α-D-Glucose-1-phosphate (BioDeep_00000001754)
Secondary id: BioDeep_00000271001, BioDeep_00001868487
natural product human metabolite PANOMIX_OTCML-2023 Endogenous BioNovoGene_Lab2019
代谢物信息卡片
化学式: C6H13O9P (260.0297178)
中文名称: 1-磷酸葡萄糖, D-葡萄糖-1-磷酸
谱图信息:
最多检出来源 Viridiplantae(plant) 2.56%
Last reviewed on 2024-09-14.
Cite this Page
α-D-Glucose-1-phosphate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/α-d-glucose-1-phosphate (retrieved
2024-11-10) (BioDeep RN: BioDeep_00000001754). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(C1C(C(C(C(O1)OP(=O)(O)O)O)O)O)O
InChI: InChI=1S/C6H13O9P/c7-1-2-3(8)4(9)5(10)6(14-2)15-16(11,12)13/h2-10H,1H2,(H2,11,12,13)
描述信息
Glucose 1-phosphate (also called cori ester) is a glucose molecule with a phosphate group on the 1-carbon. It can exist in either the α- or β-anomeric form. Glucose 1-phosphate belongs to the class of organic compounds known as monosaccharide phosphates. These are monosaccharides comprising a phosphated group linked to the carbohydrate unit. Glucose 1-phosphate is the direct product of the reaction in which glycogen phosphorylase cleaves off a molecule of glucose from a greater glycogen structure. It cannot travel down many metabolic pathways and must be interconverted by the enzyme phosphoglucomutase in order to become glucose 6-phosphate. Free glucose 1-phosphate can also react with UTP to form UDP-glucose. It can then return to the greater glycogen structure via glycogen synthase.
*Found widely in both plants and animals. A precursor of starch in plants and of glycogen in animals. [CCD]
Acquisition and generation of the data is financially supported in part by CREST/JST.
COVID info from COVID-19 Disease Map
KEIO_ID G020
Corona-virus
KEIO_ID G115
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
同义名列表
53 个代谢物同义名
[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] dihydrogen phosphate; {[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phosphonic acid; {[(3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phosphonic acid; alpha-D-glucose-1-phosphate dipotassium salt dihydate; alpha-D-Glucopyranosyl phosphoric acid; alpha-delta-Glucopyranosyl phosphate; 1-O-Phosphono-alpha-D-glucopyranose; α-D-Glucopyranosyl phosphoric acid; a-D-Glucopyranosyl phosphoric acid; D-Glucose alpha-1-phosphoric acid; alpha-D-Glucose-1-phosphoric acid; alpha-D-Glucose 1-phosphoric acid; alpha-D-Glucopyranosyl phosphate; D-Glucose 1-dihydrogen phosphate; delta-Glucopyranose 1-phosphate; 1-O-Phosphono-a-D-glucopyranose; 1-O-Phosphono-α-D-glucopyranose; alpha-delta-Glucose 1-phosphate; alpha-delta-Glucose-1-phosphate; α-D-Glucose-1-phosphoric acid; D-Glucose a-1-phosphoric acid; a-D-Glucose-1-phosphoric acid; D-Glucose α-1-phosphoric acid; a-D-Glucose 1-phosphoric acid; α-D-Glucose 1-phosphoric acid; a-D-Glucopyranosyl phosphate; α-D-Glucopyranosyl phosphate; alpha-D-Glucose 1-phosphate; D-Glucose 1-phosphoric acid; D-Glucopyranose 1-phosphate; D-Glucose alpha-1-phosphate; alpha-D-Glucose-1-phosphate; Glucose 1-phosphoric acid; delta-Glucose 1-phosphate; alpha-Glucose-1-phosphate; delta-Glucose-1-phosphate; D-Glucose α-1-phosphate; a-D-Glucose-1-phosphate; α-D-Glucose 1-phosphate; D-Glucose a-1-phosphate; a-D-Glucose 1-phosphate; α-D-Glucose-1-phosphate; Glucose 1-phosphate(2); D-Glucose-1-phosphate; Glucose monophosphate; D-Glucose 1-phosphate; Glucose 1-phosphate; Glucose-1-phosphate; delta-Glucose-1-P; D-Glucose-1-P; Cori ester; Glucose-1P; Glucose 1-phosphate
数据库引用编号
42 个数据库交叉引用编号
- ChEBI: CHEBI:29042
- ChEBI: CHEBI:16077
- KEGG: C00103
- PubChem: 439165
- PubChem: 65533
- HMDB: HMDB0001586
- Metlin: METLIN379
- DrugBank: DB02843
- Wikipedia: Glucose-1-phosphate
- MetaCyc: GLC-1-P
- KNApSAcK: C00007482
- foodb: FDB021830
- chemspider: 58977
- CAS: 59-56-3
- MoNA: KNA00682
- MoNA: KO000853
- MoNA: KO000949
- MoNA: PS112609
- MoNA: KO000854
- MoNA: KNA00681
- MoNA: KO000948
- MoNA: KO000855
- MoNA: PS112602
- MoNA: KNA00680
- MoNA: KO000856
- MoNA: PS112610
- MoNA: PS112611
- MoNA: KO000951
- MoNA: PR100891
- MoNA: KO000952
- MoNA: KO000857
- MoNA: PS112603
- MoNA: PS112608
- MoNA: PS112607
- MoNA: KO000950
- MoNA: PS112601
- PDB-CCD: G1P
- 3DMET: B04634
- NIKKAJI: J40.065C
- RefMet: Glucose 1-phosphate
- LOTUS: LTS0030456
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-374
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
866 个相关的代谢反应过程信息。
Reactome(40)
- Metabolism of proteins:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Post-translational protein modification:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- Synthesis of dolichyl-phosphate-glucose:
H2O + UDP-Glc ⟶ G1P + UMP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycogen metabolism:
AMP + PGYM dimer, b form ⟶ PGYM b dimer:AMP
- Glycogen breakdown (glycogenolysis):
AMP + PGYM dimer, b form ⟶ PGYM b dimer:AMP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycogen metabolism:
AMP + PGYM dimer, b form ⟶ PGYM b dimer:AMP
- Glycogen breakdown (glycogenolysis):
AMP + PGYM dimer, b form ⟶ PGYM b dimer:AMP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycogen metabolism:
ATP + PGYL dimer b form ⟶ ADP + PGYL dimer a form
- Glycogen breakdown (glycogenolysis):
ATP + PGYL dimer b form ⟶ ADP + PGYL dimer a form
- Glycogen synthesis:
G1P + UTP ⟶ PPi + UDP-Glc
- Galactose catabolism:
Gal1P + UDP-Glc ⟶ G1P + UDP-Gal
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glucuronidation:
G1P + UTP ⟶ PPi + UDP-Glc
- Formation of the active cofactor, UDP-glucuronate:
G1P + UTP ⟶ PPi + UDP-Glc
- Glycogen synthesis:
G1P + UTP ⟶ PPi + UDP-Glc
- Galactose catabolism:
Gal1P + UDP-Glc ⟶ G1P + UDP-Gal
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glucuronidation:
G1P + UTP ⟶ PPi + UDP-Glc
- Formation of the active cofactor, UDP-glucuronate:
G1P + UTP ⟶ PPi + UDP-Glc
- Glycogen metabolism:
G6P ⟶ G1P
- Glycogen synthesis:
G6P ⟶ G1P
- Glycogen breakdown (glycogenolysis):
G1P ⟶ G6P
- Galactose catabolism:
G1P ⟶ G6P
- Glycogen synthesis:
G1P + UTP ⟶ PPi + UDP-Glc
- Galactose catabolism:
ATP + Gal ⟶ ADP + Gal1P
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glucuronidation:
BIL + UDP-GlcA ⟶ BMG + UDP
- Formation of the active cofactor, UDP-glucuronate:
G1P + UTP ⟶ PPi + UDP-Glc
BioCyc(11)
- UDP-galactose biosynthesis:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- galactose degradation I:
β-D-galactose ⟶ α-D-galactose
- colanic acid building blocks biosynthesis:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- starch degradation:
H2O + a 1,4-α-D-glucan ⟶ α-maltose + a 1,4-α-D-glucan
- starch biosynthesis:
ADP-D-glucose + a 1,4-α-D-glucan ⟶ ADP + a 1,4-α-D-glucan
- sucrose biosynthesis:
β-D-fructofuranose + UDP-D-glucose ⟶ UDP + sucrose
- sucrose degradation III:
β-D-fructofuranose + UDP-D-glucose ⟶ UDP + sucrose
- sucrose degradation to ethanol and lactate (anaerobic):
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- sucrose degradation III:
β-D-fructofuranose + UDP-D-glucose ⟶ UDP + sucrose
- galactose degradation III:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-glucose conversion:
α-D-glucose 1-phosphate + H+ + UTP ⟶ UDP-D-glucose + diphosphate
WikiPathways(10)
- Metabolism overview:
NH3 ⟶ Glutamic acid
- Sucrose metabolism:
glucose ⟶ glucose 6-phosphate
- Thiamine metabolic pathways:
alpha-ketoglutarate ⟶ succinate
- Disorders of galactose metabolism:
galactose ⟶ Galactitol
- Metabolic pathways of fibroblasts:
Pyruvate ⟶ Lactic acid
- Lactate shuttle in glial cells:
D-Glucose 1-phosphate ⟶ D-Glucose 6-phosphate
- Glycogen catabolism:
glucose-1-phosphate (closed form) ⟶ glucose-6-phosphate (closed form)
- Glycolysis and gluconeogenesis:
Phosphoenolpyruvate ⟶ Pyruvic acid
- Disorders of fructose metabolism:
Sucrose ⟶ Fructose
- Starch metabolism:
fructose 6-phosphate ⟶ glucose 6-phosphate
Plant Reactome(696)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
G1P + UTP ⟶ PPi + UDP-Glc
- Galactose degradation II:
ATP + Gal ⟶ ADP + Gal1P
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
(1,4-alpha-glycosyl)n + ADP-D-glucose ⟶ (1,4-alpha-glycosyl)n + ADP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
PIN/IAA ⟶ IAA
- Reproductive structure development:
PIN/IAA ⟶ IAA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Growth and developmental processes:
PIN/IAA ⟶ IAA
- Reproductive structure development:
PIN/IAA ⟶ IAA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- Starch biosynthesis:
(1,4-alpha-glycosyl)n + ADP-D-glucose ⟶ (1,4-alpha-glycosyl)n + ADP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
G1P + UTP ⟶ PPi + UDP-Glc
- Galactose degradation II:
PPi + UDP-Glc ⟶ G1P + UTP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Starch biosynthesis:
(1,4-alpha-glycosyl)n ⟶ starch
- Sucrose biosynthesis:
G1P + UTP ⟶ PPi + UDP-Glc
- Galactose degradation II:
PPi + UDP-Glc ⟶ G1P + UTP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Growth and developmental processes:
PIN/IAA ⟶ IAA
- Reproductive structure development:
PIN/IAA ⟶ IAA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
(1,4-alpha-glycosyl)n + ADP-D-glucose ⟶ (1,4-alpha-glycosyl)n + ADP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
PPi + UDP-Glc ⟶ G1P + UTP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
G1P + UTP ⟶ PPi + UDP-Glc
- Galactose degradation II:
PPi + UDP-Glc ⟶ G1P + UTP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Growth and developmental processes:
PIN/IAA ⟶ IAA
- Reproductive structure development:
PIN/IAA ⟶ IAA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
(1,4-alpha-glycosyl)n + ADP-D-glucose ⟶ (1,4-alpha-glycosyl)n + ADP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
G6P ⟶ G1P
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
ATP + Glycerol ⟶ ADP + G3P
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
PIN/IAA ⟶ IAA
- Regulatory network of nutrient accumulation:
(1,4-alpha-glycosyl)n + ADP-D-glucose ⟶ (1,4-alpha-glycosyl)n + ADP
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Growth and developmental processes:
ROP-GDP (LOC_Os02g02840-GDP) ⟶ ROP-GTP (LOC_Os02g02840-GTP)
- Reproductive structure development:
ROP-GDP (LOC_Os02g02840-GDP) ⟶ ROP-GTP (LOC_Os02g02840-GTP)
- Seed development:
ROP-GDP (LOC_Os02g02840-GDP) ⟶ ROP-GTP (LOC_Os02g02840-GTP)
- Regulatory network of nutrient accumulation:
(1,4-alpha-glycosyl)n ⟶ starch
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
PIN/IAA ⟶ IAA
- Regulatory network of nutrient accumulation:
(1,4-alpha-glycosyl)n + ADP-D-glucose ⟶ (1,4-alpha-glycosyl)n + ADP
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
PIN/IAA ⟶ IAA
- Regulatory network of nutrient accumulation:
(1,4-alpha-glycosyl)n + ADP-D-glucose ⟶ (1,4-alpha-glycosyl)n + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Starch biosynthesis:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Growth and developmental processes:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Reproductive structure development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
PIN/IAA ⟶ IAA
- Regulatory network of nutrient accumulation:
(1,4-alpha-glycosyl)n + ADP-D-glucose ⟶ (1,4-alpha-glycosyl)n + ADP
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Seed development:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
- Regulatory network of nutrient accumulation:
Fru(6)P ⟶ beta-D-glucose-6-phosphate
INOH(6)
- Galactose metabolism ( Galactose metabolism ):
D-Glucose + UDP-D-galactose ⟶ Lactose + UDP
- UDP-D-glucose + D-Galactose 1-phosphate = D-Glucose 1-phosphate + UDP-D-galactose ( Galactose metabolism ):
D-Galactose 1-phosphate + UDP-D-glucose ⟶ D-Glucose 1-phosphate + UDP-D-galactose
- D-Glucose 1-phosphate = D-Glucose 6-phosphate ( Galactose metabolism ):
D-Glucose 1-phosphate ⟶ D-Glucose 6-phosphate
- Glycolysis and Gluconeogenesis ( Glycolysis and Gluconeogenesis ):
D-Glucose 6-phosphate + H2O ⟶ D-Glucose + Orthophosphate
- D-Glucose 1-phosphate = D-Glucose 6-phosphate ( Glycolysis and Gluconeogenesis ):
D-Glucose 6-phosphate ⟶ D-Glucose 1-phosphate
- UTP + D-Glucose 1-phosphate = Pyrophosphate + UDP-D-glucose ( Glycolysis and Gluconeogenesis ):
Pyrophosphate + UDP-D-glucose ⟶ D-Glucose 1-phosphate + UTP
PlantCyc(0)
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
Adenosine + Pi ⟶ Adenine + _alpha_-D-Ribose 1-phosphate
PathBank(102)
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogen Synthetase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type III. Cori Disease, Debrancher Glycogenosis:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type IV. Amylopectinosis, Anderson Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type VI. Hers Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Mucopolysaccharidosis VII. Sly Syndrome:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Sucrase-Isomaltase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Starch and Sucrose Metabolism:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogen Synthetase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type III. Cori Disease, Debrancher Glycogenosis:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type IV. Amylopectinosis, Anderson Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type VI. Hers Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Mucopolysaccharidosis VII. Sly Syndrome:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Sucrase-Isomaltase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogen Synthetase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type III. Cori Disease, Debrancher Glycogenosis:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type IV. Amylopectinosis, Anderson Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type VI. Hers Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Mucopolysaccharidosis VII. Sly Syndrome:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Sucrase-Isomaltase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Secondary Metabolites: Enterobacterial Common Antigen Biosynthesis:
L-Glutamic acid + dTDP-4-dehydro-6-deoxy-D-glucose ⟶ Oxoglutaric acid + dTDP-thomosamine
- Secondary Metabolites: Enterobacterial Common Antigen Biosynthesis 2:
L-Glutamic acid + dTDP-4-dehydro-6-deoxy-D-glucose ⟶ Oxoglutaric acid + dTDP-thomosamine
- Secondary Metabolites: Enterobacterial Common Antigen Biosynthesis 3:
L-Glutamic acid + dTDP-4-dehydro-6-deoxy-D-glucose ⟶ Oxoglutaric acid + dTDP-D-Fucosamine
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Galactosemia:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Galactosemia II (GALK):
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactosemia III:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Congenital Disorder of Glycosylation CDG-IId:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- GLUT-1 Deficiency Syndrome:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Galactose Degradation/Leloir Pathway:
-D-Glucose + Phosphocarrier protein HPr ⟶ -D-Glucose 6-phosphate + Phosphocarrier protein HPr
- Leloir Pathway:
-D-Galactose ⟶ D-Galactose
- Amino Sugar and Nucleotide Sugar Metabolism:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactosemia:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Galactosemia II (GALK):
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactosemia III:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Congenital Disorder of Glycosylation CDG-IId:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- GLUT-1 Deficiency Syndrome:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Galactosemia:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Galactosemia II (GALK):
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactosemia III:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Congenital Disorder of Glycosylation CDG-IId:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- GLUT-1 Deficiency Syndrome:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Gluconeogenesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1):
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fructose-1,6-diphosphatase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Triosephosphate Isomerase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IB:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IC:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IA. Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- D-Galactose Degradation (Leloir pathway):
Beta-D-Galactose ⟶ D-Galactose
- Gluconeogenesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1):
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fructose-1,6-diphosphatase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Triosephosphate Isomerase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IB:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IC:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IA. Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Gluconeogenesis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Gluconeogenesis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Chitin Biosynthesis:
Fructose 6-phosphate + L-Glutamine ⟶ Glucosamine 6-phosphate + L-Glutamic acid
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1):
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Fructose-1,6-diphosphatase Deficiency:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Triosephosphate Isomerase Deficiency:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type IB:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type IC:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type IA. Von Gierke Disease:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycolysis:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycogenosis, Type VII. Tarui Disease:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Fanconi-Bickel Syndrome:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycolysis:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycolysis I:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Ethanol Fermentation:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycolysis:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycogenosis, Type VII. Tarui Disease:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Fanconi-Bickel Syndrome:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type VII. Tarui Disease:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Fanconi-Bickel Syndrome:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
PharmGKB(0)
23 个相关的物种来源信息
- 3701 - Arabidopsis: LTS0030456
- 3702 - Arabidopsis thaliana: 10.1046/J.1365-313X.2003.01889.X
- 3702 - Arabidopsis thaliana: LTS0030456
- 2 - Bacteria: LTS0030456
- 3700 - Brassicaceae: LTS0030456
- 3051 - Chlamydomonadaceae: LTS0030456
- 3052 - Chlamydomonas: LTS0030456
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 3055 - Chlamydomonas reinhardtii: LTS0030456
- 3166 - Chlorophyceae: LTS0030456
- 3041 - Chlorophyta: LTS0030456
- 543 - Enterobacteriaceae: LTS0030456
- 561 - Escherichia: LTS0030456
- 562 - Escherichia coli: LTS0030456
- 2759 - Eukaryota: LTS0030456
- 1236 - Gammaproteobacteria: LTS0030456
- 9606 - Homo sapiens: -
- 3398 - Magnoliopsida: LTS0030456
- 3879 - Medicago sativa: 10.3389/FPLS.2017.01208
- 35493 - Streptophyta: LTS0030456
- 58023 - Tracheophyta: LTS0030456
- 33090 - Viridiplantae: LTS0030456
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Stephen P Adams, Nima Alaeiilkhchi, Sara Tasnim, James M Wright. Pravastatin for lowering lipids.
The Cochrane database of systematic reviews.
2023 09; 9(?):CD013673. doi:
10.1002/14651858.cd013673.pub2
. [PMID: 37721222] - Caroline Nb Clezar, Carolina Dq Flumignan, Nicolle Cassola, Luis Cu Nakano, Virginia Fm Trevisani, Ronald Lg Flumignan. Pharmacological interventions for asymptomatic carotid stenosis.
The Cochrane database of systematic reviews.
2023 Aug; 8(?):CD013573. doi:
10.1002/14651858.cd013573.pub2
. [PMID: 37565307] - Zi Hao Zhang, Li Chao Yue Sun, Hong Yan Gu, De Chun Jiang, Zhan Miao Yi. Associations between SLCO1B1, APOE and CYP2C9 and lipid-lowering efficacy and pharmacokinetics of fluvastatin: a meta-analysis.
Pharmacogenomics.
2023 06; 24(8):475-484. doi:
10.2217/pgs-2023-0004
. [PMID: 37318060] - Gökçe Ceren Kuşçu, Çevik Gürel, Aylin Buhur, Nefise Ülkü Karabay Yavaşoğlu, Timur Köse, Altuğ Yavaşoğlu, Fatih Oltulu. Fluvastatin alleviates doxorubicin-induced cardiac and renal toxicity in rats via regulation of oxidative stress, inflammation, and apoptosis associated genes expressions.
Drug and chemical toxicology.
2023 Mar; 46(2):400-411. doi:
10.1080/01480545.2022.2043351
. [PMID: 35209778] - Michalina Zaborowska, Dorota Matyszewska, Renata Bilewicz. Model Lipid Raft Membranes for Embedding Integral Membrane Proteins: Reconstitution of HMG-CoA Reductase and Its Inhibition by Statins.
Langmuir : the ACS journal of surfaces and colloids.
2022 11; 38(45):13888-13897. doi:
10.1021/acs.langmuir.2c02115
. [PMID: 36335466] - Mohamed H Al-Sabri, Neha Behare, Ahmed M Alsehli, Samuel Berkins, Aadeya Arora, Eirini Antoniou, Eleni I Moysiadou, Sowmya Anantha-Krishnan, Patricia D Cosmen, Johanna Vikner, Thiago C Moulin, Nourhene Ammar, Hadi Boukhatmi, Laura E Clemensson, Mathias Rask-Andersen, Jessica Mwinyi, Michael J Williams, Robert Fredriksson, Helgi B Schiöth. Statins Induce Locomotion and Muscular Phenotypes in Drosophila melanogaster That Are Reminiscent of Human Myopathy: Evidence for the Role of the Chloride Channel Inhibition in the Muscular Phenotypes.
Cells.
2022 11; 11(22):. doi:
10.3390/cells11223528
. [PMID: 36428957] - Wenhao Wang, Fangqin Fu, Zhengwei Huang, Wenhua Wang, Minglong Chen, Xiao Yue, Jintao Fu, Xiaoqian Feng, Ying Huang, Chuanbin Wu, Xin Pan. Inhalable Biomimetic Protein Corona-Mediated Nanoreactor for Self-Amplified Lung Adenocarcinoma Ferroptosis Therapy.
ACS nano.
2022 05; 16(5):8370-8387. doi:
10.1021/acsnano.2c02634
. [PMID: 35575209] - Neeti Vashi, Cameron Ackerley, Martin Post, Monica J Justice. Aberrant lung lipids cause respiratory impairment in a Mecp2-deficient mouse model of Rett syndrome.
Human molecular genetics.
2021 11; 30(22):2161-2176. doi:
10.1093/hmg/ddab182
. [PMID: 34230964] - Fauziah Mohd Jaafar, Baptiste Monsion, Mourad Belhouchet, Peter P C Mertens, Houssam Attoui. Inhibition of Orbivirus Replication by Fluvastatin and Identification of the Key Elements of the Mevalonate Pathway Involved.
Viruses.
2021 07; 13(8):. doi:
10.3390/v13081437
. [PMID: 34452303] - Paola Elisa Corneo, Andrea Nesler, Cesare Lotti, Abdessalem Chahed, Urska Vrhovsek, Ilaria Pertot, Michele Perazzolli. Interactions of tagatose with the sugar metabolism are responsible for Phytophthora infestans growth inhibition.
Microbiological research.
2021 Jun; 247(?):126724. doi:
10.1016/j.micres.2021.126724
. [PMID: 33640575] - Hatice Nurdan Aksoy, Cagatay Ceylan. Comparison of the Effects of Statins on A549 Nonsmall-Cell Lung Cancer Cell Line Lipids Using Fourier Transform Infrared Spectroscopy: Rosuvastatin Stands Out.
Lipids.
2021 05; 56(3):289-299. doi:
10.1002/lipd.12296
. [PMID: 33611813] - Anna Ciarkowska, Maciej Ostrowski, Anna Kozakiewicz. Biochemical Characterization of Recombinant UDPG-Dependent IAA Glucosyltransferase from Maize (Zea mays).
International journal of molecular sciences.
2021 Mar; 22(7):. doi:
10.3390/ijms22073355
. [PMID: 33805949] - Martina Felder, Claudia Irene Maushart, Gani Gashi, Jaël Rut Senn, Anton S Becker, Julian Müller, Miroslav Balaz, Christian Wolfrum, Irene A Burger, Matthias Johannes Betz. Fluvastatin Reduces Glucose Tolerance in Healthy Young Individuals Independently of Cold Induced BAT Activity.
Frontiers in endocrinology.
2021; 12(?):765807. doi:
10.3389/fendo.2021.765807
. [PMID: 34858338] - Zhiqiang Zhao, Yu Yang, Jianwei Wang, Zhaojie Dong, Xiaowei Niu, Enzhao Liu, Tong Liu, Lifeng Li, Yingzi Liang, Guangping Li. Combined treatment with valsartan and fluvastatin to delay disease progression in nonpermanent atrial fibrillation with hypertension: A clinical trial.
Clinical cardiology.
2020 Dec; 43(12):1592-1600. doi:
10.1002/clc.23487
. [PMID: 33103770] - Henry P Wood, F Aaron Cruz-Navarrete, Nicola J Baxter, Clare R Trevitt, Angus J Robertson, Samuel R Dix, Andrea M Hounslow, Matthew J Cliff, Jonathan P Waltho. Allomorphy as a mechanism of post-translational control of enzyme activity.
Nature communications.
2020 11; 11(1):5538. doi:
10.1038/s41467-020-19215-9
. [PMID: 33139716] - Patrick A Paez, Motunrayo Kolawole, Marcela T Taruselli, Siddarth Ajith, Jordan M Dailey, Sydney A Kee, Tamara T Haque, Brian O Barnstein, Jamie Josephine Avila McLeod, Heather L Caslin, Kasalina N Kiwanuka, Yoshihiro Fukuoka, Quang T Le, Lawrence B Schwartz, David B Straus, David A Gewirtz, Rebecca K Martin, John J Ryan. Fluvastatin Induces Apoptosis in Primary and Transformed Mast Cells.
The Journal of pharmacology and experimental therapeutics.
2020 07; 374(1):104-112. doi:
10.1124/jpet.119.264234
. [PMID: 32434944] - Irina Malinova, Stella Kössler, Tom Orawetz, Ulrike Matthes, Slawomir Orzechowski, Anke Koch, Joerg Fettke. Identification of Two Arabidopsis thaliana Plasma Membrane Transporters Able to Transport Glucose 1-Phosphate.
Plant & cell physiology.
2020 Feb; 61(2):381-392. doi:
10.1093/pcp/pcz206
. [PMID: 31722406] - Yodai Taguchi, Wataru Saburi, Ryozo Imai, Haruhide Mori. Efficient one-pot enzymatic synthesis of trehalose 6-phosphate using GH65 α-glucoside phosphorylases.
Carbohydrate research.
2020 Feb; 488(?):107902. doi:
10.1016/j.carres.2019.107902
. [PMID: 31911362] - Cevik Gurel, Gokce Ceren Kuscu, Aylin Buhur, Melih Dagdeviren, Fatih Oltulu, Nefise Ulku Karabay Yavasoglu, Altug Yavasoglu. Fluvastatin attenuates doxorubicin-induced testicular toxicity in rats by reducing oxidative stress and regulating the blood-testis barrier via mTOR signaling pathway.
Human & experimental toxicology.
2019 Dec; 38(12):1329-1343. doi:
10.1177/0960327119862006
. [PMID: 31272229] - Amin Farzanegan Gharabolagh, Taravat Bamdad, Mehdi Hedayati, Seyed Ali Dehghan Manshadi. The Synergistic Effect of Fluvastatin and IFN-λ on Peripheral Blood Mononuclear Cells of Chronic Hepatitis C Virus (HCV) Patients with IL-28B rs12979860 CC Genotype.
Iranian journal of allergy, asthma, and immunology.
2019 Oct; 18(5):533-542. doi:
10.18502/ijaai.v18i5.1923
. [PMID: 32245297] - Joseph Longo, Peter J Mullen, Rosemary Yu, Jenna E van Leeuwen, Mehdi Masoomian, Dixon T S Woon, Yuzhuo Wang, Eric X Chen, Robert J Hamilton, Joan M Sweet, Theodorus H van der Kwast, Neil E Fleshner, Linda Z Penn. An actionable sterol-regulated feedback loop modulates statin sensitivity in prostate cancer.
Molecular metabolism.
2019 07; 25(?):119-130. doi:
10.1016/j.molmet.2019.04.003
. [PMID: 31023626] - Leisan F Galiullina, Holger A Scheidt, Daniel Huster, Albert Aganov, Vladimir Klochkov. Interaction of statins with phospholipid bilayers studied by solid-state NMR spectroscopy.
Biochimica et biophysica acta. Biomembranes.
2019 03; 1861(3):584-593. doi:
10.1016/j.bbamem.2018.12.013
. [PMID: 30578770] - Qian Xiang, Xiaodan Zhang, Lingyue Ma, Kun Hu, Zhuo Zhang, Guangyan Mu, Qiufen Xie, Shuqing Chen, Yimin Cui. The association between the SLCO1B1, apolipoprotein E, and CYP2C9 genes and lipid response to fluvastatin: a meta-analysis.
Pharmacogenetics and genomics.
2018 12; 28(12):261-267. doi:
10.1097/fpc.0000000000000356
. [PMID: 30363031] - Yinzi Yue, Shuai Yan, Huan Li, Yang Zong, Jin Yue, Li Zeng. The role of oral fluvastatin on postoperative peritoneal adhesion formation in an experimental rat model.
Acta chirurgica Belgica.
2018 Dec; 118(6):372-379. doi:
10.1080/00015458.2018.1444549
. [PMID: 29482467] - Prasanthi Polamreddy, Vinita Vishwakarma, Puneet Saxena. Identification of potential anti-hepatitis C virus agents targeting non structural protein 5B using computational techniques.
Journal of cellular biochemistry.
2018 11; 119(10):8574-8587. doi:
10.1002/jcb.27071
. [PMID: 30058078] - Usama A Fahmy. Augmentation of Fluvastatin Cytotoxicity Against Prostate Carcinoma PC3 Cell Line Utilizing Alpha Lipoic-Ellagic Acid Nanostructured Lipid Carrier Formula.
AAPS PharmSciTech.
2018 Nov; 19(8):3454-3461. doi:
10.1208/s12249-018-1199-5
. [PMID: 30350252] - Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics.
Scientific reports.
2018 07; 8(1):10056. doi:
10.1038/s41598-018-28477-9
. [PMID: 29968805] - Tiago F Jorge, Carla António. Quantification of Low-Abundant Phosphorylated Carbohydrates Using HILIC-QqQ-MS/MS.
Methods in molecular biology (Clifton, N.J.).
2018; 1778(?):71-86. doi:
10.1007/978-1-4939-7819-9_6
. [PMID: 29761432] - Katla Venu Madhav, Veerabrahma Kishan. Improvement of Anti-Hyperlipidemic Activity and Oral Bioavailability of Fluvastatin Via Solid Self-Microemulsifying Systems and Comparative with Liquisolid Formulation.
Current drug delivery.
2018; 15(9):1245-1260. doi:
10.2174/1567201815666180723115141
. [PMID: 30033871] - Katja Vogt, Shailaja Mahajan-Thakur, Robert Wolf, Susanne Bröderdorf, Conny Vogel, Andreas Böhm, Christoph A Ritter, Markus Gräler, Stefan Oswald, Andreas Greinacher, Heyo K Kroemer, Gabriele Jedlitschky, Bernhard H Rauch. Release of Platelet-Derived Sphingosine-1-Phosphate Involves Multidrug Resistance Protein 4 (MRP4/ABCC4) and Is Inhibited by Statins.
Thrombosis and haemostasis.
2018 01; 118(1):132-142. doi:
10.1160/th17-04-0291
. [PMID: 29304533] - Stefano Benini, Mirco Toccafondi, Martin Rejzek, Francesco Musiani, Ben A Wagstaff, Jochen Wuerges, Michele Cianci, Robert A Field. Glucose-1-phosphate uridylyltransferase from Erwinia amylovora: Activity, structure and substrate specificity.
Biochimica et biophysica acta. Proteins and proteomics.
2017 Nov; 1865(11 Pt A):1348-1357. doi:
10.1016/j.bbapap.2017.08.015
. [PMID: 28844747] - Jung Eun Jang, Han-Sol Park, Hyun Ju Yoo, In-Jeoung Baek, Ji Eun Yoon, Myoung Seok Ko, Ah-Ram Kim, Hyoun Sik Kim, Hye-Sun Park, Seung Eun Lee, Seung-Whan Kim, Su Jung Kim, Jaechan Leem, Yu Mi Kang, Min Kyo Jung, Chan-Gi Pack, Chong Jai Kim, Chang Ohk Sung, In-Kyu Lee, Joong-Yeol Park, José C Fernández-Checa, Eun Hee Koh, Ki-Up Lee. Protective role of endogenous plasmalogens against hepatic steatosis and steatohepatitis in mice.
Hepatology (Baltimore, Md.).
2017 08; 66(2):416-431. doi:
10.1002/hep.29039
. [PMID: 28073164] - Young Hee Shin, Jeong Jin Min, Jong-Hwan Lee, Eun-Hee Kim, Go Eun Kim, Myung Hee Kim, Jeong Jin Lee, Hyun Joo Ahn. The effect of fluvastatin on cardiac fibrosis and angiotensin-converting enzyme-2 expression in glucose-controlled diabetic rat hearts.
Heart and vessels.
2017 May; 32(5):618-627. doi:
10.1007/s00380-016-0936-5
. [PMID: 28013371] - Yang Cheng, RongCheng Luo, Hang Zheng, Biao Wang, YaHui Liu, DingLi Liu, JinZhang Chen, WanFu Xu, AiMin Li, Yun Zhu. Synergistic anti-tumor efficacy of sorafenib and fluvastatin in hepatocellular carcinoma.
Oncotarget.
2017 Apr; 8(14):23265-23276. doi:
10.18632/oncotarget.15575
. [PMID: 28423574] - Alkistis Kapelouzou, Stavros Giaglis, Michalis Peroulis, Michalis Katsimpoulas, Petros Moustardas, Chrysostomos V Aravanis, Alkiviadis Kostakis, Panagiotis E Karayannakos, Dennis V Cokkinos. Overexpression of Toll-Like Receptors 2, 3, 4, and 8 Is Correlated to the Vascular Atherosclerotic Process in the Hyperlipidemic Rabbit Model: The Effect of Statin Treatment.
Journal of vascular research.
2017; 54(3):156-169. doi:
10.1159/000457797
. [PMID: 28478461] - Jose A Cuesta-Seijo, Christian Ruzanski, Katarzyna Krucewicz, Sebastian Meier, Per Hägglund, Birte Svensson, Monica M Palcic. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development.
PloS one.
2017; 12(4):e0175488. doi:
10.1371/journal.pone.0175488
. [PMID: 28407006] - Matías D Hartman, Carlos M Figueroa, Diego G Arias, Alberto A Iglesias. Inhibition of Recombinant Aldose-6-Phosphate Reductase from Peach Leaves by Hexose-Phosphates, Inorganic Phosphate and Oxidants.
Plant & cell physiology.
2017 01; 58(1):145-155. doi:
10.1093/pcp/pcw180
. [PMID: 28011870] - A J McFarland, A K Davey, S Anoopkumar-Dukie. Statins Reduce Lipopolysaccharide-Induced Cytokine and Inflammatory Mediator Release in an In Vitro Model of Microglial-Like Cells.
Mediators of inflammation.
2017; 2017(?):2582745. doi:
10.1155/2017/2582745
. [PMID: 28546657] - Xiangrong Cui, Chunlan Long, Jing Zhu, Jie Tian. Protective Effects of Fluvastatin on Reproductive Function in Obese Male Rats Induced by High-Fat Diet through Enhanced Signaling of mTOR.
Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology.
2017; 41(2):598-608. doi:
10.1159/000457881
. [PMID: 28214901] - Jose Manuel Izquierdo-Palomares, Jesus Maria Fernandez-Tabera, Maria N Plana, Almudena Añino Alba, Pablo Gómez Álvarez, Inmaculada Fernandez-Esteban, Luis Carlos Saiz, Pilar Martin-Carrillo, Óscar Pinar López. Chronotherapy versus conventional statins therapy for the treatment of hyperlipidaemia.
The Cochrane database of systematic reviews.
2016 11; 11(?):CD009462. doi:
10.1002/14651858.cd009462.pub2
. [PMID: 27888640] - Yongbin Lu, Zhiyuan Cheng, Yaxue Zhao, Xiaoyu Chang, Cynthia Chan, Yana Bai, Ning Cheng. Efficacy and safety of long-term treatment with statins for coronary heart disease: A Bayesian network meta-analysis.
Atherosclerosis.
2016 11; 254(?):215-227. doi:
10.1016/j.atherosclerosis.2016.10.025
. [PMID: 27764723] - Elizabeth Motunrayo Kolawole, Jamie Josephine Avila McLeod, Victor Ndaw, Daniel Abebayehu, Brian O Barnstein, Travis Faber, Andrew J Spence, Marcela Taruselli, Anuya Paranjape, Tamara T Haque, Amina A Qayum, Qasim A Kazmi, Dayanjan S Wijesinghe, Jamie L Sturgill, Charles E Chalfant, David B Straus, Carole A Oskeritzian, John J Ryan. Fluvastatin Suppresses Mast Cell and Basophil IgE Responses: Genotype-Dependent Effects.
Journal of immunology (Baltimore, Md. : 1950).
2016 Feb; 196(4):1461-70. doi:
10.4049/jimmunol.1501932
. [PMID: 26773154] - Andrew Marsh, Katherine Casey-Green, Fay Probert, David Withall, Daniel A Mitchell, Suzanne J Dilly, Sean James, Wade Dimitri, Sweta R Ladwa, Paul C Taylor, Donald R J Singer. Simvastatin Sodium Salt and Fluvastatin Interact with Human Gap Junction Gamma-3 Protein.
PloS one.
2016; 11(2):e0148266. doi:
10.1371/journal.pone.0148266
. [PMID: 26863535] - A Yildiz, C B Gul, N Ocak, A Ersoy, S Sag, A Oruc, Y Ayar, T Dagel, M Dirican, M Gullulu. Fluvastatin Decreases Oxidative Stress in Kidney Transplant Patients.
Transplantation proceedings.
2015 Dec; 47(10):2870-4. doi:
10.1016/j.transproceed.2015.10.027
. [PMID: 26707305] - Bhavesh C Variya, Snehal S Patel, Jinal I Trivedi, Hardik P Gandhi, S P Rathod. Comparative evaluation of HMG CoA reductase inhibitors in experimentally-induced myocardial necrosis: Biochemical, morphological and histological studies.
European journal of pharmacology.
2015 Oct; 764(?):283-291. doi:
10.1016/j.ejphar.2015.07.024
. [PMID: 26169562] - Xiaoqiang Qi, Ming Ma, Lan Wang, Yang Zhang, Rong Jiang, Liping Bai, Yuan Li. Biochemical characterization of a novel bifunctional glycosyl-1-phosphate transferase involved in the exopolysaccharide biosynthesis.
Biochemical and biophysical research communications.
2015 Sep; 465(1):113-8. doi:
10.1016/j.bbrc.2015.07.140
. [PMID: 26235876] - Patricia Ruiz-Limon, Nuria Barbarroja, Carlos Perez-Sanchez, Maria Angeles Aguirre, Maria Laura Bertolaccini, Munther A Khamashta, Antonio Rodriguez-Ariza, Yolanda Almadén, Pedro Segui, Husam Khraiwesh, Jose Antonio Gonzalez-Reyes, Jose Manuel Villalba, Eduardo Collantes-Estevez, Maria Jose Cuadrado, Chary Lopez-Pedrera. Atherosclerosis and cardiovascular disease in systemic lupus erythematosus: effects of in vivo statin treatment.
Annals of the rheumatic diseases.
2015 Jul; 74(7):1450-8. doi:
10.1136/annrheumdis-2013-204351
. [PMID: 24658835] - Bilal Cakir, Aytug Tuncel, Abigail R Green, Kaan Koper, Seon-Kap Hwang, Thomas W Okita, ChulHee Kang. Substrate binding properties of potato tuber ADP-glucose pyrophosphorylase as determined by isothermal titration calorimetry.
FEBS letters.
2015 Jun; 589(13):1444-9. doi:
10.1016/j.febslet.2015.04.042
. [PMID: 25953126] - Jinrui Zhang, Tom Sassen, Angela ten Pierick, Cor Ras, Joseph J Heijnen, Sebastian Aljoscha Wahl. A fast sensor for in vivo quantification of cytosolic phosphate in Saccharomyces cerevisiae.
Biotechnology and bioengineering.
2015 May; 112(5):1033-46. doi:
10.1002/bit.25516
. [PMID: 25502731] - Anagha Krishnan, G Kenchappa Kumaraswamy, David J Vinyard, Huiya Gu, Gennady Ananyev, Matthew C Posewitz, G Charles Dismukes. Metabolic and photosynthetic consequences of blocking starch biosynthesis in the green alga Chlamydomonas reinhardtii sta6 mutant.
The Plant journal : for cell and molecular biology.
2015 Mar; 81(6):947-60. doi:
10.1111/tpj.12783
. [PMID: 25645872] - Paolo Magni, Chiara Macchi, Beatrice Morlotti, Cesare R Sirtori, Massimiliano Ruscica. Risk identification and possible countermeasures for muscle adverse effects during statin therapy.
European journal of internal medicine.
2015 Mar; 26(2):82-8. doi:
10.1016/j.ejim.2015.01.002
. [PMID: 25640999] - Lee-Won Chong, Yi-Chao Hsu, Ting-Fang Lee, Yun Lin, Yung-Tsung Chiu, Kuo-Ching Yang, Jaw-Ching Wu, Yi-Tsau Huang. Fluvastatin attenuates hepatic steatosis-induced fibrogenesis in rats through inhibiting paracrine effect of hepatocyte on hepatic stellate cells.
BMC gastroenterology.
2015 Feb; 15(?):22. doi:
10.1186/s12876-015-0248-8
. [PMID: 25886887] - Kazuki Fukuda, Takeshi Matsumura, Takafumi Senokuchi, Norio Ishii, Hiroyuki Kinoshita, Sarie Yamada, Saiko Murakami, Saya Nakao, Hiroyuki Motoshima, Tatsuya Kondo, Daisuke Kukidome, Shuji Kawasaki, Teruo Kawada, Takeshi Nishikawa, Eiichi Araki. Statins meditate anti-atherosclerotic action in smooth muscle cells by peroxisome proliferator-activated receptor-γ activation.
Biochemical and biophysical research communications.
2015 Jan; 457(1):23-30. doi:
10.1016/j.bbrc.2014.12.063
. [PMID: 25529449] - Jia Liu, Bo Zhang, Yuping Chai, Yaguang Xu, Changying Xing, Xiaoyun Wang. Fluvastatin attenuated the effect of expression of β1 integrin in PAN-treated podocytes by inhibiting reactive oxygen species.
Molecular and cellular biochemistry.
2015 Jan; 398(1-2):207-15. doi:
10.1007/s11010-014-2220-2
. [PMID: 25240415] - Abdel-Rahim M El-Helw, Usama A Fahmy. Improvement of fluvastatin bioavailability by loading on nanostructured lipid carriers.
International journal of nanomedicine.
2015; 10(?):5797-804. doi:
10.2147/ijn.s91556
. [PMID: 26396513] - Henriette E Meyer zu Schwabedissen, Martin Albers, Sebastian E Baumeister, Christian Rimmbach, Matthias Nauck, Henri Wallaschofski, Werner Siegmund, Henry Völzke, Heyo K Kroemer. Function-impairing polymorphisms of the hepatic uptake transporter SLCO1B1 modify the therapeutic efficacy of statins in a population-based cohort.
Pharmacogenetics and genomics.
2015 Jan; 25(1):8-18. doi:
10.1097/fpc.0000000000000098
. [PMID: 25379722] - I N Medvedev, I A Skoryatina. [The aggregation capacity of neutrophils in patients with arterial hypertension and dyslipidemia treated with fluvastatin].
Klinicheskaia meditsina.
2015; 93(1):66-70. doi:
NULL
. [PMID: 26031153] - Brandyn D Henriksbo, Trevor C Lau, Joseph F Cavallari, Emmanuel Denou, Wendy Chi, James S Lally, Justin D Crane, Brittany M Duggan, Kevin P Foley, Morgan D Fullerton, Mark A Tarnopolsky, Gregory R Steinberg, Jonathan D Schertzer. Fluvastatin causes NLRP3 inflammasome-mediated adipose insulin resistance.
Diabetes.
2014 Nov; 63(11):3742-7. doi:
10.2337/db13-1398
. [PMID: 24917577] - Raja S Payyavula, Timothy J Tschaplinski, Sara S Jawdy, Robert W Sykes, Gerald A Tuskan, Udaya C Kalluri. Metabolic profiling reveals altered sugar and secondary metabolism in response to UGPase overexpression in Populus.
BMC plant biology.
2014 Oct; 14(?):265. doi:
10.1186/s12870-014-0265-8
. [PMID: 25287590] - David A Sheridan, S H Bridge, M M E Crossey, D J Felmlee, H C Thomas, R D G Neely, S D Taylor-Robinson, M F Bassendine. Depressive symptoms in chronic hepatitis C are associated with plasma apolipoprotein E deficiency.
Metabolic brain disease.
2014 Sep; 29(3):625-34. doi:
10.1007/s11011-014-9520-9
. [PMID: 24615429] - Ida Robertsen, Anders Asberg, Tone Granseth, Nils Tore Vethe, Fatemeh Akhlaghi, Mwlod Ghareeb, Espen Molden, Morten Reier-Nilsen, Hallvard Holdaas, Karsten Midtvedt. More potent lipid-lowering effect by rosuvastatin compared with fluvastatin in everolimus-treated renal transplant recipients.
Transplantation.
2014 Jun; 97(12):1266-71. doi:
10.1097/01.tp.0000443225.66960.7e
. [PMID: 24521776] - Shuiping Zhao, Fang Wang, Kan Yang, Yuming Hao, Guangping Li, Ming Yang, Zhenyu Yang. [Efficacy and safety of fluvastatin extended-release tablets in Chinese patients with hyperlipidemia: a multi-center, randomized, double-blind, double dummy, active-controlled, parallel-group study].
Zhonghua nei ke za zhi.
2014 Jun; 53(6):455-9. doi:
"
. [PMID: 25146513] - Maoto Habara, Kenya Nasu, Mitsuyasu Terashima, Euihong Ko, Daisuke Yokota, Tsuyoshi Ito, Tairo Kurita, Tomohiko Teramoto, Masashi Kimura, Yoshihisa Kinoshita, Etsuo Tsuchikane, Yasushi Asakura, Tetsuo Matsubara, Takahiko Suzuki. Impact on optical coherence tomographic coronary findings of fluvastatin alone versus fluvastatin + ezetimibe.
The American journal of cardiology.
2014 Feb; 113(4):580-7. doi:
10.1016/j.amjcard.2013.10.038
. [PMID: 24388622] - Carolyn A Goard, Michelle Chan-Seng-Yue, Peter J Mullen, Ariel D Quiroga, Amanda R Wasylishen, James W Clendening, Dorota H S Sendorek, Syed Haider, Richard Lehner, Paul C Boutros, Linda Z Penn. Identifying molecular features that distinguish fluvastatin-sensitive breast tumor cells.
Breast cancer research and treatment.
2014 Jan; 143(2):301-12. doi:
10.1007/s10549-013-2800-y
. [PMID: 24337703] - Qiu-Fang Ouyang, Ying Han, Zhi-Hong Lin, Hong Xie, Chang-Sheng Xu, Liang-Di Xie. Fluvastatin upregulates the α 1C subunit of CaV1.2 channel expression in vascular smooth muscle cells via RhoA and ERK/p38 MAPK pathways.
Disease markers.
2014; 2014(?):237067. doi:
10.1155/2014/237067
. [PMID: 25614710] - Xiangyu Kong, Hao Yuan, Junming Fan, Zi Li, Taixiang Wu, Lanhui Jiang. Lipid-lowering agents for nephrotic syndrome.
The Cochrane database of systematic reviews.
2013 Dec; ?(12):CD005425. doi:
10.1002/14651858.cd005425.pub2
. [PMID: 24327265] - K M Burgazli, K L Bui, M Mericliler, A T Albayrak, M Parahuleva, A Erdogan. The effects of different types of statins on proliferation and migration of HGF-induced Human Umbilical Vein Endothelial Cells (HUVECs).
European review for medical and pharmacological sciences.
2013 Nov; 17(21):2874-83. doi:
. [PMID: 24254555]
- Peter Kubatka, Nadežda Stollárová, Jozef Škarda, Katarína Žihlavníková, Karol Kajo, Andrea Kapinová, Katarína Adamicová, Martin Péč, Dušan Dobrota, Bianka Bojková, Monika Kassayová, Peter Orendáš. Preventive effects of fluvastatin in rat mammary carcinogenesis.
European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation (ECP).
2013 Jul; 22(4):352-7. doi:
10.1097/cej.0b013e32835b385d
. [PMID: 23212095] - Sylvain Pichetti, Catherine Sermet, Brian Godman, Stephen M Campbell, Lars L Gustafsson. Multilevel analysis of the influence of patients' and general practitioners' characteristics on patented versus multiple-sourced statin prescribing in France.
Applied health economics and health policy.
2013 Jun; 11(3):205-18. doi:
10.1007/s40258-013-0014-4
. [PMID: 23609765] - Ji Guo, David M Saylor, Ethan P Glaser, Dinesh V Patwardhan. Impact of artificial plaque composition on drug transport.
Journal of pharmaceutical sciences.
2013 Jun; 102(6):1905-1914. doi:
10.1002/jps.23537
. [PMID: 23568279] - Manish Rauthan, Parmida Ranji, Nataly Aguilera Pradenas, Christophe Pitot, Marc Pilon. The mitochondrial unfolded protein response activator ATFS-1 protects cells from inhibition of the mevalonate pathway.
Proceedings of the National Academy of Sciences of the United States of America.
2013 Apr; 110(15):5981-6. doi:
10.1073/pnas.1218778110
. [PMID: 23530189] - Jelena Ciric, Katja Loos. Synthesis of branched polysaccharides with tunable degree of branching.
Carbohydrate polymers.
2013 Mar; 93(1):31-7. doi:
10.1016/j.carbpol.2012.04.008
. [PMID: 23465898] - Ping Gao, Xiaoyan Wu, Hua Shui, Ruhan Jia. Fluvastatin inhibits high glucose-induced nuclear factor kappa B activation in renal tubular epithelial cells.
Journal of nephrology.
2013 Mar; 26(2):289-96. doi:
10.5301/jn.5000128
. [PMID: 22641573] - Minghui Song, Anjun Li, Junhua Gong, Dan Yang, Lu Ma, Xinmin Zhou, Yan Yan, Yongxin Xie. Effects of combined prednisone + fluvastatin on cholesterol and bilirubin in pediatric patients with minimal change nephropathy.
Clinical therapeutics.
2013 Mar; 35(3):286-93. doi:
10.1016/j.clinthera.2013.02.001
. [PMID: 23485078] - Cátia Nunes, Lucia F Primavesi, Mitul K Patel, Eleazar Martinez-Barajas, Stephen J Powers, Ram Sagar, Pedro S Fevereiro, Benjamin G Davis, Matthew J Paul. Inhibition of SnRK1 by metabolites: tissue-dependent effects and cooperative inhibition by glucose 1-phosphate in combination with trehalose 6-phosphate.
Plant physiology and biochemistry : PPB.
2013 Feb; 63(?):89-98. doi:
10.1016/j.plaphy.2012.11.011
. [PMID: 23257075] - Yingji Jin, Isao Tachibana, Yoshito Takeda, Ping He, Sujin Kang, Mayumi Suzuki, Hanako Kuhara, Satoshi Tetsumoto, Kazuyuki Tsujino, Toshiyuki Minami, Takeo Iwasaki, Kaori Nakanishi, Satoshi Kohmo, Haruhiko Hirata, Ryo Takahashi, Koji Inoue, Izumi Nagatomo, Hiroshi Kida, Takashi Kijima, Mari Ito, Hideyuki Saya, Atsushi Kumanogoh. Statins decrease lung inflammation in mice by upregulating tetraspanin CD9 in macrophages.
PloS one.
2013; 8(9):e73706. doi:
10.1371/journal.pone.0073706
. [PMID: 24040034] - Naushad Ali, Heba Allam, Ted Bader, Randal May, Kanthesh M Basalingappa, William L Berry, Parthasarathy Chandrakesan, Dongfeng Qu, Nathaniel Weygant, Michael S Bronze, Shahid Umar, Ralf Janknecht, Sripathi M Sureban, Mark Huycke, Courtney W Houchen. Fluvastatin interferes with hepatitis C virus replication via microtubule bundling and a doublecortin-like kinase-mediated mechanism.
PloS one.
2013; 8(11):e80304. doi:
10.1371/journal.pone.0080304
. [PMID: 24260365] - Kimio Uematsu, Nobuaki Suzuki, Tomoko Iwamae, Masayuki Inui, Hideaki Yukawa. Expression of Arabidopsis plastidial phosphoglucomutase in tobacco stimulates photosynthetic carbon flow into starch synthesis.
Journal of plant physiology.
2012 Oct; 169(15):1454-62. doi:
10.1016/j.jplph.2012.05.008
. [PMID: 22705254] - En C Fung, Martin A Crook. Statin myopathy: a lipid clinic experience on the tolerability of statin rechallenge.
Cardiovascular therapeutics.
2012 Oct; 30(5):e212-8. doi:
10.1111/j.1755-5922.2011.00267.x
. [PMID: 21884002] - Loukianos S Rallidis, Katerina Fountoulaki, Maria Anastasiou-Nana. Managing the underestimated risk of statin-associated myopathy.
International journal of cardiology.
2012 Sep; 159(3):169-76. doi:
10.1016/j.ijcard.2011.07.048
. [PMID: 21813193] - Antonella Sassano, Jessica K Altman, Leo I Gordon, Leonidas C Platanias. Statin-dependent activation of protein kinase Cδ in acute promyelocytic leukemia cells and induction of leukemic cell differentiation.
Leukemia & lymphoma.
2012 Sep; 53(9):1779-84. doi:
10.3109/10428194.2012.668287
. [PMID: 22356114] - Janine Kah, Andrea Wüstenberg, Amelie Dorothea Keller, Hüseyin Sirma, Roberta Montalbano, Matthias Ocker, Tassilo Volz, Maura Dandri, Gisa Tiegs, Gabriele Sass. Selective induction of apoptosis by HMG-CoA reductase inhibitors in hepatoma cells and dependence on p53 expression.
Oncology reports.
2012 Sep; 28(3):1077-83. doi:
10.3892/or.2012.1860
. [PMID: 22710979] - Helena Buzková, Kristina Pechandová, Vilém Danzig, Tomá Vareka, Frantisek Perlik, Ales Zak, Ondrej Slanar. Lipid-lowering effect of fluvastatin in relation to cytochrome P450 2C9 variant alleles frequently distributed in the Czech population.
Medical science monitor : international medical journal of experimental and clinical research.
2012 Aug; 18(8):CR512-517. doi:
10.12659/msm.883272
. [PMID: 22847201] - L V Riella, S Gabardi, A Chandraker. Dyslipidemia and its therapeutic challenges in renal transplantation.
American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.
2012 Aug; 12(8):1975-82. doi:
10.1111/j.1600-6143.2012.04084.x
. [PMID: 22578270] - Daniel Decker, Meng Meng, Agnieszka Gornicka, Anders Hofer, Malgorzata Wilczynska, Leszek A Kleczkowski. Substrate kinetics and substrate effects on the quaternary structure of barley UDP-glucose pyrophosphorylase.
Phytochemistry.
2012 Jul; 79(?):39-45. doi:
10.1016/j.phytochem.2012.04.002
. [PMID: 22552276] - Adila Parveen, Rashmi Babbar, Sarita Agarwal, Anita Kotwani, Mohammad Fahim. Terminalia arjuna enhances baroreflex sensitivity and myocardial function in isoproterenol-induced chronic heart failure rats.
Journal of cardiovascular pharmacology and therapeutics.
2012 Jun; 17(2):199-207. doi:
10.1177/1074248411416816
. [PMID: 21828283] - My Svensson, Dag Olav Dahle, Geir Mjøen, Gisela Weihrauch, Hubert Scharnagl, Harald Dobnig, Winfried März, Alan Jardine, Bengt Fellström, Hallvard Holdaas. Osteoprotegerin as a predictor of renal and cardiovascular outcomes in renal transplant recipients: follow-up data from the ALERT study.
Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.
2012 Jun; 27(6):2571-5. doi:
10.1093/ndt/gfr694
. [PMID: 22172725] - Nathan Vandjelovic, Hong Zhu, Hara P Misra, Ryan P Zimmerman, Zhenquan Jia, Yunbo Li. EPR studies on hydroxyl radical-scavenging activities of pravastatin and fluvastatin.
Molecular and cellular biochemistry.
2012 May; 364(1-2):71-7. doi:
10.1007/s11010-011-1206-6
. [PMID: 22207075] - Joerg Fettke, Lydia Leifels, Henrike Brust, Karoline Herbst, Martin Steup. Two carbon fluxes to reserve starch in potato (Solanum tuberosum L.) tuber cells are closely interconnected but differently modulated by temperature.
Journal of experimental botany.
2012 May; 63(8):3011-29. doi:
10.1093/jxb/ers014
. [PMID: 22378944] - Hannah M Jones, Hugh A Barton, Yurong Lai, Yi-An Bi, Emi Kimoto, Sarah Kempshall, Sonya C Tate, Ayman El-Kattan, J Brian Houston, Aleksandra Galetin, Katherine S Fenner. Mechanistic pharmacokinetic modeling for the prediction of transporter-mediated disposition in humans from sandwich culture human hepatocyte data.
Drug metabolism and disposition: the biological fate of chemicals.
2012 May; 40(5):1007-17. doi:
10.1124/dmd.111.042994
. [PMID: 22344703] - Arghya Biswas, Syed Imam Rabbani, Kshama Devi. Influence of pioglitazone on experimental heart failure and hyperlipidemia in rats.
Indian journal of pharmacology.
2012 May; 44(3):333-9. doi:
10.4103/0253-7613.96305
. [PMID: 22701242] - Ping Gao, Xiaoyan Wu, Hua Shui, Ruhan Jia. Fluvastatin inhibits angiotensin II-induced nuclear factor kappa B activation in renal tubular epithelial cells through the p38 MAPK pathway.
Molecular biology reports.
2012 Apr; 39(4):4719-25. doi:
10.1007/s11033-011-1264-6
. [PMID: 21947850] - Junko Sugatani, Satoshi Sadamitsu, Tadashi Wada, Yasuhiro Yamazaki, Akira Ikari, Masao Miwa. Effects of dietary inulin, statin, and their co-treatment on hyperlipidemia, hepatic steatosis and changes in drug-metabolizing enzymes in rats fed a high-fat and high-sucrose diet.
Nutrition & metabolism.
2012 Mar; 9(1):23. doi:
10.1186/1743-7075-9-23
. [PMID: 22452877] - Márta Füzi, Zoltán Palicz, János Vincze, Julianna Cseri, Zita Szombathy, Ilona Kovács, Anna Oláh, Péter Szentesi, Pál Kertai, György Paragh, László Csernoch. Fluvastatin-induced alterations of skeletal muscle function in hypercholesterolaemic rats.
Journal of muscle research and cell motility.
2012 Mar; 32(6):391-401. doi:
10.1007/s10974-011-9272-7
. [PMID: 22068225] - Ryuichi Morishita, Hiroshige Itakura, Noriaki Nakaya, Masayuki Yoshida, Masato Odawara, Atsuhiro Ichihara, Kyoichi Mizuno. Risk factors for cardiovascular events in Japanese patients treated with fluvastatin from the long-term event monitoring (LEM) study.
Current vascular pharmacology.
2012 Mar; 10(2):178-86. doi:
10.2174/157016112799305049
. [PMID: 21824105] - M Alvin Jose, S Anandkumar, M P Narmadha, M Sandeep. A comparative effect of atorvastatin with other statins in patients of hyperlipidemia.
Indian journal of pharmacology.
2012 Mar; 44(2):261-3. doi:
10.4103/0253-7613.93864
. [PMID: 22529488] - Inga Soveri, Sadollah Abedini, Hallvard Holdaas, Alan Jardine, Niclas Eriksson, Bengt Fellström. Graft loss risk in renal transplant recipients with metabolic syndrome: subgroup analyses of the ALERT trial.
Journal of nephrology.
2012 Mar; 25(2):245-54. doi:
10.5301/jn.2011.8450
. [PMID: 21725919] - Lisa M Renzi, Billy R Hammond, Melissa Dengler, Richard Roberts. The relation between serum lipids and lutein and zeaxanthin in the serum and retina: results from cross-sectional, case-control and case study designs.
Lipids in health and disease.
2012 Feb; 11(?):33. doi:
10.1186/1476-511x-11-33
. [PMID: 22375926] - Karin M Slivkoff-Clark, Anthony P James, John Cl Mamo. The chronic effects of fish oil with exercise on postprandial lipaemia and chylomicron homeostasis in insulin resistant viscerally obese men.
Nutrition & metabolism.
2012 Feb; 9(?):9. doi:
10.1186/1743-7075-9-9
. [PMID: 22314022]