Pyridoxal 5'-phosphate (BioDeep_00000001641)
Secondary id: BioDeep_00000400288, BioDeep_00000400435
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Chemicals and Drugs BioNovoGene_Lab2019
代谢物信息卡片
化学式: C8H10NO6P (247.024573)
中文名称: 磷酸-吡哆醛, 磷酸吡哆醛水合物, 5-磷酸吡哆醛, 磷酸吡哆醛
谱图信息:
最多检出来源 Homo sapiens(blood) 40.31%
Last reviewed on 2024-09-14.
Cite this Page
Pyridoxal 5'-phosphate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/pyridoxal_5_-phosphate (retrieved
2024-12-04) (BioDeep RN: BioDeep_00000001641). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC1=NC=C(C(=C1O)C=O)COP(=O)(O)O
InChI: InChI=1S/C8H10NO6P/c1-5-8(11)7(3-10)6(2-9-5)4-15-16(12,13)14/h2-3,11H,4H2,1H3,(H2,12,13,14)
描述信息
Pyridoxal phosphate, also known as PLP, pyridoxal 5-phosphate or P5P, is the active form of vitamin B6. It is a coenzyme in a variety of enzymatic reactions. Pyridoxal 5-phosphate belongs to the class of organic compounds known as pyridoxals and derivatives. Pyridoxals and derivatives are compounds containing a pyridoxal moiety, which consists of a pyridine ring substituted at positions 2,3,4, and 5 by a methyl group, a hydroxyl group, a carbaldehyde group, and a hydroxymethyl group, respectively. Pyridoxal 5-phosphate is a drug which is used for nutritional supplementation and for treating dietary shortage or imbalance. Pyridoxal 5-phosphate exists in all living species, ranging from bacteria to humans. In humans, pyridoxal 5-phosphate is involved in glycine and serine metabolism. Outside of the human body, pyridoxal 5-phosphate is found, on average, in the highest concentration within cow milk. Pyridoxal 5-phosphate has also been detected, but not quantified in several different foods, such as soursops, italian sweet red peppers, muscadine grapes, european plums, and blackcurrants. Pyridoxal 5-phosphate, with regard to humans, has been found to be associated with several diseases such as epilepsy, early-onset, vitamin B6-dependent, odontohypophosphatasia, pyridoxamine 5-prime-phosphate oxidase deficiency, and hypophosphatasia. Pyridoxal 5-phosphate has also been linked to the inborn metabolic disorder celiac disease.
This is the active form of vitamin B6 serving as a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate (pyridoxamine). -- Pubchem; Pyridoxal-phosphate (PLP, pyridoxal-5-phosphate) is a cofactor of many enzymatic reactions. It is the active form of vitamin B6 which comprises three natural organic compounds, pyridoxal, pyridoxamine and pyridoxine. -- Wikipedia [HMDB]. Pyridoxal 5-phosphate is found in many foods, some of which are linden, kai-lan, nance, and rose hip.
Acquisition and generation of the data is financially supported in part by CREST/JST.
A - Alimentary tract and metabolism > A11 - Vitamins
D018977 - Micronutrients > D014815 - Vitamins
KEIO_ID P038
Pyridoxal phosphate is the active form of vitamin B6, acts as an inhibitor of reverse transcriptases, and is used for the treatment of tardive dyskinesia.
同义名列表
46 个代谢物同义名
Phosphoric acid mono-(4-formyl-5-hydroxy-6-methyl-pyridin-3-ylmethyl) ester; 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde 5-phosphoric acid; Phosphate mono-(4-formyl-5-hydroxy-6-methyl-pyridin-3-ylmethyl) ester; 3-Hydroxy-2-methyl-5-[(phosphonooxy)methyl]-4-pyridinecarboxaldehyde; 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde 5-phosphate; [(4-formyl-5-hydroxy-6-methylpyridin-3-yl)methoxy]phosphonic acid; Pyridoxal 5-(dihydrogen phosphoric acid); Pyridoxal 5-monophosphoric acid ester; Pyridoxal 5-(dihydrogen phosphate); Pyridoxal-5-phosphate monohydrate; Pyridoxal 5-monophosphate ester; Pyridoxal-5-phosphate hydrate; PYRIDOXAL-5-phosphoric acid; Pyridoxal 5-phosphoric acid; Pyridoxal phosphoric acid; Phosphopyridoxal coenzyme; PYRIDOXAL-5-phosphATE; Pyridoxal 5-phosphate; Pyridoxal 5 phosphate; Phosphate, pyridoxal; Pyridoxyl phosphate; pyridoxal phosphate; Phosphopyridoxal; Codecarboxylase; Hi-pyridoxin; Pyridoxal p; Coenzyme b6; Pyridoxal-p; Vitahexin-p; Hexermin-p; Pidopidon; Sechvitan; Apolon b6; Vitazechs; Pyromijin; Hiadelon; Biosechs; Hairoxal; Pydoxal; Himitan; Piodel; PAL-p; PLP; Pyridoxal 5'-phosphate; Pyridoxal 5′-phosphate; Pyridoxal phosphate
数据库引用编号
41 个数据库交叉引用编号
- ChEBI: CHEBI:18405
- KEGG: C00018
- PubChem: 1051
- HMDB: HMDB0001491
- Metlin: METLIN235
- DrugBank: DB00114
- ChEMBL: CHEMBL82202
- Wikipedia: Pyridoxal_phosphate
- MeSH: Pyridoxal Phosphate
- MetaCyc: PYRIDOXAL_PHOSPHATE
- KNApSAcK: C00007503
- foodb: FDB021820
- chemspider: 1022
- CAS: 54-47-7
- MoNA: PS062003
- MoNA: PR100698
- MoNA: PS049103
- MoNA: KO001616
- MoNA: PS049108
- MoNA: PR100274
- MoNA: PS062001
- MoNA: KO001618
- MoNA: KO001617
- MoNA: PR100723
- MoNA: KO001619
- MoNA: PR100292
- MoNA: PS049102
- MoNA: PS062002
- MoNA: PS049101
- MoNA: PS062010
- MoNA: KO001615
- MoNA: PS049107
- PMhub: MS000000897
- PubChem: 3320
- PDB-CCD: PLP
- 3DMET: B00005
- NIKKAJI: J10.690I
- RefMet: Pyridoxal 5'-phosphate
- medchemexpress: HY-B1744
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-943
- KNApSAcK: 18405
分类词条
相关代谢途径
Reactome(6)
PlantCyc(0)
代谢反应
431 个相关的代谢反应过程信息。
Reactome(25)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamins B6 activation to pyridoxal phosphate:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamins B6 activation to pyridoxal phosphate:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamins B6 activation to pyridoxal phosphate:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Mitochondrial iron-sulfur cluster biogenesis:
2 Iron:FXN:NFS1:ISD11:ISCU + FDX1L (red.) + L-Cys ⟶ FDX1L (ox.) + FXN:NFS1:ISD11:ISCU:2Fe-2S Cluster + L-Ala
- Mitochondrial iron-sulfur cluster biogenesis:
2 Iron:FXN:NFS1:ISD11:ISCU + FDX1L (red.) + L-Cys ⟶ FDX1L (ox.) + FXN:NFS1:ISD11:ISCU:2Fe-2S Cluster + L-Ala
- Mitochondrial iron-sulfur cluster biogenesis:
2 Iron:FXN:NFS1:ISD11:ISCU + FDX1 (red.) + L-Cys ⟶ FDX1 (ox.) + FXN:NFS1:ISD11:ISCU:2Fe-2S Cluster + L-Ala
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter release cycle:
H2O + NAd + Oxygen ⟶ 3,4-dihydroxymandelaldehyde + H2O2 + ammonia
- GABA synthesis, release, reuptake and degradation:
2OG + GABA + PXLP ⟶ Glu + PXLP + SUCCSA
- Degradation of GABA:
2OG + GABA + PXLP ⟶ Glu + PXLP + SUCCSA
- GABA synthesis:
H+ + L-Glu + PXLP ⟶ GABA + PXLP + carbon dioxide
- Heme synthesis:
H2O + PBG ⟶ HMBL + ammonia
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Regulation of ornithine decarboxylase (ODC):
H0ZS38 + OAZ ⟶ ODC:OAZ complex
BioCyc(4)
- pyridoxal 5'-phosphate salvage pathway:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ H+ + ammonia + hydrogen peroxide + pyridoxal-P
- pyridoxal 5'-phosphate salvage pathway:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ H+ + ammonia + hydrogen peroxide + pyridoxal-P
- pyridoxamine anabolism:
pyridoxamine + pyruvate ⟶ ala + pyridoxal
- pyridoxamine anabolism:
pyridoxamine + pyruvate ⟶ ala + pyridoxal
WikiPathways(2)
- Vitamin B6-dependent and responsive disorders:
L-lysine ⟶ Saccharopine
- One-carbon metabolism:
Homocysteine ⟶ Homocystine
Plant Reactome(387)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
9-mercaptodethiobiotin ⟶ Btn
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate salvage pathway:
ATP + PXA ⟶ ADP + PXAP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pyridoxal 5'-phosphate salvage pathway:
ATP + PXA ⟶ ADP + PXAP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
- Pyridoxamine anabolism:
ATP + PXL ⟶ ADP + PXLP
INOH(1)
- Vitamin B6 metabolism ( Vitamin B6 metabolism ):
H2O + O2 + Pyridoxal ⟶ 4-Pyridoxic acid + H2O2
PlantCyc(0)
PathBank(11)
- Vitamin B6 Metabolism:
Oxygen + Pyridoxamine 5'-phosphate + Water ⟶ Ammonia + Hydrogen peroxide + Pyridoxal 5'-phosphate
- Vitamin B6:
2-Oxo-3-hydroxy-4-phosphobutanoic acid + L-Glutamic acid ⟶ O-Phospho-4-hydroxy-L-threonine + Oxoglutaric acid
- Vitamin B6 Metabolism:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Hypophosphatasia:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Vitamin B6 Metabolism:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Hypophosphatasia:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Vitamin B6 Metabolism:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Vitamin B6 Metabolism:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Vitamin B6 Metabolism:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Vitamin B6 Metabolism:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Hypophosphatasia:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
PharmGKB(0)
6 个相关的物种来源信息
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 3702 - Arabidopsis thaliana: 10.1007/S00425-002-0799-0
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 3311 - Ginkgo biloba: 10.1021/JM010868F
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Qizhen Cui, Qingqing Liu, Yutong Fan, Chenhe Wang, Yufei Li, Shuyuan Li, Jianguo Zhang, Guodong Rao. Functional differentiation of olive PLP_deC genes: insights into metabolite biosynthesis and genetic improvement at the whole-genome level.
Plant cell reports.
2024 Apr; 43(5):127. doi:
10.1007/s00299-024-03212-z
. [PMID: 38652203] - Priscille Steensma, Marion Eisenhut, Maite Colinas, Laise Rosado-Souza, Alisdair R Fernie, Andreas P M Weber, Teresa B Fitzpatrick. PYRIDOX(AM)INE 5'-PHOSPHATE OXIDASE3 of Arabidopsis thaliana maintains carbon/nitrogen balance in distinct environmental conditions.
Plant physiology.
2023 09; 193(2):1433-1455. doi:
10.1093/plphys/kiad411
. [PMID: 37453131] - Jenny U Tran, Breann L Brown. The yeast ALA synthase C-terminus positively controls enzyme structure and function.
Protein science : a publication of the Protein Society.
2023 Feb; ?(?):e4600. doi:
10.1002/pro.4600
. [PMID: 36807942] - Maria Rutkiewicz, Isabel Nogues, Wojciech Witek, Sebastiana Angelaccio, Roberto Contestabile, Milosz Ruszkowski. Insights into the substrate specificity, structure, and dynamics of plant histidinol-phosphate aminotransferase (HISN6).
Plant physiology and biochemistry : PPB.
2023 Feb; 196(?):759-773. doi:
10.1016/j.plaphy.2023.02.017
. [PMID: 36842242] - Kaan Koper, Shogo Hataya, Andrew G Hall, Taichi E Takasuka, Hiroshi A Maeda. Biochemical characterization of plant aromatic aminotransferases.
Methods in enzymology.
2023; 680(?):35-83. doi:
10.1016/bs.mie.2022.07.034
. [PMID: 36710018] - Je Won Ko, Sookyoung Jeon, Young Hye Kwon. Dietary vitamin B6 restriction aggravates neurodegeneration in mice fed a high-fat diet.
Life sciences.
2022 Nov; 309(?):121041. doi:
10.1016/j.lfs.2022.121041
. [PMID: 36208656] - Dennis Schlossarek, Marcin Luzarowski, Ewelina M Sokołowska, Venkatesh P Thirumalaikumar, Lisa Dengler, Lothar Willmitzer, Jennifer C Ewald, Aleksandra Skirycz. Rewiring of the protein-protein-metabolite interactome during the diauxic shift in yeast.
Cellular and molecular life sciences : CMLS.
2022 Oct; 79(11):550. doi:
10.1007/s00018-022-04569-8
. [PMID: 36242648] - Naoufal Lakhssassi, Dounya Knizia, Abdelhalim El Baze, Aicha Lakhssassi, Jonas Meksem, Khalid Meksem. Proteomic, Transcriptomic, Mutational, and Functional Assays Reveal the Involvement of Both THF and PLP Sites at the GmSHMT08 in Resistance to Soybean Cyst Nematode.
International journal of molecular sciences.
2022 Sep; 23(19):. doi:
10.3390/ijms231911278
. [PMID: 36232579] - Yeong-Biau Yu, Douglas O Adams, Shang Fa Yang. Reprint of: 1-Aminocyclopropanecarboxylate Synthase, a Key Enzyme in Ethylene Biosynthesis.
Archives of biochemistry and biophysics.
2022 09; 726(?):109238. doi:
10.1016/j.abb.2022.109238
. [PMID: 35680445] - Joanna L Clasen, Alicia K Heath, Heleen Van Puyvelde, Inge Huybrechts, Jin Young Park, Pietro Ferrari, Ghislaine Scelo, Arve Ulvik, Øivind Midttun, Per Magne Ueland, Kim Overvad, Anne Kirstine Eriksen, Anne Tjønneland, Rudolf Kaaks, Verena Katzke, Matthias B Schulze, Domenico Palli, Claudia Agnoli, Paolo Chiodini, Rosario Tumino, Carlotta Sacerdote, Raul Zamora-Ros, Miguel Rodriguez-Barranco, Carmen Santiuste, Eva Ardanaz, Pilar Amiano, Julie A Schmidt, Elisabete Weiderpass, Marc Gunter, Elio Riboli, Amanda J Cross, Mattias Johansson, David C Muller. Biomarkers of the transsulfuration pathway and risk of renal cell carcinoma in the European Prospective Investigation into Cancer and Nutrition (EPIC) study.
International journal of cancer.
2022 09; 151(5):708-716. doi:
10.1002/ijc.34009
. [PMID: 35366005] - Hao-Hua Deng, Hui-Jing Yang, Kai-Yuan Huang, Yi-Jing Zheng, Ying-Ying Xu, Hua-Ping Peng, Yin-Huan Liu, Wei Chen, Guo-Lin Hong. Antenna effect of pyridoxal phosphate on the fluorescence of mitoxantrone-silicon nanoparticles and its application in alkaline phosphatase assay.
Analytical and bioanalytical chemistry.
2022 Jul; 414(17):4877-4884. doi:
10.1007/s00216-022-04110-7
. [PMID: 35576012] - Chaoran Ma, Qipin Chen, Diane C Mitchell, Muzi Na, Katherine L Tucker, Xiang Gao. Application of the deep learning algorithm in nutrition research - using serum pyridoxal 5'-phosphate as an example.
Nutrition journal.
2022 06; 21(1):38. doi:
10.1186/s12937-022-00793-x
. [PMID: 35689265] - Lei Xu, Yu-Jing Fang, Meng-Meng Che, Alinuer Abulimiti, Chu-Yi Huang, Cai-Xia Zhang. Association of Serum Pyridoxal-5'-Phosphate, Pyridoxal, and PAr with Colorectal Cancer Risk: A Large-Scale Case-Control Study.
Nutrients.
2022 Jun; 14(12):. doi:
10.3390/nu14122389
. [PMID: 35745119] - Hyojung Kim, Evelyn B Enrione, Vijaya Narayanan, Tan Li, Adriana Campa. Associations of Vitamin B6 Intake and Plasma Pyridoxal 5'-Phosphate with Plasma Polyunsaturated Fatty Acids in US Older Adults: Findings from NHANES 2003-2004.
Nutrients.
2022 Jun; 14(11):. doi:
10.3390/nu14112336
. [PMID: 35684138] - Jacqueline Altensell, Ruth Wartenberg, Ilka Haferkamp, Sebastian Hassler, Vanessa Scherer, Priscille Steensma, Teresa B Fitzpatrick, Anurag Sharma, Omar Sandoval-Ibañez, Mathias Pribil, Martin Lehmann, Dario Leister, Tatjana Kleine, H Ekkehard Neuhaus. Loss of a pyridoxal-phosphate phosphatase rescues Arabidopsis lacking an endoplasmic reticulum ATP carrier.
Plant physiology.
2022 05; 189(1):49-65. doi:
10.1093/plphys/kiac048
. [PMID: 35139220] - Zhi-Bin Li, Li-Ying Shi, Yu-Shuai Han, Jing Chen, Shan-Qiang Zhang, Jia-Xi Chen, Jun Liu, Hui-Hui Tu, Qi-Qi Lu, Yi Yu, Ting-Ting Jiang, Ji-Cheng Li. Pyridoxal phosphate, pyridoxamine phosphate, and folic acid based on ceRNA regulatory network as potential biomarkers for the diagnosis of pulmonary tuberculosis.
Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.
2022 04; 99(?):105240. doi:
10.1016/j.meegid.2022.105240
. [PMID: 35150890] - C Tornero, V Navarro-Compán, A Buño, K E Heath, M Díaz-Almirón, A Balsa, J A Tenorio, J Quer, P Aguado. Biochemical algorithm to identify individuals with ALPL variants among subjects with persistent hypophosphatasaemia.
Orphanet journal of rare diseases.
2022 03; 17(1):98. doi:
10.1186/s13023-022-02253-5
. [PMID: 35241128] - Atsushi Okawa, Haruhisa Handa, Eri Yasuda, Masaki Murota, Daizo Kudo, Takashi Tamura, Tomoo Shiba, Kenji Inagaki. Characterization and application of l-methionine γ-lyase Q349S mutant enzyme with an enhanced activity toward l-homocysteine.
Journal of bioscience and bioengineering.
2022 Mar; 133(3):213-221. doi:
10.1016/j.jbiosc.2021.11.008
. [PMID: 34953671] - Vera Gorelova, Maite Colinas, Elisa Dell'Aglio, Paulina Flis, David E Salt, Teresa B Fitzpatrick. Phosphorylated B6 vitamer deficiency in SALT OVERLY SENSITIVE 4 mutants compromises shoot and root development.
Plant physiology.
2022 01; 188(1):220-240. doi:
10.1093/plphys/kiab475
. [PMID: 34730814] - V Guarnieri, F Sileri, R Indirli, G Guabello, M Longhi, G Dito, C Verdelli, S Corbetta. Clinical, biochemical and genetic findings in adult patients with chronic hypophosphatasemia.
Journal of endocrinological investigation.
2022 Jan; 45(1):125-137. doi:
10.1007/s40618-021-01625-1
. [PMID: 34213743] - L Masi, F Marini, F Franceschelli, G Leoncini, L Cianferotti, F Cioppi, F Giusti, G Marcucci, G Gronchi, M L Brandi. Polymorphic variants of alkaline phosphatase gene correlate with clinical signs of adult hypophosphatasia?.
Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA.
2021 Dec; 32(12):2461-2472. doi:
10.1007/s00198-021-05893-8
. [PMID: 34097127] - R Garcia-Carretero, M Olid-Velilla, D Perez-Torrella, N Torres-Pacho, M-T Darnaude-Ortiz, A-D Bustamate-Zuloeta, J-A Tenorio. Predictive modeling of hypophosphatasia based on a case series of adult patients with persistent hypophosphatasemia.
Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA.
2021 Sep; 32(9):1815-1824. doi:
10.1007/s00198-021-05885-8
. [PMID: 33619648] - Chuxi Pan, Alexandra Zimmer, Megha Shah, Minh Sang Huynh, Christine Chieh-Lin Lai, Brandon Sit, Yogesh Hooda, David M Curran, Trevor F Moraes. Actinobacillus utilizes a binding protein-dependent ABC transporter to acquire the active form of vitamin B6.
The Journal of biological chemistry.
2021 09; 297(3):101046. doi:
10.1016/j.jbc.2021.101046
. [PMID: 34358566] - Mathias D G Van den Eynde, Jean L J M Scheijen, Coen D A Stehouwer, Toshio Miyata, Casper G Schalkwijk. Quantification of the B6 vitamers in human plasma and urine in a study with pyridoxamine as an oral supplement; pyridoxamine as an alternative for pyridoxine.
Clinical nutrition (Edinburgh, Scotland).
2021 07; 40(7):4624-4632. doi:
10.1016/j.clnu.2021.05.028
. [PMID: 34229268] - Jordi To-Figueras, Robin Wijngaard, Judit García-Villoria, Aasne K Aarsand, Paula Aguilera, Ramon Deulofeu, Mercè Brunet, Àlex Gómez-Gómez, Oscar J Pozo, Sverre Sandberg. Dysregulation of homocysteine homeostasis in acute intermittent porphyria patients receiving heme arginate or givosiran.
Journal of inherited metabolic disease.
2021 07; 44(4):961-971. doi:
10.1002/jimd.12391
. [PMID: 33861472] - Mark M Kushnir, Boya Song, Evelyn Yang, Elizabeth L Frank. Development and Clinical Evaluation of a High-Throughput LC-MS/MS Assay for Vitamin B6 in Human Plasma and Serum.
The journal of applied laboratory medicine.
2021 04; 6(3):702-714. doi:
10.1093/jalm/jfaa166
. [PMID: 33279978] - Peter Cuthbertson, Nicholas J Geraghty, Sam R Adhikary, Sienna Casolin, Debbie Watson, Ronald Sluyter. P2X7 receptor antagonism increases regulatory T cells and reduces clinical and histological graft-versus-host disease in a humanised mouse model.
Clinical science (London, England : 1979).
2021 02; 135(3):495-513. doi:
10.1042/cs20201352
. [PMID: 33463682] - Hyojung Kim, Evelyn B Enrione, Vijaya Narayanan, Tan Li, Adriana Campa. Gender Differences in the Associations of Plasma Pyridoxal 5'-Phosphate with Plasma Polyunsaturated Fatty Acids among US Young and Middle-Aged Adults: NHANES 2003-2004.
Nutrients.
2021 Jan; 13(2):. doi:
10.3390/nu13020477
. [PMID: 33572554] - Qichen Long, Tianqi Qi, Tianjiao Zhang, Jing Wang, Jie Zeng, Ying Yan, Meng Wang, Wei Huang, Haijian Zhao, Wenxiang Chen, Chuanbao Zhang. Commutability Assessment of Candidate External Quality Assessment Materials for Aminotransferase Activity Measurements Based on Different Approaches in China.
Annals of laboratory medicine.
2021 01; 41(1):68-76. doi:
10.3343/alm.2021.41.1.68
. [PMID: 32829581] - Norichika Ueda, Makoto Kondo, Kentaro Takezawa, Hiroshi Kiuchi, Yosuke Sekii, Yusuke Inagaki, Tetsuji Soda, Shinichiro Fukuhara, Kazutoshi Fujita, Motohide Uemura, Ryoichi Imamura, Yasushi Miyagawa, Norio Nonomura, Shoichi Shimada. Bladder urothelium converts bacterial lipopolysaccharide information into neural signaling via an ATP-mediated pathway to enhance the micturition reflex for rapid defense.
Scientific reports.
2020 12; 10(1):21167. doi:
10.1038/s41598-020-78398-9
. [PMID: 33273625] - Marian Schini, Philip Nicklin, Richard Eastell. Establishing race-, gender- and age-specific reference intervals for pyridoxal 5'-phosphate in the NHANES population to better identify adult hypophosphatasia.
Bone.
2020 12; 141(?):115577. doi:
10.1016/j.bone.2020.115577
. [PMID: 32791332] - Alexandra Jungert, Helene McNulty, Leane Hoey, Mary Ward, J J Strain, Catherine F Hughes, Liadhan McAnena, Monika Neuhäuser-Berthold, Kristina Pentieva. Riboflavin Is an Important Determinant of Vitamin B-6 Status in Healthy Adults.
The Journal of nutrition.
2020 10; 150(10):2699-2706. doi:
10.1093/jn/nxaa225
. [PMID: 32805038] - Juliette Bouchereau, Manuel Schiff. Inherited Disorders of Lysine Metabolism: A Review.
The Journal of nutrition.
2020 10; 150(Suppl 1):2556S-2560S. doi:
10.1093/jn/nxaa112
. [PMID: 33000154] - Federica Gevi, Antonio Belardo, Lello Zolla. A metabolomics approach to investigate urine levels of neurotransmitters and related metabolites in autistic children.
Biochimica et biophysica acta. Molecular basis of disease.
2020 10; 1866(10):165859. doi:
10.1016/j.bbadis.2020.165859
. [PMID: 32512190] - Isidor Minović, Lyanne M Kieneker, Ron T Gansevoort, Manfred Eggersdorfer, Daan J Touw, Albert-Jan Voerman, Margery A Connelly, Rudolf A de Boer, Eelko Hak, Jens Bos, Robin P F Dullaart, Ido P Kema, Stephan J L Bakker. Vitamin B6, Inflammation, and Cardiovascular Outcome in a Population-Based Cohort: The Prevention of Renal and Vascular End-Stage Disease (PREVEND) Study.
Nutrients.
2020 Sep; 12(9):. doi:
10.3390/nu12092711
. [PMID: 32899820] - Dinesh Talwar, Anthony Catchpole, John M Wadsworth, Barry J Toole, Donald C McMillan. The relationship between plasma albumin, alkaline phosphatase and pyridoxal phosphate concentrations in plasma and red cells: Implications for assessing vitamin B6 status.
Clinical nutrition (Edinburgh, Scotland).
2020 09; 39(9):2824-2831. doi:
10.1016/j.clnu.2019.12.012
. [PMID: 31883613] - Sajid Hussain, Jing Huang, Chunquan Zhu, Lianfeng Zhu, Xiaochuang Cao, Saddam Hussain, Muhammad Ashraf, Maqsood Ahmed Khaskheli, Yali Kong, Qianyu Jin, Xiaopeng Li, Junhua Zhang. Pyridoxal 5'-phosphate enhances the growth and morpho-physiological characteristics of rice cultivars by mitigating the ethylene accumulation under salinity stress.
Plant physiology and biochemistry : PPB.
2020 Sep; 154(?):782-795. doi:
10.1016/j.plaphy.2020.05.035
. [PMID: 32680726] - Peng Jiang, Yang He, Yiping Zhao, Li Chen. Hierarchical Surface Architecture of Hemodialysis Membranes for Eliminating Homocysteine Based on the Multifunctional Role of Pyridoxal 5'-phosphate.
ACS applied materials & interfaces.
2020 Aug; 12(33):36837-36850. doi:
10.1021/acsami.0c07090
. [PMID: 32705861] - Giovanni Bisello, Carmen Longo, Giada Rossignoli, Robert S Phillips, Mariarita Bertoldi. Oxygen reactivity with pyridoxal 5'-phosphate enzymes: biochemical implications and functional relevance.
Amino acids.
2020 Aug; 52(8):1089-1105. doi:
10.1007/s00726-020-02885-6
. [PMID: 32844248] - Sandra L Samarron, Joshua W Miller, Anthony T Cheung, Peter C Chen, Xin Lin, Theodore Zwerdling, Ted Wun, Ralph Green. Homocysteine is associated with severity of microvasculopathy in sickle cell disease patients.
British journal of haematology.
2020 08; 190(3):450-457. doi:
10.1111/bjh.16618
. [PMID: 32307711] - Natalie Keller, Natalia Mendoza-Ferreira, Reza Maroofian, Viorica Chelban, Youssef Khalil, Philippa B Mills, Reza Boostani, Paria Najarzadeh Torbati, Ehsan Ghayoor Karimiani, Holger Thiele, Henry Houlden, Brunhilde Wirth, Mert Karakaya. Hereditary polyneuropathy with optic atrophy due to PDXK variant leading to impaired Vitamin B6 metabolism.
Neuromuscular disorders : NMD.
2020 07; 30(7):583-589. doi:
10.1016/j.nmd.2020.04.004
. [PMID: 32522499] - Eveline Lefever, Peter Witters, Evelien Gielen, Annick Vanclooster, Wouter Meersseman, Eva Morava, David Cassiman, Michaël R Laurent. Hypophosphatasia in Adults: Clinical Spectrum and Its Association With Genetics and Metabolic Substrates.
Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry.
2020 Jul; 23(3):340-348. doi:
10.1016/j.jocd.2018.12.006
. [PMID: 30655187] - G A Gamov, A N Meshkov, M N Zavalishin, M V Petrova, A Yu Khokhlova, A V Gashnikova, V A Sharnin. Binding of pyridoxal, pyridoxal 5'-phosphate and derived hydrazones to bovine serum albumin in aqueous solution.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2020 Jun; 233(?):118165. doi:
10.1016/j.saa.2020.118165
. [PMID: 32120288] - Justyna Piechocka, Monika Wrońska, Iwona E Głowacka, Rafał Głowacki. 2-(3-Hydroxy-5-phosphonooxymethyl-2-methyl-4-pyridyl)-1,3-thiazolidine-4-carboxylic Acid, Novel Metabolite of Pyridoxal 5'-Phosphate and Cysteine Is Present in Human Plasma-Chromatographic Investigations.
International journal of molecular sciences.
2020 May; 21(10):. doi:
10.3390/ijms21103548
. [PMID: 32443403] - Hyo Young Jung, Woosuk Kim, Kyu Ri Hahn, Hyun Jung Kwon, Sung Min Nam, Jin Young Chung, Yeo Sung Yoon, Dae Won Kim, Dae Young Yoo, In Koo Hwang. Effects of Pyridoxine Deficiency on Hippocampal Function and Its Possible Association with V-Type Proton ATPase Subunit B2 and Heat Shock Cognate Protein 70.
Cells.
2020 04; 9(5):. doi:
10.3390/cells9051067
. [PMID: 32344819] - David A Korasick, Pramod K Kandoth, John J Tanner, Melissa G Mitchum, Lesa J Beamer. Impaired folate binding of serine hydroxymethyltransferase 8 from soybean underlies resistance to the soybean cyst nematode.
The Journal of biological chemistry.
2020 03; 295(11):3708-3718. doi:
10.1074/jbc.ra119.012256
. [PMID: 32014996] - Hang Wang, Jian Yu, Yasuharu Satoh, Yusuke Nakagawa, Ryusuke Tanaka, Koji Kato, Min Yao. Crystal structures clarify cofactor binding of plant tyrosine decarboxylase.
Biochemical and biophysical research communications.
2020 03; 523(2):500-505. doi:
10.1016/j.bbrc.2019.12.077
. [PMID: 31898973] - Guang Zhi Dai, Wen Bo Han, Ya Ning Mei, Kuang Xu, Rui Hua Jiao, Hui Ming Ge, Ren Xiang Tan. Pyridoxal-5'-phosphate-dependent bifunctional enzyme catalyzed biosynthesis of indolizidine alkaloids in fungi.
Proceedings of the National Academy of Sciences of the United States of America.
2020 01; 117(2):1174-1180. doi:
10.1073/pnas.1914777117
. [PMID: 31882449] - Akram A Da'dara, Manal Elzoheiry, Samar N El-Beshbishi, Patrick J Skelly. Vitamin B6 Acquisition and Metabolism in Schistosoma mansoni.
Frontiers in immunology.
2020; 11(?):622162. doi:
10.3389/fimmu.2020.622162
. [PMID: 33613557] - Per Jynge, Arne M Skjold, Ursula Falkmer, Rolf G G Andersson, John G Seland, Morten Bruvold, Viggo Blomlie, Willy Eidsaunet, Jan O G Karlsson. MnDPDP: Contrast Agent for Imaging and Protection of Viable Tissue.
Contrast media & molecular imaging.
2020; 2020(?):3262835. doi:
10.1155/2020/3262835
. [PMID: 32994754] - Anthony T Olofinnade, Tolulope M Onaolapo, Samad Oladimeji, Adetunji M Fatoki, Covenant I Balogun, Adejoke Y Onaolapo, Olakunle J Onaolapo. An Evaluation of the Effects of Pyridoxal Phosphate in Chlorpromazineinduced Parkinsonism using Mice.
Central nervous system agents in medicinal chemistry.
2020; 20(1):13-25. doi:
10.2174/1871524920666200120142508
. [PMID: 31987026] - Arve Ulvik, Øivind Midttun, Adrian McCann, Klaus Meyer, Grethe Tell, Ottar Nygård, Per M Ueland. Tryptophan catabolites as metabolic markers of vitamin B-6 status evaluated in cohorts of healthy adults and cardiovascular patients.
The American journal of clinical nutrition.
2020 01; 111(1):178-186. doi:
10.1093/ajcn/nqz228
. [PMID: 31557280] - Yachana Upadhyay, Shilpa Bothra, Rajender Kumar, Ashok Kumar Sk, Suban K Sahoo. Mimicking biological process to detect alkaline phosphatase activity using the vitamin B6 cofactor conjugated bovine serum albumin capped CdS quantum dots.
Colloids and surfaces. B, Biointerfaces.
2020 Jan; 185(?):110624. doi:
10.1016/j.colsurfb.2019.110624
. [PMID: 31711735] - Lei Zhang, Chunyan Jiao, Yunpeng Cao, Xi Cheng, Jian Wang, Qing Jin, Yongping Cai. Comparative Analysis and Expression Patterns of the PLP_deC Genes in Dendrobium officinale.
International journal of molecular sciences.
2019 Dec; 21(1):. doi:
10.3390/ijms21010054
. [PMID: 31861760] - Conrad Fischer, Yeong-Chan Ahn, John C Vederas. Catalytic mechanism and properties of pyridoxal 5'-phosphate independent racemases: how enzymes alter mismatched acidity and basicity.
Natural product reports.
2019 12; 36(12):1687-1705. doi:
10.1039/c9np00017h
. [PMID: 30994146] - Hajime Yasuda, Miyuki Tsutsui, Jun Ando, Tadaaki Inano, Masaaki Noguchi, Yuriko Yahata, Masaru Tanaka, Yutaka Tsukune, Azuchi Masuda, Shuichi Shirane, Kyohei Misawa, Akihiko Gotoh, Eriko Sato, Nanae Aritaka, Yasunobu Sekiguchi, Keiji Sugimoto, Norio Komatsu. Vitamin B6 deficiency is prevalent in primary and secondary myelofibrosis patients.
International journal of hematology.
2019 Nov; 110(5):543-549. doi:
10.1007/s12185-019-02717-8
. [PMID: 31407257] - Xianghui Wang, Li Xu, Zhanying Ren, Mingxia Fan, Jie Zhang, Hongxin Qi, Min Xu. A novel manganese chelated macromolecular MRI contrast agent based on O-carboxymethyl chitosan derivatives.
Colloids and surfaces. B, Biointerfaces.
2019 Nov; 183(?):110452. doi:
10.1016/j.colsurfb.2019.110452
. [PMID: 31473409] - Tomonori Ishiguro, Yuichiro Sugiyama, Kazuto Ueda, Yukako Muramatsu, Hiroyuki Tsuda, Tomomi Kotani, Toshimi Michigami, Kanako Tachikawa, Tomoyuki Akiyama, Masahiro Hayakawa. Findings of amplitude-integrated electroencephalogram recordings and serum vitamin B6 metabolites in perinatal lethal hypophosphatasia during enzyme replacement therapy.
Brain & development.
2019 Sep; 41(8):721-725. doi:
10.1016/j.braindev.2019.03.015
. [PMID: 31000369] - A A Khan, R Josse, P Kannu, J Villeneuve, T Paul, S Van Uum, C R Greenberg. Hypophosphatasia: Canadian update on diagnosis and management.
Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA.
2019 Sep; 30(9):1713-1722. doi:
10.1007/s00198-019-04921-y
. [PMID: 30915507] - Sandra P Arévalo, Tammy M Scott, Luis M Falcón, Katherine L Tucker. Vitamin B-6 and depressive symptomatology, over time, in older Latino adults.
Nutritional neuroscience.
2019 Sep; 22(9):625-636. doi:
10.1080/1028415x.2017.1422904
. [PMID: 29338677] - Maria F Mujica-Coopman, Dayana R Farias, Ana B Franco-Sena, Juliana S Vaz, Gilberto Kac, Yvonne Lamers. Maternal Plasma Pyridoxal 5'-Phosphate Concentration Is Inversely Associated with Plasma Cystathionine Concentration across All Trimesters in Healthy Pregnant Women.
The Journal of nutrition.
2019 08; 149(8):1354-1362. doi:
10.1093/jn/nxz082
. [PMID: 31098628] - Viorica Chelban, Matthew P Wilson, Jodi Warman Chardon, Jana Vandrovcova, M Natalia Zanetti, Eleni Zamba-Papanicolaou, Stephanie Efthymiou, Simon Pope, Maria R Conte, Giancarlo Abis, Yo-Tsen Liu, Eloise Tribollet, Nourelhoda A Haridy, Juan A Botía, Mina Ryten, Paschalis Nicolaou, Anna Minaidou, Kyproula Christodoulou, Kristin D Kernohan, Alison Eaton, Matthew Osmond, Yoko Ito, Pierre Bourque, James E C Jepson, Oscar Bello, Fion Bremner, Carla Cordivari, Mary M Reilly, Martha Foiani, Amanda Heslegrave, Henrik Zetterberg, Simon J R Heales, Nicholas W Wood, James E Rothman, Kym M Boycott, Philippa B Mills, Peter T Clayton, Henry Houlden. PDXK mutations cause polyneuropathy responsive to pyridoxal 5'-phosphate supplementation.
Annals of neurology.
2019 08; 86(2):225-240. doi:
10.1002/ana.25524
. [PMID: 31187503] - Matthew P Wilson, Barbara Plecko, Philippa B Mills, Peter T Clayton. Disorders affecting vitamin B6 metabolism.
Journal of inherited metabolic disease.
2019 07; 42(4):629-646. doi:
10.1002/jimd.12060
. [PMID: 30671974] - Mengya Li, Yifeng Wei, Jinyu Yin, Lianyun Lin, Yan Zhou, Gaoqun Hua, Peng Cao, Ee Lui Ang, Huimin Zhao, Zhiguang Yuchi, Yan Zhang. Biochemical and structural investigation of taurine:2-oxoglutarate aminotransferase from Bifidobacterium kashiwanohense.
The Biochemical journal.
2019 06; 476(11):1605-1619. doi:
10.1042/bcj20190206
. [PMID: 31088892] - Katie Moore, Catherine F Hughes, Leane Hoey, Mary Ward, Conal Cunningham, Anne M Molloy, J J Strain, Kevin McCarroll, Miriam C Casey, Fergal Tracey, Eamon Laird, Maurice O'Kane, Helene McNulty. B-vitamins in Relation to Depression in Older Adults Over 60 Years of Age: The Trinity Ulster Department of Agriculture (TUDA) Cohort Study.
Journal of the American Medical Directors Association.
2019 05; 20(5):551-557.e1. doi:
10.1016/j.jamda.2018.11.031
. [PMID: 30692033] - Jon Sigurd Sande, Arve Ulvik, Øivind Midttun, Per M Ueland, Hilde B Hammer, Merete Valen, Ellen M Apalset, Clara G Gjesdal. Vitamin B-6 Status Correlates with Disease Activity in Rheumatoid Arthritis Patients During Treatment with TNFα Inhibitors.
The Journal of nutrition.
2019 05; 149(5):770-775. doi:
10.1093/jn/nxz001
. [PMID: 31050750] - Matthew Harmer, Stephen Wootton, Rodney Gilbert, Caroline Anderson. Vitamin B6 in Pediatric Renal Transplant Recipients.
Journal of renal nutrition : the official journal of the Council on Renal Nutrition of the National Kidney Foundation.
2019 05; 29(3):205-208. doi:
10.1053/j.jrn.2018.09.003
. [PMID: 30424951] - Serena C Houghton, A Heather Eliassen, Shumin M Zhang, Jacob Selhub, Bernard A Rosner, Walter C Willett, Susan E Hankinson. Plasma B-vitamin and one-carbon metabolites and risk of breast cancer before and after folic acid fortification in the United States.
International journal of cancer.
2019 04; 144(8):1929-1940. doi:
10.1002/ijc.31934
. [PMID: 30346061] - Björn Gylling, Robin Myte, Arve Ulvik, Per M Ueland, Øivind Midttun, Jörn Schneede, Göran Hallmans, Jenny Häggström, Ingegerd Johansson, Bethany Van Guelpen, Richard Palmqvist. One-carbon metabolite ratios as functional B-vitamin markers and in relation to colorectal cancer risk.
International journal of cancer.
2019 03; 144(5):947-956. doi:
10.1002/ijc.31606
. [PMID: 29786139] - Robert M Hoffman, Yuying Tan, Shukuan Li, Qinghong Han, Shigeo Yagi, Tomoaki Takakura, Akio Takimoto, Kenji Inagaki, Daizou Kudou. Development of Recombinant Methioninase for Cancer Treatment.
Methods in molecular biology (Clifton, N.J.).
2019; 1866(?):107-131. doi:
10.1007/978-1-4939-8796-2_10
. [PMID: 30725412] - Huang ShuoHao, Liu Jing, Zhou Jie, Zhang JianYun, Huang LongQuan. Identification and characterization of a pyridoxal 5'-phosphate phosphatase in tobacco plants.
Plant science : an international journal of experimental plant biology.
2019 Jan; 278(?):88-95. doi:
10.1016/j.plantsci.2018.10.014
. [PMID: 30471733] - Daisuke Kobayashi. [Food Poisoning by Ginkgo Seeds through Vitamin B6 Depletion].
Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan.
2019; 139(1):1-6. doi:
10.1248/yakushi.18-00136
. [PMID: 30606915] - Juntratip Jomrit, Duangnate Isarangkul, Pijug Summpunn, Suthep Wiyakrutta. A kinetic spectrophotometric method for the determination of pyridoxal-5'-phosphate based on coenzyme activation of apo-d-phenylglycine aminotransferase.
Enzyme and microbial technology.
2018 Oct; 117(?):64-71. doi:
10.1016/j.enzmictec.2018.06.003
. [PMID: 30037553] - Geeta Deka, Sakshibeedu R Bharath, Handanhal Subbarao Savithri, Mathur Ramabhadrashastry Narasimha Murthy. Structural and biochemical studies on the role of active site Thr166 and Asp236 in the catalytic function of D-Serine deaminase from Salmonella typhimurium.
Biochemical and biophysical research communications.
2018 09; 504(1):40-45. doi:
10.1016/j.bbrc.2018.08.116
. [PMID: 30173889] - Zahra Shajani-Yi, Abigail A Johnston, Samuel J Casella, Mark A Cervinski. Low serum alkaline phosphatase activity due to asymptomatic hypophosphatasia in a teenage girl.
Clinical biochemistry.
2018 Sep; 59(?):90-92. doi:
10.1016/j.clinbiochem.2018.06.018
. [PMID: 29958879] - Tomoyuki Akiyama, Takuo Kubota, Keiichi Ozono, Toshimi Michigami, Daisuke Kobayashi, Shinji Takeyari, Yuichiro Sugiyama, Masahiro Noda, Daisuke Harada, Noriyuki Namba, Atsushi Suzuki, Maiko Utoyama, Sachiko Kitanaka, Mitsugu Uematsu, Yusuke Mitani, Kunihiro Matsunami, Shigeru Takishima, Erika Ogawa, Katsuhiro Kobayashi. Pyridoxal 5'-phosphate and related metabolites in hypophosphatasia: Effects of enzyme replacement therapy.
Molecular genetics and metabolism.
2018 09; 125(1-2):174-180. doi:
10.1016/j.ymgme.2018.07.006
. [PMID: 30049651] - Joshua D Ochocki, Sanika Khare, Markus Hess, Daniel Ackerman, Bo Qiu, Jennie I Daisak, Andrew J Worth, Nan Lin, Pearl Lee, Hong Xie, Bo Li, Bradley Wubbenhorst, Tobi G Maguire, Katherine L Nathanson, James C Alwine, Ian A Blair, Itzhak Nissim, Brian Keith, M Celeste Simon. Arginase 2 Suppresses Renal Carcinoma Progression via Biosynthetic Cofactor Pyridoxal Phosphate Depletion and Increased Polyamine Toxicity.
Cell metabolism.
2018 Jun; 27(6):1263-1280.e6. doi:
10.1016/j.cmet.2018.04.009
. [PMID: 29754953] - Shilpa Bothra, Lavanya Thilak Babu, Priyankar Paira, S K Ashok Kumar, Rajender Kumar, Suban K Sahoo. A biomimetic approach to conjugate vitamin B6 cofactor with the lysozyme cocooned fluorescent AuNCs and its application in turn-on sensing of zinc(II) in environmental and biological samples.
Analytical and bioanalytical chemistry.
2018 Jan; 410(1):201-210. doi:
10.1007/s00216-017-0710-2
. [PMID: 29098339] - Hui Zuo, Grethe S Tell, Per M Ueland, Ottar Nygård, Stein E Vollset, Øivind Midttun, Klaus Meyer, Arve Ulvik. The PAr index, an indicator reflecting altered vitamin B-6 homeostasis, is associated with long-term risk of stroke in the general population: the Hordaland Health Study (HUSK).
The American journal of clinical nutrition.
2018 01; 107(1):105-112. doi:
10.1093/ajcn/nqx012
. [PMID: 29381795] - Lesley Plumptre, Shannon P Masih, Kyoung-Jin Sohn, Denise Kim, Carly E Visentin, Anna Ly, Howard Berger, Ruth Croxford, Deborah L O'Connor, Young-In Kim. Suboptimal maternal and cord plasma pyridoxal 5' phosphate concentrations are uncommon in a cohort of Canadian pregnant women and newborn infants.
Maternal & child nutrition.
2018 01; 14(1):. doi:
10.1111/mcn.12467
. [PMID: 28544455] - Joyce Y Huang, Lesley M Butler, Øivind Midttun, Arve Ulvik, Renwei Wang, Aizhen Jin, Yu-Tang Gao, Per M Ueland, Woon-Puay Koh, Jian-Min Yuan. A prospective evaluation of serum kynurenine metabolites and risk of pancreatic cancer.
PloS one.
2018; 13(5):e0196465. doi:
10.1371/journal.pone.0196465
. [PMID: 29734388] - Isidor Minović, Anna van der Veen, Martijn van Faassen, Ineke J Riphagen, Else van den Berg, Claude van der Ley, António W Gomes-Neto, Johanna M Geleijnse, Manfred Eggersdorfer, Gerjan J Navis, Ido P Kema, Stephan Jl Bakker. Functional vitamin B-6 status and long-term mortality in renal transplant recipients.
The American journal of clinical nutrition.
2017 Dec; 106(6):1366-1374. doi:
10.3945/ajcn.117.164012
. [PMID: 28978540] - Michael T Ringel, Gerald Dräger, Thomas Brüser. The periplasmic transaminase PtaA of Pseudomonas fluorescens converts the glutamic acid residue at the pyoverdine fluorophore to α-ketoglutaric acid.
The Journal of biological chemistry.
2017 11; 292(45):18660-18671. doi:
10.1074/jbc.m117.812545
. [PMID: 28912270] - Rúben J Ramos, Mia L Pras-Raves, Johan Gerrits, Maria van der Ham, Marcel Willemsen, Hubertus Prinsen, Boudewijn Burgering, Judith J Jans, Nanda M Verhoeven-Duif. Vitamin B6 is essential for serine de novo biosynthesis.
Journal of inherited metabolic disease.
2017 11; 40(6):883-891. doi:
10.1007/s10545-017-0061-3
. [PMID: 28801717] - Markus Schwiering, Matthias Husmann, Nadja Hellmann. P2X-Receptor Antagonists Inhibit the Interaction of S. aureus Hemolysin A with Membranes.
Toxins.
2017 10; 9(10):. doi:
10.3390/toxins9100332
. [PMID: 29048353] - Mohamed Ibrahim Halawa, Wenyue Gao, Muhammad Saqib, Shimeles Addisu Kitte, Fengxia Wu, Guobao Xu. Sensitive detection of alkaline phosphatase by switching on gold nanoclusters fluorescence quenched by pyridoxal phosphate.
Biosensors & bioelectronics.
2017 Sep; 95(?):8-14. doi:
10.1016/j.bios.2017.03.073
. [PMID: 28399445] - Barbara N DeRatt, Maria A Ralat, Vegard Lysne, Fariba Tayyari, Indu Dhar, Arthur S Edison, Timothy J Garrett, Øivind Midttun, Per Magne Ueland, Ottar Kjell Nygård, Jesse F Gregory. Metabolomic Evaluation of the Consequences of Plasma Cystathionine Elevation in Adults with Stable Angina Pectoris.
The Journal of nutrition.
2017 09; 147(9):1658-1668. doi:
10.3945/jn.117.254029
. [PMID: 28794210] - Tomoyuki Akiyama, Yumiko Hayashi, Yoshiyuki Hanaoka, Takashi Shibata, Mari Akiyama, Hiroki Tsuchiya, Tokito Yamaguchi, Katsuhiro Kobayashi. Pyridoxal 5'-phosphate, pyridoxal, and 4-pyridoxic acid in the paired serum and cerebrospinal fluid of children.
Clinica chimica acta; international journal of clinical chemistry.
2017 Sep; 472(?):118-122. doi:
10.1016/j.cca.2017.07.032
. [PMID: 28778380] - F E McKiernan, J Dong, R L Berg, E Scotty, P Mundt, L Larson, I Rai. Mutational and biochemical findings in adults with persistent hypophosphatasemia.
Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA.
2017 08; 28(8):2343-2348. doi:
10.1007/s00198-017-4035-y
. [PMID: 28401263] - Manisha Banerjee, Dhiman Chakravarty, Anand Ballal. Molecular basis of function and the unusual antioxidant activity of a cyanobacterial cysteine desulfurase.
The Biochemical journal.
2017 07; 474(14):2435-2447. doi:
10.1042/bcj20170290
. [PMID: 28592683] - Fabien Gay, Karine Aguera, Karine Sénéchal, Angie Tainturier, Willy Berlier, Delphine Maucort-Boulch, Jérôme Honnorat, Françoise Horand, Yann Godfrin, Vanessa Bourgeaux. Methionine tumor starvation by erythrocyte-encapsulated methionine gamma-lyase activity controlled with per os vitamin B6.
Cancer medicine.
2017 Jun; 6(6):1437-1452. doi:
10.1002/cam4.1086
. [PMID: 28544589] - Isidor Minović, Ineke J Riphagen, Else van den Berg, Jenny E Kootstra-Ros, Martijn van Faassen, Antonio W Gomes Neto, Johanna M Geleijnse, Reinold Ob Gans, Manfred Eggersdorfer, Gerjan J Navis, Ido P Kema, Stephan Jl Bakker. Vitamin B-6 deficiency is common and associated with poor long-term outcome in renal transplant recipients.
The American journal of clinical nutrition.
2017 06; 105(6):1344-1350. doi:
10.3945/ajcn.116.151431
. [PMID: 28468895] - C Fonta, J-P Salles. Neuromuscular features of hypophosphatasia.
Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
2017 May; 24(5S2):5S85-5S88. doi:
10.1016/s0929-693x(18)30021-6
. [PMID: 29405939] - Benjamin T Fuller, Klaus J Petzke. The dietary protein paradox and threonine 15 N-depletion: Pyridoxal-5'-phosphate enzyme activity as a mechanism for the δ15 N trophic level effect.
Rapid communications in mass spectrometry : RCM.
2017 Apr; 31(8):705-718. doi:
10.1002/rcm.7835
. [PMID: 28181729] - Björn Gylling, Robin Myte, Jörn Schneede, Göran Hallmans, Jenny Häggström, Ingegerd Johansson, Arve Ulvik, Per M Ueland, Bethany Van Guelpen, Richard Palmqvist. Vitamin B-6 and colorectal cancer risk: a prospective population-based study using 3 distinct plasma markers of vitamin B-6 status.
The American journal of clinical nutrition.
2017 04; 105(4):897-904. doi:
10.3945/ajcn.116.139337
. [PMID: 28275126] - Ashraf S A El-Sayed, Laura E Ruff, Salah E Abdel Ghany, Gul Shad Ali, Sadik Esener. Molecular and Spectroscopic Characterization of Aspergillus flavipes and Pseudomonas putida L-Methionine γ-Lyase in Vitro.
Applied biochemistry and biotechnology.
2017 Apr; 181(4):1513-1532. doi:
10.1007/s12010-016-2299-x
. [PMID: 27796875] - Jung Seung Lee, Kyuri Kim, Joseph P Park, Seung-Woo Cho, Haeshin Lee. Role of Pyridoxal 5'-Phosphate at the Titanium Implant Interface In Vivo: Increased Hemophilicity, Inactive Platelet Adhesion, and Osteointegration.
Advanced healthcare materials.
2017 Mar; 6(5):. doi:
10.1002/adhm.201600962
. [PMID: 28081293] - Wupeng Yan, Everett Stone, Yan Jessie Zhang. Structural Snapshots of an Engineered Cystathionine-γ-lyase Reveal the Critical Role of Electrostatic Interactions in the Active Site.
Biochemistry.
2017 02; 56(6):876-885. doi:
10.1021/acs.biochem.6b01172
. [PMID: 28106980] - Per Magne Ueland, Adrian McCann, Øivind Midttun, Arve Ulvik. Inflammation, vitamin B6 and related pathways.
Molecular aspects of medicine.
2017 02; 53(?):10-27. doi:
10.1016/j.mam.2016.08.001
. [PMID: 27593095]