1-linoleoylglycerol (18:2) (BioDeep_00000018222)

Main id: BioDeep_00000395488

 

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite


代谢物信息卡片


(2S)-2,3-dihydroxypropyl (9Z,12Z)-octadeca-9,12-dienoate

化学式: C21H38O4 (354.2769948)
中文名称: (9Z,12Z)-9,12-十八碳二烯酸 2,3-二羟基丙基酯, 一亚油酸甘油酯C18:2
谱图信息: 最多检出来源 () 0%

Reviewed

Last reviewed on 2024-09-14.

Cite this Page

1-linoleoylglycerol (18:2). BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/1-linoleoylglycerol_(18:2) (retrieved 2024-11-09) (BioDeep RN: BioDeep_00000018222). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CCCCC/C=C\C/C=C\CCCCCCCC(OCC(O)CO)=O
InChI: InChI=1S/C21H38O4/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-21(24)25-19-20(23)18-22/h6-7,9-10,20,22-23H,2-5,8,11-19H2,1H3/t20-/m0/s1

描述信息

MG(18:2(9Z,12Z)/0:0/0:0) is a monoacylglyceride. A monoglyceride, more correctly known as a monoacylglycerol, is a glyceride consisting of one fatty acid chain covalently bonded to a glycerol molecule through an ester linkage. Monoacylglycerol can be broadly divided into two groups; 1-monoacylglycerols (or 3-monoacylglycerols) and 2-monoacylglycerols, depending on the position of the ester bond on the glycerol moiety. Normally the 1-/3-isomers are not distinguished from each other and are termed alpha-monoacylglycerols, while the 2-isomers are beta-monoacylglycerols. Monoacylglycerols are formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase or hormone sensitive lipase. Monoacylglycerols are broken down by monoacylglycerol lipase. They tend to be minor components only of most plant and animal tissues, and indeed would not be expected to accumulate because their strong detergent properties would have a disruptive effect on membranes. 2-Monoacylglycerols are a major end product of the intestinal digestion of dietary fats in animals via the enzyme pancreatic lipase. They are taken up directly by the intestinal cells and converted to triacylglycerols via the monoacylglycerol pathway before being transported in lymph to the liver. Mono- and Diglycerides are commonly added to commercial food products in small quantities. They act as emulsifiers, helping to mix ingredients such as oil and water that would not otherwise blend well. [HMDB]
MG(18:2(9Z,12Z)/0:0/0:0) is a monoacylglyceride. A monoglyceride, more correctly known as a monoacylglycerol, is a glyceride consisting of one fatty acid chain covalently bonded to a glycerol molecule through an ester linkage. Monoacylglycerol can be broadly divided into two groups; 1-monoacylglycerols (or 3-monoacylglycerols) and 2-monoacylglycerols, depending on the position of the ester bond on the glycerol moiety. Normally the 1-/3-isomers are not distinguished from each other and are termed alpha-monoacylglycerols, while the 2-isomers are beta-monoacylglycerols. Monoacylglycerols are formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase or hormone sensitive lipase. Monoacylglycerols are broken down by monoacylglycerol lipase. They tend to be minor components only of most plant and animal tissues, and indeed would not be expected to accumulate because their strong detergent properties would have a disruptive effect on membranes. 2-Monoacylglycerols are a major end product of the intestinal digestion of dietary fats in animals via the enzyme pancreatic lipase. They are taken up directly by the intestinal cells and converted to triacylglycerols via the monoacylglycerol pathway before being transported in lymph to the liver. Mono- and Diglycerides are commonly added to commercial food products in small quantities. They act as emulsifiers, helping to mix ingredients such as oil and water that would not otherwise blend well.
1-Linoleoyl Glycerol is a fatty acid glycerol.
1-Linoleoyl Glycerol is a fatty acid glycerol.
1-Linoleoyl Glycerol is a fatty acid glycerol.

同义名列表

44 个代谢物同义名

(2S)-2,3-dihydroxypropyl (9Z,12Z)-octadeca-9,12-dienoate; (±)-2,3-dihydroxypropyl 9(Z),12(Z)-octadecadienoate; (9Z,12Z)-2,3-Dihydroxypropyl octadecadienoate; 2,3-Dihydroxypropyl 9,12-octadecadienoate; 1-(9Z,12Z-octadecadienoyl)-rac-glycerol; 1-(9Z,12Z)-Octadecadienoyl-sn-glycerol; 1-(9Z,12Z-Octadecadienoyl)-sn-glycerol; 1-O-(9Z,12Z-octadecadienoyl)glycerol; 3-O-(9Z,12Z-Octadecadienoyl)glycerol; glyceryl linoleic acid monoester; 2,3-Dihydroxypropyl linoleate; 1-monolinoleoyl-rac-glycerol; 1-Linoleoyl-sn-monoglyceride; sn-1-Monolinoleoylglycerol; (S)-1-O-Linoleoylglycerol; MG(18:2(9Z,12Z)/0:0/0:0); alpha-Glyceryl linoleate; Glycerol 1-monolinolate; MG (18:2(N-6)/0:0/0:0); alpha-Monoacylglycerol; Α-glyceryl linoleate; 1-Glyceryl linoleate; 1-Linoleoyl-glycerol; 1-Monoacylglyceride; a-Monoacylglycerol; (S)-1-Monolinolein; alpha-Monolinolein; 1-Monoacylglycerol; 1-Linoleylglycerol; MAG(18:2W6/0:0); MAG(18:2n6/0:0); MG(18:2n6/0:0); MG(18:2W6/0:0); 1-Monolinolein; Α-monolinolein; MAG(18:2/0:0); monolinolein; MG(18:2/0:0); MAG(18:2); MG(18:2); mLG cpd; 1-LG; 1-Linoleoyl-rac-glycerol; 1-Linoleoyl Glycerol



数据库引用编号

11 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

144 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(144)

PharmGKB(0)

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Amin Sadeghpour, Michael Rappolt, Shravasti Misra, Chandrashekhar V Kulkarni. Bile Salts Caught in the Act: From Emulsification to Nanostructural Reorganization of Lipid Self-Assemblies. Langmuir : the ACS journal of surfaces and colloids. 2018 11; 34(45):13626-13637. doi: 10.1021/acs.langmuir.8b02343. [PMID: 30347980]
  • Samuel Guillot, Fabienne Méducin, Kristina Poljak, Virginie Malard, Alexandra Foucault-Collet, Sébastien Serieye, Chantal Pichon. Nanostructured monolinolein miniemulsions as delivery systems: Role of the internal mesophase on cytotoxicity and cell internalization. International journal of pharmaceutics. 2017 May; 523(1):142-150. doi: 10.1016/j.ijpharm.2017.03.012. [PMID: 28284919]
  • Isabelle Martiel, Nicole Baumann, Jijo J Vallooran, Jotam Bergfreund, Laurent Sagalowicz, Raffaele Mezzenga. Oil and drug control the release rate from lyotropic liquid crystals. Journal of controlled release : official journal of the Controlled Release Society. 2015 Apr; 204(?):78-84. doi: 10.1016/j.jconrel.2015.02.034. [PMID: 25744826]
  • Omoakhe Tisor, Michelle Muzzio, David Lopez, Sunghee Lee. Adaptability of monoglyceride-induced crystallization of K2SO4: effect of various anions and lipid chain splay. Langmuir : the ACS journal of surfaces and colloids. 2015 Feb; 31(7):2112-9. doi: 10.1021/la5049419. [PMID: 25645981]
  • Renata Negrini, Antoni Sánchez-Ferrer, Raffaele Mezzenga. Influence of electrostatic interactions on the release of charged molecules from lipid cubic phases. Langmuir : the ACS journal of surfaces and colloids. 2014 Apr; 30(15):4280-8. doi: 10.1021/la5008439. [PMID: 24673189]
  • Jijo J Vallooran, Renata Negrini, Raffaele Mezzenga. Controlling anisotropic drug diffusion in lipid-Fe3O4 nanoparticle hybrid mesophases by magnetic alignment. Langmuir : the ACS journal of surfaces and colloids. 2013 Jan; 29(4):999-1004. doi: 10.1021/la304563r. [PMID: 23302008]
  • Renata Negrini, Raffaele Mezzenga. Diffusion, molecular separation, and drug delivery from lipid mesophases with tunable water channels. Langmuir : the ACS journal of surfaces and colloids. 2012 Nov; 28(47):16455-62. doi: 10.1021/la303833s. [PMID: 23116138]
  • Zhi-Qiang Chen, Ying Liu, Ji-Hui Zhao, Lan Wang, Nian-Ping Feng. Improved oral bioavailability of poorly water-soluble indirubin by a supersaturatable self-microemulsifying drug delivery system. International journal of nanomedicine. 2012; 7(?):1115-25. doi: 10.2147/ijn.s28761. [PMID: 22403491]
  • Yongcheng Huang, Jonathan C Cohen, Helen H Hobbs. Expression and characterization of a PNPLA3 protein isoform (I148M) associated with nonalcoholic fatty liver disease. The Journal of biological chemistry. 2011 Oct; 286(43):37085-93. doi: 10.1074/jbc.m111.290114. [PMID: 21878620]
  • Chandrashekhar V Kulkarni. Nanostructural studies on monoelaidin-water systems at low temperatures. Langmuir : the ACS journal of surfaces and colloids. 2011 Oct; 27(19):11790-800. doi: 10.1021/la201235h. [PMID: 21846133]
  • Toshihiro Murata, Naoki Mori, Ritsuo Nishida. Larval feeding stimulants for a rutaceae-feeding swallowtail butterfly, Papilio xuthus L. in Citrus unshiu leaves. Journal of chemical ecology. 2011 Oct; 37(10):1099-109. doi: 10.1007/s10886-011-0022-5. [PMID: 21959594]
  • Alexandru Zabara, Idit Amar-Yuli, Raffaele Mezzenga. Tuning in-meso-crystallized lysozyme polymorphism by lyotropic liquid crystal symmetry. Langmuir : the ACS journal of surfaces and colloids. 2011 May; 27(10):6418-25. doi: 10.1021/la200710p. [PMID: 21506575]
  • Yosra S R Elnaggar, Magda A El-Massik, Ossama Y Abdallah. Fabrication, appraisal, and transdermal permeation of sildenafil citrate-loaded nanostructured lipid carriers versus solid lipid nanoparticles. International journal of nanomedicine. 2011; 6(?):3195-205. doi: 10.2147/ijn.s25825. [PMID: 22238508]
  • Andreas Georg Degenhardt, Thomas Hofmann. Bitter-tasting and kokumi-enhancing molecules in thermally processed avocado (Persea americana Mill.). Journal of agricultural and food chemistry. 2010 Dec; 58(24):12906-15. doi: 10.1021/jf103848p. [PMID: 21080628]
  • Xi Chen, Lian Liu, Gustavo Palacios, Jie Gao, Ning Zhang, Guang Li, Juan Lu, Ting Song, Yingzhi Zhang, Haitao Lv. Plasma metabolomics reveals biomarkers of the atherosclerosis. Journal of separation science. 2010 Sep; 33(17-18):2776-83. doi: 10.1002/jssc.201000395. [PMID: 20730840]
  • Samuel Guillot, Stefan Salentinig, Angela Chemelli, Laurent Sagalowicz, Martin E Leser, Otto Glatter. Influence of the stabilizer concentration on the internal liquid crystalline order and the size of oil-loaded monolinolein-based dispersions. Langmuir : the ACS journal of surfaces and colloids. 2010 May; 26(9):6222-9. doi: 10.1021/la903927w. [PMID: 20143786]
  • Yong-Hui Li, Yi-Fang Yang, Kun Li, Li-Li Jin, Nian-Yun Yang, De-Yun Kong. 5 alpha-reductase and aromatase inhibitory constituents from Brassica rapa L. pollen. Chemical & pharmaceutical bulletin. 2009 Apr; 57(4):401-4. doi: 10.1248/cpb.57.401. [PMID: 19336936]
  • Nag Jin Choi, Hui Gyu Park, Young Jun Kim, In Hwan Kim, Hye Soon Kang, Chil Suk Yoon, Ho Geun Yoon, Su-Il Park, Jae Woo Lee, Soo Hyun Chung. Utilization of monolinolein as a substrate for conjugated linoleic acid production by Bifidobacterium breve LMC 520 of human neonatal origin. Journal of agricultural and food chemistry. 2008 Nov; 56(22):10908-12. doi: 10.1021/jf801597t. [PMID: 18973338]
  • Anan Yaghmur, Liliana de Campo, Laurent Sagalowicz, Martin E Leser, Otto Glatter. Control of the internal structure of MLO-based isasomes by the addition of diglycerol monooleate and soybean phosphatidylcholine. Langmuir : the ACS journal of surfaces and colloids. 2006 Nov; 22(24):9919-27. doi: 10.1021/la061303v. [PMID: 17106981]
  • Woo Song Lee, Mi Jeong Kim, Young-Il Beck, Yong-Dae Park, Tae-Sook Jeong. Lp-PLA2 inhibitory activities of fatty acid glycerols isolated from Saururus chinensis roots. Bioorganic & medicinal chemistry letters. 2005 Aug; 15(15):3573-5. doi: 10.1016/j.bmcl.2005.05.056. [PMID: 15961310]
  • Liliana de Campo, Anan Yaghmur, Laurent Sagalowicz, Martin E Leser, Heribert Watzke, Otto Glatter. Reversible phase transitions in emulsified nanostructured lipid systems. Langmuir : the ACS journal of surfaces and colloids. 2004 Jun; 20(13):5254-61. doi: 10.1021/la0499416. [PMID: 15986660]
  • Chungsook Kim, Hyekyung Ha, Je-Hyun Lee, Jin-Sook Kim, Kyeyong Song, Sie Won Park. Herbal extract prevents bone loss in ovariectomized rats. Archives of pharmacal research. 2003 Nov; 26(11):917-24. doi: 10.1007/bf02980200. [PMID: 14661857]
  • J C Markham, J A Gowen, T A Cross, D D Busath. Comparison of gramicidin A and gramicidin M channel conductance dispersities. Biochimica et biophysica acta. 2001 Aug; 1513(2):185-92. doi: 10.1016/s0005-2736(01)00353-4. [PMID: 11470090]