass Matches: 125.0239
Found 326 metabolites which its exact mass value is equals to given mass value 125.0239
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Taurine
Essential nutrient obtained from diet and by in vivo synthysis from methionine and cysteine. Present in meats, fish, legumes, human milk, molluscs and other foods. Dietary supplement, e.g. in Red Bull drink. Taurine is a sulfur amino acid like methionine, cystine, cysteine and homocysteine. It is a lesser-known amino acid because it is not incorporated into the structural building blocks of protein. Yet taurine is an essential amino acid in pre-term and newborn infants of humans and many other species. Adults can synthesize their own taurine, yet are probably dependent in part on dietary taurine. Taurine is abundant in the brain, heart, breast, gallbladder and kidney and has important roles in health and disease in these organs. Taurine has many diverse biological functions serving as a neurotransmitter in the brain, a stabilizer of cell membranes and a facilitator in the transport of ions such as sodium, potassium, calcium and magnesium. Taurine is highly concentrated in animal and fish protein, which are good sources of dietary taurine. It can be synthesized by the body from cysteine when vitamin B6 is present. Deficiency of taurine occurs in premature infants and neonates fed formula milk, and in various disease states. Inborn errors of taurine metabolism have been described. OMIM 168605, an unusual neuropsychiatric disorder inherited in an autosomal dominant fashion through 3 generations of a family. Symptoms began late in the fifth decade in 6 affected persons and death occurred after 4 to 6 years. The earliest and most prominent symptom was mental depression not responsive to antidepressant drugs or electroconvulsive therapy. Sleep disturbances, exhaustion and marked weight loss were features. Parkinsonism developed later, and respiratory failure occurred terminally. OMIM 145350 describes congestive cardiomyopathy and markedly elevated urinary taurine levels (about 5 times normal). Other family members had late or holosystolic mitral valve prolapse and elevated urinary taurine values (about 2.5 times normal). In 2 with mitral valve prolapse, congestive cardiomyopathy eventually developed while the amounts of urinary taurine doubled. Taurine, after GABA, is the second most important inhibitory neurotransmitter in the brain. Its inhibitory effect is one source of taurines anticonvulsant and antianxiety properties. It also lowers glutamic acid in the brain, and preliminary clinical trials suggest taurine may be useful in some forms of epilepsy. Taurine in the brain is usually associated with zinc or manganese. The amino acids alanine and glutamic acid, as well as pantothenic acid, inhibit taurine metabolism while vitamins A and B6, zinc and manganese help build taurine. Cysteine and B6 are the nutrients most directly involved in taurine synthesis. Taurine levels have been found to decrease significantly in many depressed patients. One reason that the findings are not entirely clear is because taurine is often elevated in the blood of epileptics who need it. It is often difficult to distinguish compensatory changes in human biochemistry from true metabolic or deficiency disease. Low levels of taurine are found in retinitis pigmentosa. Taurine deficiency in experimental animals produces degeneration of light-sensitive cells. Therapeutic applications of taurine to eye disease are likely to be forthcoming. Taurine has many important metabolic roles. Supplements can stimulate prolactin and insulin release. The parathyroid gland makes a peptide hormone called glutataurine (glutamic acid-taurine), which further demonstrates taurines role in endocrinology. Taurine increases bilirubin and cholesterol excretion in bile, critical to normal gallbladder function. It seems to inhibit the effect of morphine and potentiates the effects of opiate antagonists. Low plasma taurine levels have been found in a variety of conditions, i.e., depression, hypertension, hypothyroidism, gout, institutionalized patients, infertility, obesity, kidney fa... Taurine is a sulfur amino acid like methionine, cystine, cysteine, and homocysteine. It is a lesser-known amino acid because it is not incorporated into the structural building blocks of protein. Yet taurine is an essential amino acid in pre-term and newborn infants of humans and many other species. Adults can synthesize their own taurine, yet are probably dependent, in part, on dietary taurine. Taurine is abundant in the brain, heart, breast, gallbladder, and kidney and has important roles in health and disease in these organs. Taurine has many diverse biological functions including serving as a neurotransmitter in the brain, a stabilizer of cell membranes, and a facilitator in the transport of ions such as sodium, potassium, calcium, and magnesium. Taurine is highly concentrated in animal and fish protein, which are good sources of dietary taurine. It can be synthesized by the body from cysteine when vitamin B6 is present. Deficiency of taurine occurs in premature infants, neonates fed formula milk, and various disease states. Several inborn errors of taurine metabolism have been described. Perry syndrome is an unusual neuropsychiatric disorder inherited in an autosomal dominant fashion through three generations of a family. Symptoms began late in the fifth decade in 6 affected persons and death occurred after 4 to 6 years. The earliest and most prominent symptom was mental depression that was not responsive to antidepressant drugs or electroconvulsive therapy. Sleep disturbances, exhaustion, and marked weight loss were features. Parkinsonism developed later, and respiratory failure occurred terminally (OMIM: 168605). Hypertaurinuric cardiomyopathy describes congestive cardiomyopathy and markedly elevated urinary taurine levels (about 5 times normal). Other family members had late or holosystolic mitral valve prolapse and elevated urinary taurine values (about 2.5 times normal). In two with mitral valve prolapse, congestive cardiomyopathy eventually developed while the amounts of urinary taurine doubled (OMIM: 145350). Taurine, after GABA, is the second most important inhibitory neurotransmitter in the brain. Its inhibitory effect is one source of taurines anticonvulsant and antianxiety properties. It also lowers glutamic acid in the brain, and preliminary clinical trials suggest taurine may be useful in some forms of epilepsy. Taurine in the brain is usually associated with zinc or manganese. The amino acids alanine and glutamic acid, as well as pantothenic acid, inhibit taurine metabolism while vitamins A and B6, zinc, and manganese help build taurine. Cysteine and B6 are the nutrients most directly involved in taurine synthesis. Taurine levels have been found to decrease significantly in many depressed patients. One reason that the findings are not entirely clear is that taurine is often elevated in the blood of epileptics who need it. It is often difficult to distinguish compensatory changes in human biochemistry from true metabolic or deficiency disease. Low levels of taurine are found in retinitis pigmentosa. Taurine deficiency in experimental animals produces degeneration of light-sensitive cells. Therapeutic applications of taurine to eye disease are likely to be forthcoming. Taurine has many important metabolic roles. Supplements can stimulate prolactin and insulin release. The parathyroid gland makes a peptide hormone called glutataurine (glutamic acid-taurine), which further demonstrates taurines role in endocrinology. Taurine increases bilirubin and cholesterol excretion in bile, critical to normal gallbladder function. It seems to inhibit the effect of morphine and potentiates the effects of opiate antagonists. Low plasma taurine levels have been found in a variety of conditions, i.e. depression, hypertension, hypothyroidism, gout, institutionalized patients, infertility, obesity, kidney failure, and others (http://www.dcnutrition.com/AminoAcids/). Moreover, taurine is found to be associated with maple syrup uri... Large white crystals or white powder. Taurine is an amino sulfonic acid that is the 2-amino derivative of ethanesulfonic acid. It is a naturally occurring amino acid derived from methionine and cysteine metabolism. An abundant component of fish- and meat-based foods, it has been used as an oral supplement in the treatment of disorders such as cystic fibrosis and hypertension. It has a role as a human metabolite, an antioxidant, a mouse metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a glycine receptor agonist, a nutrient and a radical scavenger. It is a conjugate acid of a 2-aminoethanesulfonate. It is a tautomer of a taurine zwitterion. Taurine, whose chemical name is 2-aminoethanesulfonic acid, is one of the most abundant amino acids in several organs. It plays important role in essential biological processes. This conditional amino acid can be either be manufactured by the body or obtained in the diet mainly by the consumption of fish and meat. The supplements containing taurine were FDA approved by 1984 and they are hypertonic injections composed by cristalline amino acids. Taurine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). A conditionally essential nutrient, important during mammalian development. It is present in milk but is isolated mostly from ox bile and strongly conjugates bile acids. See also: ... View More ... An amino sulfonic acid that is the 2-amino derivative of ethanesulfonic acid. It is a naturally occurring amino acid derived from methionine and cysteine metabolism. An abundant component of fish- and meat-based foods, it has been used as an oral supplement in the treatment of disorders such as cystic fibrosis and hypertension. [Spectral] Taurine (exact mass = 125.01466) and L-Threonine (exact mass = 119.05824) and 4-Hydroxy-L-proline (exact mass = 131.05824) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Taurine (exact mass = 125.01466) and L-Glutamate (exact mass = 147.05316) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Taurine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=107-35-7 (retrieved 2024-06-29) (CAS RN: 107-35-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Taurine, a sulphur-containing amino acid and an organic osmolyte involved in cell volume regulation, provides a substrate for the formation of bile salts, and plays a role in the modulation of intracellular free calcium concentration. Taurine has the ability to activate autophagy in adipocytes[1][2][3]. Taurine, a sulphur-containing amino acid and an organic osmolyte involved in cell volume regulation, provides a substrate for the formation of bile salts, and plays a role in the modulation of intracellular free calcium concentration. Taurine has the ability to activate autophagy in adipocytes[1][2][3].
5-Methylcytosine
5-Methylcytosine is a methylated form of cytosine in which a methyl group is attached to carbon 5, altering its structure without altering its base-pairing properties.; 5-Methylcytosine is a methylated form of cytosine in which a methyl group is attached to carbon 5, altering its structure without altering its base-pairing properties. -- Wikipedia; 5-Methylcytosine is an epigenetic modification formed by the action of DNA methyltransferases. In bacteria, 5-methylcytosine can be found at a variety of sites, and is often used as a marker to protect DNA from being cut by native methylation-sensitive restriction enzymes. In plants, 5-methylcytosine occurs at both CpG and CpNpG sequences. In fungi and animals, 5-methylcytosine predominately occurs at CpG dinucleotides. Although most eukaryotes methylate only a small percentage of these sites, in vertebrates 70-80\\\% of CpG cytosines are methylated. -- Wikipedia; 5-Methylcytosine is an epigenetic modification formed by the action of DNA methyltransferases. Its function varies significantly among species:; A methylated nucleotide base found in eukaryotic DNA. In animals, the DNA methylation of cytosine to form 5-methylcytosine is found primarily in the palindromic sequence CpG. In plants, the methylated sequence is CpNpGp, where N can be any base. -- Pubchem. 5-Methylcytosine is a methylated nucleotide base found in eukaryotic DNA. In animals, the DNA methylation of cytosine to form 5-methylcytosine is found primarily in the palindromic sequence CpG. In plants, the methylated sequence is CpNpGp, where N can be any base. -- Pubchem; 5-Methylcytosine is a methylated form of cytosine in which a methyl group is attached to carbon 5, altering its structure without altering its base-pairing properties. -- Wikipedia; 5-Methylcytosine is an epigenetic modification formed by the action of DNA methyltransferases. In bacteria, 5-methylcytosine can be found at a variety of sites, and is often used as a marker to protect DNA from being cut by native methylation-sensitive restriction enzymes. In plants, 5-methylcytosine occurs at both CpG and CpNpG sequences. In fungi and animals, 5-methylcytosine predominately occurs at CpG dinucleotides. Although most eukaryotes methylate only a small percentage of these sites, in vertebrates 70-80\\\% of CpG cytosines are methylated. -- Wikipedia. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID M029 5-Methylcytosine is a well-characterized DNA modification, and is also predominantly in abundant non-coding RNAs in both prokaryotes and eukaryotes. 5-Methylcytosine in mRNA is a new epitranscriptome marker inArabidopsis, and that regulation of this modification is an integral part of gene regulatory networks underlying plant development[1].
Ciliatine
Ciliatine is an organophosphorus compound isolated from human and animal tissues. [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. Ciliatine is an organophosphorus compound isolated from human and animal tissues. KEIO_ID A056 (2-Aminoethyl)phosphonic acid is an endogenous metabolite.
N-ethylmaleimide
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D013439 - Sulfhydryl Reagents D004791 - Enzyme Inhibitors KEIO_ID E008
Trimethylselenonium
Trimethylselenonium belongs to the family of Aliphatic Acyclic Compounds. These are organic compounds that is aliphatic (non-aromatic) and does not contain a ring.
2-O-Methylcytosine
O-2-Methylcytosine is a 2-O-methylated nucleotide residue. Naturally occurring modified residues derived from canonical RNA nucleotides are present in most cellular RNAs; their detection is difficult because of their great diversity and their irregular distribution within RNA molecules. Human ribosomes contain more than 200 modified nucleotides; of these more than 100 are 2-O-methylated. (PMID: 17673078, 7599273) [HMDB] O-2-Methylcytosine is a 2-O-methylated nucleotide residue. Naturally occurring modified residues derived from canonical RNA nucleotides are present in most cellular RNAs; their detection is difficult because of their great diversity and their irregular distribution within RNA molecules. Human ribosomes contain more than 200 modified nucleotides; of these more than 100 are 2-O-methylated. (PMID: 17673078, 7599273). 2-O-Methylcytosine, an O-alkylated analogue a DNA adduct, is the damaged nucleobase[1].
3-Methylcytosine
3-methylcytosine is cytotoxic and mutagenic methylated base in DNA which can be generated by endogenous and environmental alkylation agents. The toxic lesions 3-methylcytosine is corrected by oxidative DNA demethylation catalyzed by DNA dioxygenases. These enzymes release the methyl moiety as formaldehyde, directly reversing the base damage. (PMID: 17112791) [HMDB] 3-methylcytosine is cytotoxic and mutagenic methylated base in DNA which can be generated by endogenous and environmental alkylation agents. The toxic lesions 3-methylcytosine is corrected by oxidative DNA demethylation catalyzed by DNA dioxygenases. These enzymes release the methyl moiety as formaldehyde, directly reversing the base damage. (PMID: 17112791).
4-Methyl-5-vinylthiazole
4-Methyl-5-vinylthiazole is found in alcoholic beverages. Meat flavouring ingredient. 4-Methyl-5-vinylthiazole is found in grape wine distillate, garlic, cooked pork, cocoa, roasted filbert and yellow passion frui Meat flavouring ingredient. Found in grape wine distillate, garlic, cooked pork, cocoa, roasted filbert and yellow passion fruit
2-Pyridinemethanethiol
2-Pyridinemethanethiol is a flavouring ingredient. Flavouring ingredient
5-(Hydroxymethyl)-1H-pyrrole-2-carbaldehyde
Bentonite
It is used in foods as a colourant, pigment and stabiliser↵↵Also known as potash bentonite or K-bentonite, potassium bentonite is a potassium rich illitic clay formed from alteration of volcanic ash.; Bentonite is an absorbent aluminium phyllosilicate, generally impure clay consisting mostly of montmorillonite. There are a few types of bentonites and their names depend on the dominant elements, such as K, Na, Ca, and Al. As noted in several places in the geologic literature, there are some nomenclatorial problems with the classification of bentonite clays. Bentonite usually forms from weathering of volcanic ash, most often in the presence of water. However, the term bentonite, as well as a similar clay called tonstein, have been used for clay beds of uncertain origin. For industrial purposes, two main classes of bentonite exist: sodium and calcium bentonite. In stratigraphy and tephrochronology, completely devitrified (weathered volcanic glass) ash-fall beds are commonly referred to as K-bentonites when the dominant clay species is illite. Other common clay species, and sometimes dominant, are montmorillinite and kaolinite. Kaolinite dominated clays are commonly referred to as tonsteins and are typically associated with coal.; Bentoquatam protects the skin like a shield against poison ivy, poison oak, and poison sumac by physically blocking skin contact with their resin. The best protection against getting these conditions is to avoid contact with these plants. This medicine does not dry oozing and weeping caused by the rash of poison ivy, poison oak, or poison sumac.; Calcium bentonite is a useful adsorbent of ions in solution. as well as fats and oils, being a main active ingredient of Fullers Earth, probably one of the earliest industrial cleaning agents. Calcium bentonite may be converted to sodium bentonite (termed sodium beneficiation or sodium activation) to exhibit many of sodium bentonites properties by a process known as "ion exchange" (patented in 1935 by Germans U Hofmann and K Endell). Commonly this means adding 5-10\\% of a soluble sodium salt such as sodium carbonate to wet bentonite, mixing well, and allowing time for the ion exchange to take place and water to remove the exchanged calcium.[citation needed] Some properties, such as viscosity and fluid loss of suspensions, of sodium beneficiated calcium bentonite (or sodium activated bentonite) may not be fully equivalent to natural sodium bentonite. For example, residual calcium carbonates (formed if exchanged cations are insufficiently removed) may result in inferior performance of the bentonite in geosynthetic liners; Much of bentonites usefulness in the drilling and geotechnical engineering industry comes from its unique rheological properties. Relatively small quantities of bentonite suspended in water form a viscous, shear thinning material. Most often, bentonite suspensions are also thixotropic, although rare cases of rheopectic behavior have also been reported. At high enough concentrations (~60 grams of bentonite per litre of suspension), bentonite suspensions begin to take on the characteristics of a gel (a fluid with a minimum yield strength required to make it move). For these reasons it is a common component of drilling mud used to curtail drilling fluid invasion by its propensity for aiding in the formation of mud cake.; Pascalite is a commercial name for the calcium bentonite clay. Bentonite is found in wild celery.
4-hydroxy-5-methyl-2-methylene-3(2H)-furanone
4-hydroxy-5-methyl-2-methylene-3(2h)-furanone is also known as hmmf or (2e)-ethylidene-4-hydroxy-5-methyl-3(2h)-furanone. 4-hydroxy-5-methyl-2-methylene-3(2h)-furanone is soluble (in water) and a very weakly acidic compound (based on its pKa). 4-hydroxy-5-methyl-2-methylene-3(2h)-furanone can be found in a number of food items such as red rice, anise, red raspberry, and biscuit, which makes 4-hydroxy-5-methyl-2-methylene-3(2h)-furanone a potential biomarker for the consumption of these food products.
N(4)-methylcytosine
A pyrimidone that is cytosine bearing an N(4)-methyl substituent.
2-Pyridinemethanol,5-hydroxy-(6CI,9CI)
6-(Hydroxymethyl)pyridin-3-ol is a natural product found in Codonopsis pilosula with data available. 2-Hydroxymethyl-5-hydroxypyridine is isolated from the the matured, ripened and dried seeds of S. lychnophora. 2-Hydroxymethyl-5-hydroxypyridine is isolated from the the matured, ripened and dried seeds of S. lychnophora.
(2-Aminoethyl)phosphonate
(2-Aminoethyl)phosphonic acid is an endogenous metabolite.
Taurine
Taurine, a sulphur-containing amino acid and an organic osmolyte involved in cell volume regulation, provides a substrate for the formation of bile salts, and plays a role in the modulation of intracellular free calcium concentration. Taurine has the ability to activate autophagy in adipocytes[1][2][3]. Taurine, a sulphur-containing amino acid and an organic osmolyte involved in cell volume regulation, provides a substrate for the formation of bile salts, and plays a role in the modulation of intracellular free calcium concentration. Taurine has the ability to activate autophagy in adipocytes[1][2][3].
5-Methylcytosine
A pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. 5-Methylcytosine is a well-characterized DNA modification, and is also predominantly in abundant non-coding RNAs in both prokaryotes and eukaryotes. 5-Methylcytosine in mRNA is a new epitranscriptome marker inArabidopsis, and that regulation of this modification is an integral part of gene regulatory networks underlying plant development[1].
2-Aminoethylphosphonic acid
(2-Aminoethyl)phosphonic acid is an endogenous metabolite.
(2-Aminoethyl)phosphonic acid
A phosphonic acid in which the hydrogen attached to the phosphorus of phosphonic acid is substituted by a 2-aminoethyl group. (2-Aminoethyl)phosphonic acid is an endogenous metabolite.
3-Methylcytosine
A pyrimidone that is cytosine in which the hydrogen attached to the nitrogen at position 3 is substituted by a methyl group.
Ethanone, 1-(1-methyl-1H-1,2,4-triazol-5-yl)- (9CI)
1H,3H-Pyrrolo[1,2-c]oxazol-3-one,5,7a-dihydro-(9CI)
Ethyl cyanoacrylate
D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D001697 - Biomedical and Dental Materials > D014014 - Tissue Adhesives
Ethanone, 1-(1-methyl-1H-1,2,3-triazol-4-yl)- (9CI)
2-Aminothiophenol
An aryl thiol that is thiophenol substituted at position 2 by an amino group.
5-cyclopropyl-1,2,4-oxadiazol-3-amine(SALTDATA: FREE)
Imidazol-4-ylacetate
Conjugate base of imidazol-4-ylacetic acid; major species at pH 7.3.
Ethyl sulphate
D009676 - Noxae > D000477 - Alkylating Agents D009676 - Noxae > D009153 - Mutagens
Isethionate
The alkanesulfonate that is the anion formed from isethionic acid by loss of a proton from the sulfo group; major microspecies at pH 7.3.
N-ethylmaleimide
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D013439 - Sulfhydryl Reagents D004791 - Enzyme Inhibitors
Trimethylselenonium
An organic cation consisting of three methyl groups covalently bound to a central selenium atom.
1-Methylcytosine
A pyrimidone that is cytosine in which the hydrogen attached to the nitrogen at position 1 is substituted by a methyl group.
(2-aminoethyl)phosphonic acid zwitterion
Zwitterionic form of (2-aminoethyl)phosphonic acid.
2-O-Methylcytosine
Pyrimidine substituted with a methoxy group at position C-2 and an amine group at C-4.
ethyl hydrogen phosphate(1-)
An organophosphate oxoanion that is the conjugate base of ethyl dihydrogen phosphate arising from deprotonation of one of the OH groups of the phosphate.
taurine zwitterion
The zwitterion formed from taurine by transfer of a proton from the sulfonyl to the amino group. It is the major species existing at physiological pH.