beta-D-Galactose (BioDeep_00000014501)
Secondary id: BioDeep_00000405572, BioDeep_00000595417, BioDeep_00000863354, BioDeep_00001868735
human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C6H12O6 (180.0633852)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 0.78%
分子结构信息
SMILES: C(C1C(C(C(C(O1)O)O)O)O)O
InChI: InChI=1S/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-,3+,4+,5-,6-/m1/s1
描述信息
Galactose is an optical isomer of glucose. An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (Galactose-1-phosphate uridyl-transferase deficiency disease) causes an error in galactose metabolism called galactosemia, resulting in elevations of galactose in the blood. Galactose (Gal) (also called brain sugar) is a type of sugar found in dairy products, in sugar beets and other gums and mucilages. It is also synthesized by the body, where it forms part of glycolipids and glycoproteins in several tissues. It is considered a nutritive sweetener because it has food energy. Galactose is less sweet than glucose and not very water-soluble. Galactose is a monosaccharide constituent, together with glucose, of the disaccharide lactose. The hydrolysis of lactose to glucose and galactose is catalyzed by the enzyme beta-galactosidase, a lactase. In the human body, glucose is changed into galactose in order to enable the mammary glands to secrete lactose. Galactan is a polymer of the sugar galactose. It is found in hemicellulose and can be converted to galactose by hydrolysis.
Galactose is an aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (Galactose-1-phosphate uridyl-transferase deficiency disease) causes an error in galactose metabolism called galactosemia, resulting in elevations of galactose in the blood.
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
同义名列表
19 个代谢物同义名
(2R,3R,4S,5R,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol; beta-D-Galactopyranose; β-D-Galactopyranose; beta-D-Galactoside; beta-D-Galactose; beta D-Galactose; beta-Galactose; β-D-Galactose; β D-galactose; b-D-Galactose; b-Galactose; β-Galactose; D-Galactose; beta-D-Gal; Gal-beta; b-D-Gal; β-D-Gal; Gal-b; Gal-β
数据库引用编号
13 个数据库交叉引用编号
- ChEBI: CHEBI:27667
- KEGG: C00962
- PubChem: 439353
- HMDB: HMDB0003449
- ChEMBL: CHEMBL300520
- MetaCyc: GALACTOSE
- foodb: FDB021788
- chemspider: 388476
- CAS: 105430-43-1
- CAS: 9031-11-2
- CAS: 7296-64-2
- PubChem: 4213
- PDB-CCD: GAL
分类词条
相关代谢途径
Reactome(0)
BioCyc(7)
代谢反应
99 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(59)
- melibiose degradation:
H2O + melibiose ⟶ β-D-galactose + β-D-glucose
- lactose degradation III:
α-lactose + H2O ⟶ β-D-galactose + β-D-glucose
- lactose degradation III:
α-lactose + H2O ⟶ β-D-galactose + β-D-glucose
- lactose degradation III:
α-lactose + H2O ⟶ β-D-galactose + β-D-glucose
- lactose degradation III:
α-lactose + H2O ⟶ β-D-galactose + β-D-glucose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactose + β-D-glucose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactose + β-D-glucose
- lactose degradation III:
α-lactose + H2O ⟶ β-D-galactose + β-D-glucose
- D-galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactose + D-glucopyranose
- D-galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- xyloglucan degradation I (endoglucanase):
a xyloglucan ⟶ α-D-xylopyranose + β-D-galactopyranose + D-glucopyranose + L-fucopyranose
- galactose degradation IV:
D-galactitol + NAD+ ⟶ H+ + L-xylo-3-hexulose + NADH
- D-galactose degradation V (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- lactose degradation III:
H2O + lactose ⟶ β-D-galactose + D-glucopyranose
- D-galactose degradation V (Leloir pathway):
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactopyranose + D-glucopyranose
- galactose degradation I (Leloir pathway):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- lactose degradation III:
H2O + lactose ⟶ β-D-galactopyranose + D-glucopyranose
- D-galactose degradation V (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation I (Leloir pathway):
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- galactose degradation I:
β-D-galactose ⟶ α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation V (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- lactose degradation II:
3'-ketolactose + H2O ⟶ β-D-glucose + 3-keto-β-D-galactose
- galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- D-galactose degradation I (Leloir pathway):
β-D-galactopyranose ⟶ α-D-galactopyranose
- galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- lactose degradation III:
H2O + lactose ⟶ β-D-galactose + β-D-glucose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactose + β-D-glucose
- galactose degradation I:
β-D-galactose ⟶ α-D-galactose
- D-galactose degradation I (Leloir pathway):
β-D-galactopyranose ⟶ α-D-galactopyranose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactopyranose + D-glucopyranose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactose + β-D-glucose
- galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- xyloglucan degradation II (exoglucanase):
H2O + XXXG xyloglucan oligosaccharide ⟶ β-D-glucose + isoprimeverose
- lactose degradation II:
3'-ketolactose + H2O ⟶ β-D-glucose + 3-keto-β-D-galactose
- xyloglucan degradation I (endoglucanase):
H2O + XXXG xyloglucan oligosaccharide ⟶ β-D-glucose + isoprimeverose
- galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactose + D-glucopyranose
- D-galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- lactose degradation III:
H2O + lactose ⟶ β-D-galactose + D-glucopyranose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactose + D-glucopyranose
- D-galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(35)
- D-galactose degradation I (Leloir pathway):
UDP-α-D-glucose ⟶ UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation I (Leloir pathway):
β-D-galactopyranose ⟶ α-D-galactopyranose
- D-galactose degradation I (Leloir pathway):
β-D-galactopyranose ⟶ α-D-galactopyranose
- D-galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- D-galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- D-galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation I (Leloir pathway):
β-D-galactopyranose ⟶ α-D-galactopyranose
- D-galactose degradation I (Leloir pathway):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- D-galactose degradation I (Leloir pathway):
β-D-galactopyranose ⟶ α-D-galactopyranose
- D-galactose degradation I (Leloir pathway):
UDP-α-D-glucose ⟶ UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
UDP-α-D-glucose ⟶ UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
UDP-α-D-glucose ⟶ UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
UDP-α-D-glucose ⟶ UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
UDP-α-D-glucose ⟶ UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
UDP-α-D-glucose ⟶ UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
UDP-α-D-glucose ⟶ UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
UDP-α-D-glucose ⟶ UDP-α-D-galactose
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
Adenosine + Pi ⟶ Adenine + _alpha_-D-Ribose 1-phosphate
PathBank(4)
- Galactose Degradation/Leloir Pathway:
-D-Glucose + Phosphocarrier protein HPr ⟶ -D-Glucose 6-phosphate + Phosphocarrier protein HPr
- Leloir Pathway:
-D-Galactose ⟶ D-Galactose
- D-Galactose Degradation (Leloir pathway):
Beta-D-Galactose ⟶ D-Galactose
- Galactose Metabolism:
-D-Glucose + Phosphocarrier protein HPr ⟶ -D-Glucose 6-phosphate + Phosphocarrier protein HPr
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 256504 - Symphytum tuberosum: 10.1016/S0031-9422(00)94343-7
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- S Vargas, K Ndjoko Ioset, A-E Hay, J-R Ioset, S Wittlin, K Hostettmann. Screening medicinal plants for the detection of novel antimalarial products applying the inhibition of β-hematin formation.
Journal of pharmaceutical and biomedical analysis.
2011 Dec; 56(5):880-6. doi:
10.1016/j.jpba.2011.06.026
. [PMID: 21872416] - Minh Bui, Nathan Lim, Paja Sijacic, Zhongchi Liu. LEUNIG_HOMOLOG and LEUNIG regulate seed mucilage extrusion in Arabidopsis.
Journal of integrative plant biology.
2011 May; 53(5):399-408. doi:
10.1111/j.1744-7909.2011.01036.x
. [PMID: 21362134] - Ran Levy, Anat Biran, Francoise Poirier, Avraham Raz, Yoel Kloog. Galectin-3 mediates cross-talk between K-Ras and Let-7c tumor suppressor microRNA.
PloS one.
2011; 6(11):e27490. doi:
10.1371/journal.pone.0027490
. [PMID: 22102901] - Robert Görke, Anke Meyer-Bäse, Dorothea Wagner, Huan He, Mark R Emmett, Charles A Conrad. Determining and interpreting correlations in lipidomic networks found in glioblastoma cells.
BMC systems biology.
2010 Sep; 4(?):126. doi:
10.1186/1752-0509-4-126
. [PMID: 20819237] - Mayuko Iwamoto, Chiho Taguchi, Kenichi Sasaguri, Kin-ya Kubo, Hidenori Horie, Toshiharu Yamamoto, Minoru Onozuka, Sadao Sato, Toshihiko Kadoya. The Galectin-1 level in serum as a novel marker for stress.
Glycoconjugate journal.
2010 May; 27(4):419-25. doi:
10.1007/s10719-010-9288-z
. [PMID: 20390448] - Sucharita P Shankar, Inn Inn Chen, Benjamin G Keselowsky, Andrés J García, Julia E Babensee. Profiles of carbohydrate ligands associated with adsorbed proteins on self-assembled monolayers of defined chemistries.
Journal of biomedical materials research. Part A.
2010 Mar; 92(4):1329-42. doi:
10.1002/jbm.a.32457
. [PMID: 19353560] - Celeste Aida S Regino, Mikako Ogawa, Raphael Alford, Karen J Wong, Noboyuki Kosaka, Mark Williams, Brian J Feild, Masatoshi Takahashi, Peter L Choyke, Hisataka Kobayashi. Two-step synthesis of galactosylated human serum albumin as a targeted optical imaging agent for peritoneal carcinomatosis.
Journal of medicinal chemistry.
2010 Feb; 53(4):1579-86. doi:
10.1021/jm901228u
. [PMID: 20102220] - Mohammad Yasir, Sattwik Das, M D Kharya. The phytochemical and pharmacological profile of Persea americana Mill.
Pharmacognosy reviews.
2010 Jan; 4(7):77-84. doi:
10.4103/0973-7847.65332
. [PMID: 22228945] - Steven Bassnett, Phillip A Wilmarth, Larry L David. The membrane proteome of the mouse lens fiber cell.
Molecular vision.
2009 Nov; 15(?):2448-63. doi:
NULL
. [PMID: 19956408] - Simon Grill, Corinne Rusterholz, Rosanna Zanetti-Dällenbach, Sevgi Tercanli, Wolfgang Holzgreve, Sinuhe Hahn, Olav Lapaire. Potential markers of preeclampsia--a review.
Reproductive biology and endocrinology : RB&E.
2009 Jul; 7(?):70. doi:
10.1186/1477-7827-7-70
. [PMID: 19602262] - Yaomin Hu, Pamela J Kaisaki, Karène Argoud, Steven P Wilder, Karin J Wallace, Peng Y Woon, Christine Blancher, Lise Tarnow, Per-Henrik Groop, Samy Hadjadj, Michel Marre, Hans-Henrik Parving, Martin Farrall, Roger D Cox, Mark Lathrop, Nathalie Vionnet, Marie-Thérèse Bihoreau, Dominique Gauguier. Functional annotations of diabetes nephropathy susceptibility loci through analysis of genome-wide renal gene expression in rat models of diabetes mellitus.
BMC medical genomics.
2009 Jul; 2(?):41. doi:
10.1186/1755-8794-2-41
. [PMID: 19586551] - Maria K Lehtinen, Saara Tegelberg, Hyman Schipper, Haixiang Su, Hillel Zukor, Otto Manninen, Outi Kopra, Tarja Joensuu, Paula Hakala, Azad Bonni, Anna-Elina Lehesjoki. Cystatin B deficiency sensitizes neurons to oxidative stress in progressive myoclonus epilepsy, EPM1.
The Journal of neuroscience : the official journal of the Society for Neuroscience.
2009 May; 29(18):5910-5. doi:
10.1523/jneurosci.0682-09.2009
. [PMID: 19420257] - Hirotaka Uzawa. [Highly sensitive detection technology for biological toxins applying sugar epitopes].
Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan.
2009 Jan; 129(1):93-106. doi:
10.1248/yakushi.129.93
. [PMID: 19122439] - Valerie Wells, Livio Mallucci. Phosphoinositide 3-kinase targeting by the beta galactoside binding protein cytokine negates akt gene expression and leads aggressive breast cancer cells to apoptotic death.
Breast cancer research : BCR.
2009; 11(1):R2. doi:
10.1186/bcr2217
. [PMID: 19133120] - Irina V Gorudko, Inna V Buko, Sergey N Cherenkevich, Leonid Z Polonetsky, Alexander V Timoshenko. Lectin-induced aggregates of blood cells from patients with acute coronary syndromes.
Archives of medical research.
2008 Oct; 39(7):674-81. doi:
10.1016/j.arcmed.2008.06.002
. [PMID: 18760196] - Chih-Ming Tsai, Yi-Kai Chiu, Tsui-Ling Hsu, I-Ying Lin, Shie-Liang Hsieh, Kuo-I Lin. Galectin-1 promotes immunoglobulin production during plasma cell differentiation.
Journal of immunology (Baltimore, Md. : 1950).
2008 Oct; 181(7):4570-9. doi:
10.4049/jimmunol.181.7.4570
. [PMID: 18802059] - Harikrishna Devalapally, Kombu Subramanian Rajan, Raghuram Rao Akkinepally, Rama Krishna Devarakonda. Safety, pharmacokinetics and biodistribution studies of a beta-galactoside prodrug of doxorubicin for improvement of tumor selective chemotherapy.
Drug development and industrial pharmacy.
2008 Aug; 34(8):789-95. doi:
10.1080/03639040701744202
. [PMID: 18608462] - Waraporn Tanthanuch, Mallika Chantarangsee, Janjira Maneesan, James Ketudat-Cairns. Genomic and expression analysis of glycosyl hydrolase family 35 genes from rice (Oryza sativa L.).
BMC plant biology.
2008 Jul; 8(?):84. doi:
10.1186/1471-2229-8-84
. [PMID: 18664295] - C F A Schumacher, U Steiner, H-W Dehne, E-C Oerke. Localized adhesion of nongerminated Venturia inaequalis conidia to leaves and artificial surfaces.
Phytopathology.
2008 Jul; 98(7):760-8. doi:
10.1094/phyto-98-7-0760
. [PMID: 18943251] - Jin-juan Li, Guang-de Yang, Hong-ying Wang, San-qi Zhang. [Preparation and liver targeting of floxuridinyl dibutyrate solid lipid nanoparticles].
Yao xue xue bao = Acta pharmaceutica Sinica.
2008 Jul; 43(7):761-5. doi:
NULL
. [PMID: 18819483] - Yasunori Matsuda, Yoko Yamagiwa, Koji Fukushima, Yoshiyuki Ueno, Tooru Shimosegawa. Expression of galectin-3 involved in prognosis of patients with hepatocellular carcinoma.
Hepatology research : the official journal of the Japan Society of Hepatology.
2008; 38(11):1098-111. doi:
10.1111/j.1872-034x.2008.00387.x
. [PMID: 18684128] - Rodjana Opassiri, Busarakum Pomthong, Takashi Akiyama, Massalin Nakphaichit, Tassanee Onkoksoong, Mariena Ketudat Cairns, James R Ketudat Cairns. A stress-induced rice (Oryza sativa L.) beta-glucosidase represents a new subfamily of glycosyl hydrolase family 5 containing a fascin-like domain.
The Biochemical journal.
2007 Dec; 408(2):241-9. doi:
10.1042/bj20070734
. [PMID: 17705786] - Polina Obukhova, Robert Rieben, Nicolai Bovin. Normal human serum contains high levels of anti-Gal alpha 1-4GlcNAc antibodies.
Xenotransplantation.
2007 Nov; 14(6):627-35. doi:
10.1111/j.1399-3089.2007.00436.x
. [PMID: 17991151] - D Ostalska-Nowicka, J Zachwieja, M Nowicki, E Kaczmarek, A Siwińska, M Witt. Immunohistochemical detection of galectin-1 in renal biopsy specimens of children and its possible role in proteinuric glomerulopathies.
Histopathology.
2007 Oct; 51(4):468-76. doi:
10.1111/j.1365-2559.2007.02818.x
. [PMID: 17880528] - Ueli von Ah, Valeria Mozzetti, Christophe Lacroix, Ehab E Kheadr, Ismaïl Fliss, Leo Meile. Classification of a moderately oxygen-tolerant isolate from baby faeces as Bifidobacterium thermophilum.
BMC microbiology.
2007 Aug; 7(?):79. doi:
10.1186/1471-2180-7-79
. [PMID: 17711586] - Junko Nio, Hiromi Takahashi-Iwanaga, Masami Morimatsu, Yasuhiro Kon, Toshihiko Iwanaga. Immunohistochemical and in situ hybridization analysis of galectin-3, a beta-galactoside binding lectin, in the urinary system of adult mice.
Histochemistry and cell biology.
2006 Jul; 126(1):45-56. doi:
10.1007/s00418-005-0142-5
. [PMID: 16404573] - Roney S Coimbra, Veronique Voisin, Antoine B de Saizieu, Raija L P Lindberg, Matthias Wittwer, David Leppert, Stephen L Leib. Gene expression in cortex and hippocampus during acute pneumococcal meningitis.
BMC biology.
2006 Jun; 4(?):15. doi:
10.1186/1741-7007-4-15
. [PMID: 16749930] - Finie Hunter, Jianwu Xie, Cameron Trimble, Monica Bur, King C P Li. Rhodamine-RCA in vivo labeling guided laser capture microdissection of cancer functional angiogenic vessels in a murine squamous cell carcinoma mouse model.
Molecular cancer.
2006 Feb; 5(?):5. doi:
10.1186/1476-4598-5-5
. [PMID: 16457726] - María C Rodríguez, Emilia R Merino, Carlos A Pujol, Elsa B Damonte, Alberto S Cerezo, María C Matulewicz. Galactans from cystocarpic plants of the red seaweed Callophyllis variegata (Kallymeniaceae, Gigartinales).
Carbohydrate research.
2005 Dec; 340(18):2742-51. doi:
10.1016/j.carres.2005.10.001
. [PMID: 16289051] - Pavel Lukyanov, Vyacheslav Furtak, Josiah Ochieng. Galectin-3 interacts with membrane lipids and penetrates the lipid bilayer.
Biochemical and biophysical research communications.
2005 Dec; 338(2):1031-6. doi:
10.1016/j.bbrc.2005.10.033
. [PMID: 16248982] - A I Yudin, C A Treece, T L Tollner, J W Overstreet, G N Cherr. The carbohydrate structure of DEFB126, the major component of the cynomolgus Macaque sperm plasma membrane glycocalyx.
The Journal of membrane biology.
2005 Oct; 207(3):119-29. doi:
10.1007/s00232-005-0806-z
. [PMID: 16550483] - S Georgiou, E Pasmatzi, A Monastirli, T Sakkis, S Alachioti, D Tsambaos. Age-related alterations in the carbohydrate residue composition of the cell surface in the unexposed normal human epidermis.
Gerontology.
2005 May; 51(3):155-60. doi:
10.1159/000083986
. [PMID: 15832040] - Piers J Walser, Ursula Kües, Markus Aebi, Markus Künzler. Ligand interactions of the Coprinopsis cinerea galectins.
Fungal genetics and biology : FG & B.
2005 Apr; 42(4):293-305. doi:
10.1016/j.fgb.2004.12.004
. [PMID: 15749049] - T Yasui, A Tsukise, W Meyer. Ultracytochemical demonstration of glycoproteins in the eccrine glands of the digital pads of the North American raccoon (Procyon lotor).
Anatomia, histologia, embryologia.
2005 Feb; 34(1):56-60. doi:
10.1111/j.1439-0264.2004.00577.x
. [PMID: 15649229] - Y Freile-Pelegrín, E Murano. Agars from three species of Gracilaria (Rhodophyta) from Yucatán Peninsula.
Bioresource technology.
2005 Feb; 96(3):295-302. doi:
10.1016/j.biortech.2004.04.010
. [PMID: 15474929] - Chi-Feng Hung, Tsong-Long Hwang, Chia-Chun Chang, Jia-You Fang. Physicochemical characterization and gene transfection efficiency of lipid emulsions with various co-emulsifiers.
International journal of pharmaceutics.
2005 Jan; 289(1-2):197-208. doi:
10.1016/j.ijpharm.2004.11.008
. [PMID: 15652212] - Ruth Mikeska, Roland Wacker, Raghuvir Arni, Tej P Singh, Albert Mikhailov, Azat Gabdoulkhakov, Wolfgang Voelter, Christian Betzel. Mistletoe lectin I in complex with galactose and lactose reveals distinct sugar-binding properties.
Acta crystallographica. Section F, Structural biology and crystallization communications.
2005 Jan; 61(Pt 1):17-25. doi:
10.1107/s1744309104031501
. [PMID: 16508080] - Judith van der Leij, Anke van den Berg, Tjasso Blokzijl, Geert Harms, Harry van Goor, Peter Zwiers, Rob van Weeghel, Sibrand Poppema, Lydia Visser. Dimeric galectin-1 induces IL-10 production in T-lymphocytes: an important tool in the regulation of the immune response.
The Journal of pathology.
2004 Dec; 204(5):511-8. doi:
10.1002/path.1671
. [PMID: 15538736] - R O Bilyy, V O Antonyuk, R S Stoika. Cytochemical study of role of alpha-d-mannose- and beta-d-galactose-containing glycoproteins in apoptosis.
Journal of molecular histology.
2004 Nov; 35(8-9):829-38. doi:
10.1007/s10735-004-1674-z
. [PMID: 15609096] - Claudia Greco, Rosa Vona, Maurizio Cosimelli, Paola Matarrese, Elisabetta Straface, Patrizia Scordati, Diana Giannarelli, Vincenzo Casale, Daniela Assisi, Marcella Mottolese, Anna Moles, Walter Malorni. Cell surface overexpression of galectin-3 and the presence of its ligand 90k in the blood plasma as determinants in colon neoplastic lesions.
Glycobiology.
2004 Sep; 14(9):783-92. doi:
10.1093/glycob/cwh092
. [PMID: 15140826] - Natsuo Oka, Yukinori Takenaka, Avraham Raz. Galectins and urological cancer.
Journal of cellular biochemistry.
2004 Jan; 91(1):118-24. doi:
10.1002/jcb.10663
. [PMID: 14689585] - R O Bilyy, R S Stoika. Lectinocytochemical detection of apoptotic murine leukemia L1210 cells.
Cytometry. Part A : the journal of the International Society for Analytical Cytology.
2003 Dec; 56(2):89-95. doi:
10.1002/cyto.a.10089
. [PMID: 14608636] - Thomas R Peavy, Cesar Hernandez, Edward J Carroll. Jeltraxin, a frog egg jelly glycoprotein, has calcium-dependent lectin properties and is related to human serum pentraxins CRP and SAP.
Biochemistry.
2003 Nov; 42(44):12761-9. doi:
10.1021/bi035314o
. [PMID: 14596590] - F A Elayoubi, A Fraser, D J Jenkins, P S Craig. Partial characterisation of carbohydrate-rich Echinococcus granulosus coproantigens.
International journal for parasitology.
2003 Nov; 33(13):1553-9. doi:
10.1016/s0020-7519(03)00198-x
. [PMID: 14572518] - A Arockia Jeyaprakash, S Katiyar, C P Swaminathan, K Sekar, A Surolia, M Vijayan. Structural basis of the carbohydrate specificities of jacalin: an X-ray and modeling study.
Journal of molecular biology.
2003 Sep; 332(1):217-28. doi:
10.1016/s0022-2836(03)00901-x
. [PMID: 12946359] - Tadashi Yasui, Azuma Tsukise, Wilfried Meyer. Histochemical analysis of glycoconjugates in the ceruminous glands of the North American raccoon (Procyon lotor).
Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.
2003 Jun; 185(3):223-31. doi:
10.1016/s0940-9602(03)80028-6
. [PMID: 12801086] - Yukinori Takenaka, Hidenori Inohara, Tadashi Yoshii, Kazuo Oshima, Susumu Nakahara, Shiro Akahani, Yuichiro Honjo, Yoshifumi Yamamoto, Avraham Raz, Takeshi Kubo. Malignant transformation of thyroid follicular cells by galectin-3.
Cancer letters.
2003 May; 195(1):111-9. doi:
10.1016/s0304-3835(03)00056-9
. [PMID: 12767519] - Daniela M Maciel, Marcio L Rodrigues, Robin Wait, Maria Helena S Villas Boas, Cesar A Tischer, Eliana Barreto-Bergter. Glycosphingolipids from Magnaporthe grisea cells: expression of a ceramide dihexoside presenting phytosphingosine as the long-chain base.
Archives of biochemistry and biophysics.
2002 Sep; 405(2):205-13. doi:
10.1016/s0003-9861(02)00365-x
. [PMID: 12220534] - D Thompson, M B Pepys, I Tickle, S Wood. The structures of crystalline complexes of human serum amyloid P component with its carbohydrate ligand, the cyclic pyruvate acetal of galactose.
Journal of molecular biology.
2002 Jul; 320(5):1081-6. doi:
10.1016/s0022-2836(02)00514-4
. [PMID: 12126626] - Edgar Leal-Pinto, B Eleazar Cohen, Michael S Lipkowitz, Ruth G Abramson. Functional analysis and molecular model of the human urate transporter/channel, hUAT.
American journal of physiology. Renal physiology.
2002 Jul; 283(1):F150-63. doi:
10.1152/ajprenal.00333.2001
. [PMID: 12060597] - Jeff P Gorski, Fu-Tong Liu, Antonio Artigues, Leonardo F Castagna, Philip Osdoby. New alternatively spliced form of galectin-3, a member of the beta-galactoside-binding animal lectin family, contains a predicted transmembrane-spanning domain and a leucine zipper motif.
The Journal of biological chemistry.
2002 May; 277(21):18840-8. doi:
10.1074/jbc.m109578200
. [PMID: 11886849] - N Nagy, Y Bronckart, I Camby, H Legendre, H Lahm, H Kaltner, Y Hadari, P Van Ham, P Yeaton, J-C Pector, Y Zick, I Salmon, A Danguy, R Kiss, H-J Gabius. Galectin-8 expression decreases in cancer compared with normal and dysplastic human colon tissue and acts significantly on human colon cancer cell migration as a suppressor.
Gut.
2002 Mar; 50(3):392-401. doi:
10.1136/gut.50.3.392
. [PMID: 11839721] - M Martínez-Cruz, E Zenteno, F Córdoba. Purification and characterization of a galactose-specific lectin from corn (Zea mays) coleoptile.
Biochimica et biophysica acta.
2001 Nov; 1568(1):37-44. doi:
10.1016/s0304-4165(01)00196-9
. [PMID: 11731083] - K S Korobkova, A M Onyshchenko, I G Skrypal'. [Discovery of the relationship between carbohydrate determinants of mollicute glycocalyx and affinity of microorganisms, and conditions for their existence].
Mikrobiolohichnyi zhurnal (Kiev, Ukraine : 1993).
2001 Nov; 63(6):32-41. doi:
"
. [PMID: 11944334] - H Otsuka, Y Akiyama, Y Nagasaki, K Kataoka. Quantitative and reversible lectin-induced association of gold nanoparticles modified with alpha-lactosyl-omega-mercapto-poly(ethylene glycol).
Journal of the American Chemical Society.
2001 Aug; 123(34):8226-30. doi:
10.1021/ja010437m
. [PMID: 11516273] - W Tang, K Seino, M Ito, T Konishi, H Senda, M Makuuchi, N Kojima, T Mizuochi. Requirement of ceramide for adhesion of Helicobacter pylori to glycosphingolipids.
FEBS letters.
2001 Aug; 504(1-2):31-5. doi:
10.1016/s0014-5793(01)02759-4
. [PMID: 11522291] - C Van Geet, J Jaeken, K Freson, T Lenaerts, J Arnout, J Vermylen, M F Hoylaerts. Congenital disorders of glycosylation type Ia and IIa are associated with different primary haemostatic complications.
Journal of inherited metabolic disease.
2001 Aug; 24(4):477-92. doi:
10.1023/a:1010581613821
. [PMID: 11596651] - T E Curey, A Goodey, A Tsao, J Lavigne, Y Sohn, J T McDevitt, E V Anslyn, D Neikirk, J B Shear. Characterization of multicomponent monosaccharide solutions using an enzyme-based sensor array.
Analytical biochemistry.
2001 Jun; 293(2):178-84. doi:
10.1006/abio.2001.5114
. [PMID: 11399030] - O Nakamura, T Watanabe, H Kamiya, K Muramoto. Galectin containing cells in the skin and mucosal tissues in Japanese conger eel, Conger myriaster: an immunohistochemical study.
Developmental and comparative immunology.
2001 Jun; 25(5-6):431-7. doi:
10.1016/s0145-305x(01)00012-x
. [PMID: 11356222] - H Inagawa, A Kuroda, T Nishizawa, T Honda, M Ototake, U Yokomizo, T Nakanishi, G Soma. Cloning and characterisation of tandem-repeat type galectin in rainbow trout (Oncorhynchus mykiss).
Fish & shellfish immunology.
2001 Apr; 11(3):217-31. doi:
10.1006/fsim.2000.0307
. [PMID: 11394689] - W Q Zhu, J Ochieng. Rapid release of intracellular galectin-3 from breast carcinoma cells by fetuin.
Cancer research.
2001 Mar; 61(5):1869-73. doi:
NULL
. [PMID: 11280740] - S Elgavish, B Shaanan. Structures of the Erythrina corallodendron lectin and of its complexes with mono- and disaccharides.
Journal of molecular biology.
1998 Apr; 277(4):917-32. doi:
10.1006/jmbi.1998.1664
. [PMID: 9545381] - G F Springer, H Tegtmeyer. Further evidence that carbohydrates are the immunodeterminant structures of blood group M and N specificities.
Immunological communications.
1981; 10(2):157-71. doi:
10.3109/08820138109050694
. [PMID: 6169631]