Exact Mass: 117.044

Exact Mass Matches: 117.044

Found 71 metabolites which its exact mass value is equals to given mass value 117.044, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

Guanidinoacetate

2-[[Amino(imino)methyl]amino]acetic acid

C3H7N3O2 (117.0538)


Guanidoacetic acid (GAA), also known as guanidinoacetate or glycocyamine, belongs to the class of organic compounds known as alpha amino acids and derivatives. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof. Guanidinoacetic acid was first prepared in 1861 by Adolph Strecker by reaction of cyanamide with glycine in aqueous solution. Manufactured guanidinoacetic acid is primarily used a feed additive approved by EFSA in poultry farming (for fattening), and pigs for fattening. Guanidoacetic acid exists naturally in all vertebrates. It is formed primarily in the kidneys by transferring the guanidine group of L-arginine to the amino acid glycine via the enzyme known as L-Arg:Gly-amidinotransferase (AGAT). In a further step, guanidinoacetate is methylated to generate creatine using S-adenosyl methionine (as the methyl donor) via the enzyme known as guanidinoacetate N-methyltransferase (GAMT). The resulting creatine is released into the bloodstream. Elevated levels of guanidoacetic acid are a characteristic of an inborn metabolic disorder known as Guanidinoacetate Methyltransferase (GAMT) Deficiency. GAMT converts guanidinoacetate to creatine and deficiency of this enzyme results in creatine depletion and accumulation of guanidinoacetate The disorder is transmitted in an autosomal recessive fashion and is localized to mutations on chromosome 19p13.3. GAMT deficiency is characterized by developmental arrest, medication-resistant epilepsy (myoclonic, generalized tonic-clonic, partial complex, atonic), severe speech impairment, progressive dystonia, dyskinesias, hypotonia, ataxia, and autistic-like behavior. Guanidino acetic acid, also known as guanidinoacetate or glycocyamine, belongs to alpha amino acids and derivatives class of compounds. Those are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof. Guanidino acetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Guanidino acetic acid can be found in apple and loquat, which makes guanidino acetic acid a potential biomarker for the consumption of these food products. Guanidino acetic acid can be found primarily in most biofluids, including cellular cytoplasm, feces, urine, and cerebrospinal fluid (CSF), as well as in human brain, kidney and liver tissues. In humans, guanidino acetic acid is involved in a couple of metabolic pathways, which include arginine and proline metabolism and glycine and serine metabolism. Guanidino acetic acid is also involved in several metabolic disorders, some of which include dihydropyrimidine dehydrogenase deficiency (DHPD), hyperprolinemia type II, prolinemia type II, and hyperornithinemia-hyperammonemia-homocitrullinuria [hhh-syndrome]. Moreover, guanidino acetic acid is found to be associated with chronic renal failure and schizophrenia. Guanidino acetic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Chronic Exposure: Kidney dialysis is usually needed to relieve the symptoms of uremic syndrome until normal kidney function can be restored. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D000345 - Affinity Labels Acquisition and generation of the data is financially supported in part by CREST/JST.

   

L-Aspartate-semialdehyde

L-Aspartic acid beta-semialdehyde

C4H7NO3 (117.0426)


L-Aspartate-semialdehyde (CAS: 15106-57-7) is involved in both the lysine biosynthesis I and homoserine biosynthesis pathways. In the lysine biosynthesis I pathway, L-aspartate-semialdehyde is produced from a reaction between L-aspartyl-4-phosphate and NADPH, with phosphate and NADP+ as byproducts. The reaction is catalyzed by aspartate-semialdehyde dehydrogenase. L-Aspartate-semialdehyde reacts with pyruvate to produce L-2,3-dihydrodipicolinate and water. Dihydrodipicolinate synthase catalyzes this reaction. In the homoserine biosynthesis pathway, L-aspartate-semialdehyde is produced from a reaction between L-aspartyl-4-phosphate and NADPH, with phosphate and NADP+ as byproducts. The reaction is catalyzed by aspartate-semialdehyde dehydrogenase. L-Aspartate-semialdehyde reacts with NAD(P)H and H+ to form homoserine and NAD(P)+. L-Aspartate-semialdehyde is involved in both the lysine biosynthesis I and homoserine biosynthesis pathways.

   

2-Amino-acetoacetate

2-amino-3-oxobutanoic acid

C4H7NO3 (117.0426)


   

1-Ethyl-1-nitrosourea

N-(C-hydroxycarbonimidoyl)-N-nitrosoethan-1-amine

C3H7N3O2 (117.0538)


D009676 - Noxae > D000477 - Alkylating Agents

   

(Z)-2-methyl-peroxyaminoacrylate

(2Z)-3-amino-2-methylprop-2-eneperoxoic acid

C4H7NO3 (117.0426)


(z)-2-methyl-peroxyaminoacrylate, also known as (Z)-2-hydroxy-3-peroxyaminoacrylic acid, is a member of the class of compounds known as peroxycarboxylic acids. Peroxycarboxylic acids are organic acids with the general formula [H]OOC(R)=O (R = H, organyl group) (z)-2-methyl-peroxyaminoacrylate is soluble (in water) and a very weakly acidic compound (based on its pKa). (z)-2-methyl-peroxyaminoacrylate can be found in a number of food items such as common buckwheat, alaska blueberry, tinda, and common pea, which makes (z)-2-methyl-peroxyaminoacrylate a potential biomarker for the consumption of these food products (z)-2-methyl-peroxyaminoacrylate may be a unique E.coli metabolite.

   

L-2-Amino-3-oxobutanoic acid

(2S)-2-amino-3-Oxobutanoic acid

C4H7NO3 (117.0426)


L-2-Amino-3-oxobutanoic acid or L-2-amino acetic acid is involved in glycine/serine metabolism and is a breakdown product from glycine. It spontaneously decomposes to aminoacetone. Delta-aminolevuliinate synthase is the enzyme that catalyzes the interconversion between glycine and L-2-amino-3-oxobutanoic acid. Glycine C-acetyltransferase is also capable of catalyzing this reaction. [HMDB] L-2-Amino-3-oxobutanoic acid or L-2-amino acetic acid is involved in glycine/serine metabolism and is a breakdown product from glycine. It spontaneously decomposes to aminoacetone. Delta-aminolevuliinate synthase is the enzyme that catalyzes the interconversion between glycine and L-2-amino-3-oxobutanoic acid. Glycine C-acetyltransferase is also capable of catalyzing this reaction.

   

N-Acetylglycine

N-Acetylglycine sodium salt

C4H7NO3 (117.0426)


N-Acetyl-glycine or N-Acetylglycine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylglycine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylglycine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid glycine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\% of all human proteins and 68\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylglycine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free glycine can also occur. In particular, N-Acetylglycine can be biosynthesized from glycine and acetyl-CoA by the enzyme glycine N-acyltransferase (GLYAT) (EC 2.3.1.13). Excessive amounts N-acetyl amino acids including N-acetylglycine (as well as N-acetylserine, N-acetylglutamine, N-acetylglutamate, N-acetylalanine, Nacetylmethionine and smaller amounts of N-acetylthreonine, N-acetylleucine, N-acetylvaline and N-acetylisoleucine) can be detected in the urine with individuals with acylase I deficiency, a genetic disorder (PMID: 16465618). Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylglycine, are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). N-Acetylglycine is used is in biological research of peptidomimetics. It is used as the blocking agent of the N-terminus to prepare unnatural and unusual amino acids and amino acid analogs as well as to modify peptides. N-Substituted glycine analogs are widely used in peptidomimetics and drug research. Excessive amounts N-acetyl amino acids including N-acetylglycine (as well as N-acetylserine, N-acetylglutamine, N-acetylglutamate, N-acetylalanine, Nacetylmethionine and smaller amounts of N-acetylthreonine, N-acetylleucine, N-acetylvaline and N-acetylisoleucine) can be detected in the urine with individuals with Acylase I defiency. This enzyme is involved in the degradation of N-acylated proteins. Individuals with this disorder will experience convulsions, hearing loss ond difficulty feeding. [HMDB] N-Acetylglycine (Aceturic acid) is a minor constituent of numerous foods with no genotoxicity or acute toxicity. N-acetylglycine is used in biological research of peptidomimetics.

   

(3S)-3-Amino-4-oxobutanoic acid

(3S)-3-Amino-4-oxobutanoic acid

C4H7NO3 (117.0426)


   

n-ethyl-n'-nitrosourea

n-ethyl-n-nitrosourea

C3H7N3O2 (117.0538)


   

(Diaminomethylideneamino) acetate

(Diaminomethylideneamino) acetic acid

C3H7N3O2 (117.0538)


   

Succinamic acid

3-carbamoylpropanoic acid

C4H7NO3 (117.0426)


   

Oxetin

(2R-cis)-3-Amino-2-oxetanecarboxylic acid

C4H7NO3 (117.0426)


   

Guanidinoacetate

2-Guanidinoacetic acid

C3H7N3O2 (117.0538)


   

methylmalonic monoamide

methylmalonic monoamide

C4H7NO3 (117.0426)


   

SUCCINAMIC ACID

Butanoic acid,4-amino-4-oxo-

C4H7NO3 (117.0426)


A dicarboxylic acid monoamide of succinic acid.

   

3-Aminooxetane-2-carboxylic acid

3-Aminooxetane-2-carboxylic acid

C4H7NO3 (117.0426)


   

Ac-Gly-OH

N-ACETYLGLYCINE

C4H7NO3 (117.0426)


An N-acylglycine where the acyl group is specified as acetyl. Acquisition and generation of the data is financially supported in part by CREST/JST. N-Acetylglycine (Aceturic acid) is a minor constituent of numerous foods with no genotoxicity or acute toxicity. N-acetylglycine is used in biological research of peptidomimetics.

   

glycocyamine

2-Guanidinoacetic acid

C3H7N3O2 (117.0538)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D000345 - Affinity Labels MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; BPMFZUMJYQTVII-UHFFFAOYSA-N_STSL_0241_Glycocyamine_1000fmol_190403_S2_LC02MS02_057; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.

   

Betasyamine

2-Guanidinoacetic acid

C3H7N3O2 (117.0538)


   

Guanidoacetic acid

2-Guanidinoacetic acid

C3H7N3O2 (117.0538)


   

Acetylglycine

Acetylglycine

C4H7NO3 (117.0426)


N-Acetylglycine (Aceturic acid) is a minor constituent of numerous foods with no genotoxicity or acute toxicity. N-acetylglycine is used in biological research of peptidomimetics.

   

Guanidinoacetic acid

Guanidinoacetic acid

C3H7N3O2 (117.0538)


The N-amidino derivative of glycine.

   

N-ACETYLGLYCINE

N-ACETYLGLYCINE

C4H7NO3 (117.0426)


   

Guanidoacetic acid; LC-tDDA; CE20

Guanidoacetic acid; LC-tDDA; CE20

C3H7N3O2 (117.0538)


   

Guanidoacetic acid; LC-tDDA; CE10

Guanidoacetic acid; LC-tDDA; CE10

C3H7N3O2 (117.0538)


   

Guanidineacetic acid

Guanidineacetic acid

C3H7N3O2 (117.0538)


   

Aceturic acid

Aceturic acid

C4H7NO3 (117.0426)


N-Acetylglycine (Aceturic acid) is a minor constituent of numerous foods with no genotoxicity or acute toxicity. N-acetylglycine is used in biological research of peptidomimetics.

   

L-2-Amino-3-oxobutanoic acid

L-2-Amino-3-oxobutanoic acid

C4H7NO3 (117.0426)


   

3-Aminooxetane-3-carboxylic acid

3-Aminooxetane-3-carboxylic acid

C4H7NO3 (117.0426)


   

5-Chlorovaleronitrile

5-Chlorovaleronitrile

C5H8ClN (117.0345)


   

1,3,5-Triazinane-2-thione

1,3,5-Triazinane-2-thione

C3H7N3S (117.0361)


   

methyl 2-formamidoacetate

methyl 2-formamidoacetate

C4H7NO3 (117.0426)


   

N,N-Dimethylnitrosourea

N,N-Dimethylnitrosourea

C3H7N3O2 (117.0538)


   

2-(Dimethylamino)-2-oxoacetic acid

2-(Dimethylamino)-2-oxoacetic acid

C4H7NO3 (117.0426)


   

4-OXAZOLIDINECARBOXYLIC ACID

4-OXAZOLIDINECARBOXYLIC ACID

C4H7NO3 (117.0426)


   

Aspartate semialdehyde

2-amino-4-oxobutanoic acid

C4H7NO3 (117.0426)


D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids

   

3-(MethylaMino)-3-oxopropanoic acid

3-(MethylaMino)-3-oxopropanoic acid

C4H7NO3 (117.0426)


   

Ethyl oxamate

Ethyl oxamate

C4H7NO3 (117.0426)


   

5-(Hydroxymethyl)oxazolidin-2-one

5-(Hydroxymethyl)oxazolidin-2-one

C4H7NO3 (117.0426)


   

2-Aminomalonamide

2-Aminomalonamide

C3H7N3O2 (117.0538)


   

n-formyl-dl-alanine

n-formyl-dl-alanine

C4H7NO3 (117.0426)


   

3-aminooxyoxolan-2-one

3-aminooxyoxolan-2-one

C4H7NO3 (117.0426)


   

Methyl Malonamate

Methyl Malonamate

C4H7NO3 (117.0426)


   

2-Methyl-2-nitropropanal

2-Methyl-2-nitropropanal

C4H7NO3 (117.0426)


   

1-Ethynylcyclopropanamine hydrochloride

1-Ethynylcyclopropanamine hydrochloride

C5H8ClN (117.0345)


   

3-formylaminopropionic acid

3-formylaminopropionic acid

C4H7NO3 (117.0426)


   

4-Hydroxymethyl oxazolidin-2-one

4-Hydroxymethyl oxazolidin-2-one

C4H7NO3 (117.0426)


   

Methimazole D3

Methimazole D3

C4H3D3N2S (117.044)


   

3,3-Difluorocyclobutanecarbonitrile

3,3-Difluorocyclobutanecarbonitrile

C5H5F2N (117.039)


   

Chloro(2H5)benzene

Chloro(2H5)benzene

C6ClD5 (117.0394)


   

Formyl-Ala-OH

Formyl-Ala-OH

C4H7NO3 (117.0426)


   

(4S)-1,3-oxazolidine-4-carboxylic acid

(4S)-1,3-oxazolidine-4-carboxylic acid

C4H7NO3 (117.0426)


   

(2r)-2-Amino-4-Oxobutanoic Acid

(2r)-2-Amino-4-Oxobutanoic Acid

C4H7NO3 (117.0426)


D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids

   

2-(Diaminomethylideneazaniumyl)acetate

2-(Diaminomethylideneazaniumyl)acetate

C3H7N3O2 (117.0538)


   

L-2-Amino-3-oxobutanoate

L-2-Amino-3-oxobutanoate

C4H7NO3 (117.0426)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

5,6-dihydro-4H-1,3-thiazin-3-ium-2-amine

5,6-dihydro-4H-1,3-thiazin-3-ium-2-amine

C4H9N2S+ (117.0486)


   

3-(Methylamino)-2-oxopropanoic acid

3-(Methylamino)-2-oxopropanoic acid

C4H7NO3 (117.0426)


   

Benzimidazolide

Benzimidazolide

C7H5N2- (117.0453)


   

(2E)-2-(Hydroxyimino)ethyl acetate

(2E)-2-(Hydroxyimino)ethyl acetate

C4H7NO3 (117.0426)


   

N-NITROSO-N-ETHYLUREA

N-NITROSO-N-ETHYLUREA

C3H7N3O2 (117.0538)


D009676 - Noxae > D000477 - Alkylating Agents

   

(2S)-2-Amino-4-oxobutanoic acid

(2S)-2-Amino-4-oxobutanoic acid

C4H7NO3 (117.0426)


   

2-amino-3-oxobutanoic acid

2-amino-3-oxobutanoic acid

C4H7NO3 (117.0426)


An alpha-amino acid that is acetoacetic acid which is substituted by an amino group at position 2.

   

(Z)-2-hydroxy-3-aminoperacrylic acid

(Z)-2-hydroxy-3-aminoperacrylic acid

C4H7NO3 (117.0426)


   

L-2-amino-3-oxobutanoic acid zwitterion

L-2-amino-3-oxobutanoic acid zwitterion

C4H7NO3 (117.0426)


An L-alpha-amino acid zwitterion obtained by transfer of a proton from the carboxy to the amino group of L-2-amino-3-oxobutanoic acid. It is the major microspecies at pH 7.3 (according to Marvin v 6.2.0.).

   

L-Aspartic 4-semialdehyde

L-Aspartic 4-semialdehyde

C4H7NO3 (117.0426)


   

guanidinoacetic acid zwitterion

guanidinoacetic acid zwitterion

C3H7N3O2 (117.0538)


Zwitterionic form of guanidinoacetic acid having an anionic carboxy group and a protonated guanidino group; major species at pH 7.3.

   

L-aspartic acid 4-semialdehyde zwitterion

L-aspartic acid 4-semialdehyde zwitterion

C4H7NO3 (117.0426)


An L-alpha-amino acid zwitterion obtained by transfer of a proton from the carboxylic acid group to the amino group of L-aspartic acid 4-semialdehyde.

   

Aspartate-semialdehyde

Aspartate-semialdehyde

C4H7NO3 (117.0426)


   

(2r,3s)-3-aminooxetane-2-carboxylic acid

(2r,3s)-3-aminooxetane-2-carboxylic acid

C4H7NO3 (117.0426)


   

[(1-hydroxyethylidene)amino]acetic acid

[(1-hydroxyethylidene)amino]acetic acid

C4H7NO3 (117.0426)


   

carbamimidamido acetate

carbamimidamido acetate

C3H7N3O2 (117.0538)