D-Aspartic acid (BioDeep_00000014567)
Main id: BioDeep_00000398115
Secondary id: BioDeep_00000405607
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 natural product
代谢物信息卡片
化学式: C4H7NO4 (133.0375)
中文名称: D-天冬氨酸, D-天门冬氨酸
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C(C(C(=O)O)N)C(=O)O
InChI: InChI=1S/C4H7NO4/c5-2(4(8)9)1-3(6)7/h2H,1,5H2,(H,6,7)(H,8,9)/t2-/m1/s1
描述信息
D-Aspartic acid is the D-isomer of aspartic acid. Since its discovery in invertebrates, free D-aspartate (D-Asp) has been identified in a variety of organisms, including microorganisms, plants, and lower animals, mammals and humans. D-Asp in mammalian tissues is present in specific cells, indicating the existence of specific molecular components that regulate D-Asp levels and localization in tissues. In the rat adrenal medulla, D-Asp is closely associated with adrenaline-cells (A-cells), which account for approximately 80\\\\\\% of the total number of chromaffin cells in the tissue, and which make and store adrenaline. D-Asp appears to be absent from noradrenaline-cells (NA-cells), which comprise approximately 20\\\\\\% of the total number of chromaffin cells in the adrenal medulla, and which make and store noradrenaline. D-aspartate oxidase (EC 1.4.3.1, D-AspO), which catalyzes oxidative deamination of D-Asp, appears to be present only in NA-cells, suggesting that the lack of D-Asp in these cells is due to D-Asp oxidase-mediated metabolism of D-Aspecies In the rat adrenal cortex, the distribution of D-Asp changes during development. It has been suggested that developmental changes in the localization of D-Asp reflects the participation of D-Asp in the development and maturation of steroidogenesis in rat adrenal cortical cells. D-Asp is involved in steroid hormone synthesis and secretion in mammals as well. D-Asp is synthesized intracellularly, most likely by Asp racemase (EC 5.1.1.13). Endogenous D-Asp apparently has two different intracellular localization patterns: cytoplasmic and vesicular. D-Asp release can occur through three distinct pathways: 1) spontaneous, continuous release of cytoplasmic D-Asp, which is not associated with a specific stimulus; 2) release of cytoplasmic D-Asp via a volume-sensitive organic anion channel that connects the cytoplasm and extracellular space; 3) exocytotic discharge of vesicular D-Aspecies D-Asp can be released via a mechanism that involves the L-Glu transporter. D-Asp is thus apparently in dynamic flux at the cellular level to carry out its physiological function(s) in mammals. (PMID: 16755369) [HMDB]
D-Aspartic acid is the D-isomer of aspartic acid. Since its discovery in invertebrates, free D-aspartate (D-Asp) has been identified in a variety of organisms, including microorganisms, plants, and lower animals, mammals and humans. D-Asp in mammalian tissues is present in specific cells, indicating the existence of specific molecular components that regulate D-Asp levels and localization in tissues. In the rat adrenal medulla, D-Asp is closely associated with adrenaline-cells (A-cells), which account for approximately 80\\\\\\% of the total number of chromaffin cells in the tissue, and which make and store adrenaline. D-Asp appears to be absent from noradrenaline-cells (NA-cells), which comprise approximately 20\\\\\\% of the total number of chromaffin cells in the adrenal medulla, and which make and store noradrenaline. D-aspartate oxidase (EC 1.4.3.1, D-AspO), which catalyzes oxidative deamination of D-Asp, appears to be present only in NA-cells, suggesting that the lack of D-Asp in these cells is due to D-Asp oxidase-mediated metabolism of D-Asp. In the rat adrenal cortex, the distribution of D-Asp changes during development. It has been suggested that developmental changes in the localization of D-Asp reflects the participation of D-Asp in the development and maturation of steroidogenesis in rat adrenal cortical cells. D-Asp is involved in steroid hormone synthesis and secretion in mammals as well. D-Asp is synthesized intracellularly, most likely by Asp racemase (EC 5.1.1.13). Endogenous D-Asp apparently has two different intracellular localization patterns: cytoplasmic and vesicular. D-Asp release can occur through three distinct pathways: 1) spontaneous, continuous release of cytoplasmic D-Asp, which is not associated with a specific stimulus; 2) release of cytoplasmic D-Asp via a volume-sensitive organic anion channel that connects the cytoplasm and extracellular space; 3) exocytotic discharge of vesicular D-Asp. D-Asp can be released via a mechanism that involves the L-Glu transporter. D-Asp is thus apparently in dynamic flux at the cellular level to carry out its physiological function(s) in mammals (PMID:16755369).
(-)-Aspartic acid is an endogenous NMDA receptor agonist.
(-)-Aspartic acid is an endogenous NMDA receptor agonist.
(-)-Aspartic acid is an endogenous NMDA receptor agonist.
(-)-Aspartic acid is an endogenous NMDA receptor agonist.
同义名列表
29 个代谢物同义名
(2R)-2-Aminobutanedioic acid; (R)-2-Aminobutanedioic acid; (R)-(-)-Aminosuccinic acid; 1-amino-1,2-Carboxyethane; (R)-2-Aminosuccinic acid; (2R)-2-Aminobutanedioate; (R)-2-Aminobutanedioate; delta-(-)-Aspartic acid; delta-Asparaginsaeure; (R)-2-Aminosuccinate; Aspartic acid D-form; D-(-)-Aspartic acid; delta-Aspartic acid; (-)-Aspartic acid; (R)-Aspartic acid; D-Asparaginsaeure; Lopac-alpha-9256; Aspartate D-form; delta-Aspartate; D Aspartic acid; D-Aspartic acid; Aspartic Acid; Tocris-0213; D Aspartate; D-Aspartate; H-D-Asp-OH; DAS; D-Aspartate; D-Aspartic acid
数据库引用编号
23 个数据库交叉引用编号
- ChEBI: CHEBI:17364
- KEGG: C00402
- PubChem: 83887
- HMDB: HMDB0006483
- Metlin: METLIN63097
- DrugBank: DB02655
- ChEMBL: CHEMBL29757
- Wikipedia: Aspartic acid
- MeSH: D-Aspartic Acid
- MetaCyc: CPD-302
- foodb: FDB023933
- chemspider: 75697
- CAS: 27881-01-2
- CAS: 1783-96-6
- PubChem: 3692
- PDB-CCD: DAS
- 3DMET: B01235
- NIKKAJI: J9.205C
- RefMet: D-Aspartic acid
- medchemexpress: HY-42068
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-11
- KNApSAcK: 17364
- LOTUS: LTS0144001
分类词条
相关代谢途径
Reactome(3)
BioCyc(0)
PlantCyc(0)
代谢反应
49 个相关的代谢反应过程信息。
Reactome(36)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
L-Ala + glyoxylate ⟶ Gly + PYR
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(1)
- Alanine,Aspartic acid and Asparagine metabolism ( Alanine,Aspartic acid and Asparagine metabolism ):
H2O + N-Acetyl-L-aspartic acid ⟶ Acetic acid + L-Aspartic acid
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(12)
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Canavan Disease:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Hypoacetylaspartia:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Canavan Disease:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Hypoacetylaspartia:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Canavan Disease:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Hypoacetylaspartia:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
PharmGKB(0)
338 个相关的物种来源信息
- 3319 - Abies: LTS0144001
- 90345 - Abies balsamea: 10.1016/S0021-9673(01)97854-9
- 90345 - Abies balsamea: LTS0144001
- 5339 - Agaricaceae: LTS0144001
- 155619 - Agaricomycetes: LTS0144001
- 5340 - Agaricus: LTS0144001
- 56157 - Agaricus campestris: 10.1021/JF60199A047
- 56157 - Agaricus campestris: LTS0144001
- 4449 - Alismataceae: LTS0144001
- 4678 - Allium: LTS0144001
- 4682 - Allium sativum: 10.1016/0378-8741(96)01416-X
- 4682 - Allium sativum: LTS0144001
- 94326 - Alpinia: LTS0144001
- 94327 - Alpinia galanga: 10.1016/0305-1978(86)90092-X
- 94327 - Alpinia galanga: LTS0144001
- 230707 - Alpinia purpurata: 10.1016/0305-1978(86)90092-X
- 230707 - Alpinia purpurata: LTS0144001
- 3563 - Amaranthaceae: LTS0144001
- 4668 - Amaryllidaceae: LTS0144001
- 4614 - Ananas: LTS0144001
- 4615 - Ananas comosus: 10.1016/0305-1978(86)90092-X
- 4615 - Ananas comosus: LTS0144001
- 4037 - Apiaceae: LTS0144001
- 3701 - Arabidopsis: LTS0144001
- 3702 - Arabidopsis thaliana: 10.1111/J.1742-4658.2008.06279.X
- 3702 - Arabidopsis thaliana: LTS0144001
- 4454 - Araceae: LTS0144001
- 4050 - Araliaceae: LTS0144001
- 131254 - Archontophoenix: LTS0144001
- 180981 - Archontophoenix alexandrae: 10.1016/0305-1978(86)90092-X
- 180981 - Archontophoenix alexandrae: LTS0144001
- 115440 - Areca: LTS0144001
- 184783 - Areca catechu: 10.1016/0305-1978(86)90092-X
- 184783 - Areca catechu: LTS0144001
- 4710 - Arecaceae: LTS0144001
- 6660 - Artemia: LTS0144001
- 85549 - Artemia salina: 10.1021/JF60200A008
- 85549 - Artemia salina: LTS0144001
- 38009 - Artemiidae: LTS0144001
- 4219 - Artemisia: LTS0144001
- 72332 - Artemisia absinthium: 10.1007/BF00600846
- 72332 - Artemisia absinthium: LTS0144001
- 6656 - Arthropoda: LTS0144001
- 4890 - Ascomycota: LTS0144001
- 40552 - Asparagaceae: LTS0144001
- 4210 - Asteraceae: LTS0144001
- 5204 - Basidiomycota: LTS0144001
- 6658 - Branchiopoda: LTS0144001
- 3705 - Brassica: LTS0144001
- 3708 - Brassica napus: 10.1021/JF00011A007
- 3708 - Brassica napus: LTS0144001
- 3700 - Brassicaceae: LTS0144001
- 4613 - Bromeliaceae: LTS0144001
- 4269 - Byrsonima: LTS0144001
- 4270 - Byrsonima crassifolia: 10.3109/13880209509088143
- 4270 - Byrsonima crassifolia: LTS0144001
- 41495 - Calendula: LTS0144001
- 41496 - Calendula officinalis: 10.29296/25877313-2018-06-01
- 41496 - Calendula officinalis: LTS0144001
- 3481 - Cannabaceae: LTS0144001
- 3482 - Cannabis: LTS0144001
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 3483 - Cannabis sativa: LTS0144001
- 4200 - Caprifoliaceae: LTS0144001
- 41503 - Centaurea: LTS0144001
- 347529 - Centaurea solstitialis: 10.1002/NT.2620030309
- 347529 - Centaurea solstitialis: LTS0144001
- 1804623 - Chenopodiaceae: LTS0144001
- 31392 - Chondria: LTS0144001
- 860625 - Chondria armata: 10.1248/CPB.6.578B
- 860625 - Chondria armata: 10.1248/YAKUSHI1947.79.3_353
- 860625 - Chondria armata: LTS0144001
- 7711 - Chordata: LTS0144001
- 13424 - Chrysophyllum: LTS0144001
- 233678 - Chrysophyllum roxburghii: 10.1016/0889-1575(91)90022-X
- 233678 - Chrysophyllum roxburghii: LTS0144001
- 13893 - Cocos: LTS0144001
- 13894 - Cocos nucifera: 10.1016/0305-1978(86)90092-X
- 13894 - Cocos nucifera: LTS0144001
- 41218 - Colchicaceae: LTS0144001
- 4743 - Commelina: LTS0144001
- 4740 - Commelinaceae: LTS0144001
- 93758 - Corchorus: LTS0144001
- 360610 - Corchorus aestuans: 10.1515/ZNB-1984-1020
- 360610 - Corchorus aestuans: LTS0144001
- 3660 - Cucurbita: LTS0144001
- 184136 - Cucurbita foetidissima: 10.1021/JF60216A022
- 184136 - Cucurbita foetidissima: LTS0144001
- 3650 - Cucurbitaceae: LTS0144001
- 3367 - Cupressaceae: LTS0144001
- 3394 - Cycadaceae: LTS0144001
- 3296 - Cycadopsida: LTS0144001
- 3395 - Cycas: LTS0144001
- 3397 - Cycas circinalis: 10.1055/S-2006-958002
- 3397 - Cycas circinalis: LTS0144001
- 4609 - Cyperaceae: LTS0144001
- 4610 - Cyperus: LTS0144001
- 1234190 - Cyperus aromaticus: 10.1016/0305-1978(86)90092-X
- 1234190 - Cyperus aromaticus: LTS0144001
- 4038 - Daucus: LTS0144001
- 4039 - Daucus carota: 10.1016/0008-6215(84)85339-2
- 4039 - Daucus carota: LTS0144001
- 37818 - Dendrobium: LTS0144001
- 51096 - Dendrobium crumenatum: 10.1016/0305-1978(86)90092-X
- 51096 - Dendrobium crumenatum: LTS0144001
- 42195 - Dieffenbachia: LTS0144001
- 4671 - Dioscoreaceae: LTS0144001
- 44615 - Discinaceae: LTS0144001
- 40129 - Donax: LTS0144001
- 96514 - Donax canniformis: 10.1016/0305-1978(86)90092-X
- 96514 - Donax canniformis: LTS0144001
- 210034 - Donax grandis: 10.1016/0305-1978(86)90092-X
- 210034 - Donax grandis: LTS0144001
- 2800709 - Donella: LTS0144001
- 2866387 - Donella lanceolata: LTS0144001
- 147541 - Dothideomycetes: LTS0144001
- 174214 - Epipremnum: LTS0144001
- 78380 - Epipremnum aureum: 10.1016/0305-1978(86)90092-X
- 78380 - Epipremnum aureum: LTS0144001
- 258264 - Epipremnum pinnatum: 10.1016/0305-1978(86)90092-X
- 258264 - Epipremnum pinnatum: LTS0144001
- 2759 - Eukaryota: LTS0144001
- 3977 - Euphorbiaceae: LTS0144001
- 3803 - Fabaceae: LTS0144001
- 38944 - Flammulina: LTS0144001
- 38945 - Flammulina velutipes: 10.1111/J.1365-2621.1987.TB13989.X
- 38945 - Flammulina velutipes: LTS0144001
- 2806 - Florideophyceae: LTS0144001
- 3746 - Fragaria: LTS0144001
- 3747 - Fragaria × ananassa: 10.1021/JF00023A036
- 4751 - Fungi: LTS0144001
- 6448 - Gastropoda: LTS0144001
- 21472 - Gentianaceae: LTS0144001
- 41219 - Gloriosa: LTS0144001
- 41220 - Gloriosa superba: 10.1016/0305-1978(86)90092-X
- 41220 - Gloriosa superba: LTS0144001
- 3846 - Glycine: LTS0144001
- 3847 - Glycine max: 10.1007/BF00576124
- 3847 - Glycine max: LTS0144001
- 3633 - Gossypium: LTS0144001
- 3635 - Gossypium hirsutum: 10.1177/004051757504500511
- 3635 - Gossypium hirsutum: LTS0144001
- 33160 - Gyromitra: LTS0144001
- 33161 - Gyromitra esculenta: 10.1021/JF60199A047
- 33161 - Gyromitra esculenta: LTS0144001
- 54723 - Hansenia: LTS0144001
- 54724 - Hansenia weberbaueriana: 10.1248/CPB.41.926
- 54724 - Hansenia weberbaueriana: LTS0144001
- 9606 - Homo sapiens: -
- 51023 - Hydrilla: LTS0144001
- 51024 - Hydrilla verticillata: 10.1016/0305-1978(86)90092-X
- 51024 - Hydrilla verticillata: LTS0144001
- 26319 - Hydrocharitaceae: LTS0144001
- 20685 - Indigofera: LTS0144001
- 520844 - Indigofera hendecaphylla: 10.1021/JF60189A002
- 520844 - Indigofera hendecaphylla: LTS0144001
- 539088 - Indigofera hirsuta: 10.1021/JF60189A002
- 539088 - Indigofera hirsuta: LTS0144001
- 3089969 - Indigofera pilosa: LTS0144001
- 138272 - Indigofera schimperi: 10.1021/JF60189A002
- 138272 - Indigofera schimperi: LTS0144001
- 3995 - Jatropha: LTS0144001
- 454931 - Jatropha gossypiifolia: 10.1016/0031-9422(71)85055-0
- 454931 - Jatropha gossypiifolia: LTS0144001
- 14101 - Juncaceae: LTS0144001
- 13578 - Juncus: LTS0144001
- 879918 - Juncus roemerianus: 10.18785/GRR.0602.07
- 879918 - Juncus roemerianus: LTS0144001
- 13100 - Juniperus: LTS0144001
- 114265 - Juniperus occidentalis: 10.1016/S0021-9673(01)97854-9
- 114265 - Juniperus occidentalis: LTS0144001
- 466205 - Juniperus scopulorum: 10.1016/S0021-9673(01)97854-9
- 466205 - Juniperus scopulorum: LTS0144001
- 4136 - Lamiaceae: LTS0144001
- 3853 - Lathyrus: LTS0144001
- 3860 - Lathyrus sativus: 10.1016/0021-9673(94)00777-2
- 3860 - Lathyrus sativus: LTS0144001
- 147547 - Lecanoromycetes: LTS0144001
- 147548 - Leotiomycetes: LTS0144001
- 4447 - Liliopsida: LTS0144001
- 3398 - Magnoliopsida: LTS0144001
- 4268 - Malpighiaceae: LTS0144001
- 3629 - Malvaceae: LTS0144001
- 40674 - Mammalia: LTS0144001
- 4619 - Marantaceae: LTS0144001
- 33208 - Metazoa: LTS0144001
- 6447 - Mollusca: LTS0144001
- 3487 - Moraceae: LTS0144001
- 5193 - Morchella: LTS0144001
- 60347 - Morchella angusticeps: 10.1021/JF60199A047
- 60347 - Morchella angusticeps: LTS0144001
- 62754 - Morchella crassipes: 10.1021/JF60199A047
- 62754 - Morchella crassipes: LTS0144001
- 1579548 - Morchella deliciosa: 10.1021/JF60199A047
- 1579548 - Morchella deliciosa: LTS0144001
- 39407 - Morchella esculenta: 10.1021/JF60199A047
- 39407 - Morchella esculenta: LTS0144001
- 5192 - Morchellaceae: LTS0144001
- 168074 - Murdannia: LTS0144001
- 428249 - Murdannia nudiflora: 10.1016/0305-1978(86)90092-X
- 428249 - Murdannia nudiflora: LTS0144001
- 10066 - Muridae: LTS0144001
- 10088 - Mus: LTS0144001
- 10090 - Mus musculus: LTS0144001
- 10090 - Mus musculus: NA
- 4640 - Musa: LTS0144001
- 89151 - Musa × paradisiaca: 10.1016/0305-1978(86)90092-X
- 4637 - Musaceae: LTS0144001
- 37240 - Myxotrichaceae: LTS0144001
- 78133 - Myxotrichum: 10.1016/0305-1978(86)90092-X
- 78133 - Myxotrichum: LTS0144001
- 4085 - Nicotiana: LTS0144001
- 4097 - Nicotiana tabacum: 10.1007/BF02660305
- 4097 - Nicotiana tabacum: LTS0144001
- 42451 - Onchidiidae: LTS0144001
- 69681 - Onchidium: 10.1016/0305-1978(86)90092-X
- 69681 - Onchidium: LTS0144001
- 45173 - Oncidium: 10.1016/0305-1978(86)90092-X
- 45173 - Oncidium: LTS0144001
- 4747 - Orchidaceae: LTS0144001
- 4053 - Panax: LTS0144001
- 4054 - Panax ginseng: 10.1021/JF00093A051
- 4054 - Panax ginseng: LTS0144001
- 4724 - Pandanaceae: LTS0144001
- 4725 - Pandanus: LTS0144001
- 1165086 - Pandanus odorifer: 10.1016/0305-1978(86)90092-X
- 1165086 - Pandanus odorifer: LTS0144001
- 59064 - Peliosanthes: LTS0144001
- 148715 - Pentaclethra: LTS0144001
- 148716 - Pentaclethra macrophylla: 10.1007/BF02666050
- 148716 - Pentaclethra macrophylla: LTS0144001
- 147549 - Pezizomycetes: LTS0144001
- 15747 - Phyllostachys: LTS0144001
- 281083 - Phyllostachys nigra: 10.1016/S0076-6879(00)X0301-1
- 281083 - Phyllostachys nigra: LTS0144001
- 862241 - Physalacriaceae: LTS0144001
- 3328 - Picea: LTS0144001
- 3330 - Picea glauca: 10.1016/S0021-9673(01)97854-9
- 3330 - Picea glauca: LTS0144001
- 3335 - Picea mariana: 10.1016/S0021-9673(01)97854-9
- 3335 - Picea mariana: LTS0144001
- 3331 - Picea pungens: 10.1016/S0021-9673(01)97854-9
- 3331 - Picea pungens: LTS0144001
- 3318 - Pinaceae: LTS0144001
- 58019 - Pinopsida: LTS0144001
- 3337 - Pinus: LTS0144001
- 3339 - Pinus contorta: 10.1016/S0021-9673(01)97854-9
- 3339 - Pinus contorta: LTS0144001
- 77912 - Pinus densiflora: 10.1248/YAKUSHI1947.107.4_279
- 77912 - Pinus densiflora: LTS0144001
- 55062 - Pinus ponderosa: 10.1016/S0021-9673(01)97854-9
- 55062 - Pinus ponderosa: 10.1034/J.1399-3054.1990.790104.X
- 55062 - Pinus ponderosa: LTS0144001
- 3887 - Pisum: LTS0144001
- 3888 - Pisum sativum: 10.1007/BF00574236
- 3888 - Pisum sativum: LTS0144001
- 4479 - Poaceae: LTS0144001
- 16367 - Pontederiaceae: LTS0144001
- 3754 - Prunus: LTS0144001
- 3758 - Prunus domestica: 10.1021/JF00017A016
- 3758 - Prunus domestica: LTS0144001
- 3356 - Pseudotsuga: LTS0144001
- 3357 - Pseudotsuga menziesii: 10.1016/S0021-9673(01)97854-9
- 3357 - Pseudotsuga menziesii: LTS0144001
- 3889 - Psophocarpus: LTS0144001
- 3891 - Psophocarpus tetragonolobus: 10.1111/J.1365-2621.1985.TB10514.X
- 3891 - Psophocarpus tetragonolobus: LTS0144001
- 56479 - Ramalina: LTS0144001
- 157169 - Ramalina fraxinea: 10.5586/ASBP.1979.002
- 157169 - Ramalina fraxinea: LTS0144001
- 56478 - Ramalinaceae: LTS0144001
- 2803 - Rhodomelaceae: LTS0144001
- 2763 - Rhodophyta: LTS0144001
- 46332 - Rhynchospora: LTS0144001
- 906937 - Rhynchospora colorata: 10.1016/0305-1978(86)90092-X
- 906937 - Rhynchospora colorata: LTS0144001
- 2872799 - Ripariosida: LTS0144001
- 108447 - Ripariosida hermaphrodita: LTS0144001
- 3745 - Rosaceae: LTS0144001
- 24966 - Rubiaceae: LTS0144001
- 4450 - Sagittaria: LTS0144001
- 4451 - Sagittaria sagittifolia: 10.1016/0305-1978(86)90092-X
- 4451 - Sagittaria sagittifolia: LTS0144001
- 3737 - Sapotaceae: LTS0144001
- 53922 - Senna: LTS0144001
- 346985 - Senna obtusifolia: 10.1021/JF00102A014
- 346985 - Senna obtusifolia: LTS0144001
- 77655 - Sida: LTS0144001
- 108447 - Sida hermaphrodita: 10.1007/BF00607552
- 4070 - Solanaceae: LTS0144001
- 35916 - Spermacoce: LTS0144001
- 2491924 - Spermacoce pusilla: 10.4268/CJCMM20120313
- 2491924 - Spermacoce pusilla: LTS0144001
- 27029 - Stangeria: LTS0144001
- 34343 - Stangeria eriopus: 10.1016/0378-8741(94)90005-1
- 34343 - Stangeria eriopus: LTS0144001
- 35493 - Streptophyta: LTS0144001
- 137301 - Styphnolobium: LTS0144001
- 3897 - Styphnolobium japonicum: 10.1016/S0031-9422(00)83857-1
- 3897 - Styphnolobium japonicum: LTS0144001
- 46108 - Suaeda: LTS0144001
- 224153 - Suaeda aegyptiaca: 10.4197/SCI.16-1.4
- 224153 - Suaeda aegyptiaca: LTS0144001
- 1735025 - Suaeda nudiflora: 10.1002/JPS.3030350906
- 1735025 - Suaeda nudiflora: LTS0144001
- 39241 - Swertia: LTS0144001
- 166611 - Swertia angustifolia: LTS0144001
- 1460260 - Swertia angustifolia var. pulchella: 10.1055/S-0028-1097323
- 1460260 - Swertia angustifolia var. pulchella: LTS0144001
- 44981 - Tacca: LTS0144001
- 2487666 - Tacca cristata: 10.1016/0305-1978(86)90092-X
- 2487666 - Tacca cristata: LTS0144001
- 167567 - Tacca integrifolia: 10.1016/0305-1978(86)90092-X
- 167567 - Tacca integrifolia: LTS0144001
- 1898022 - Taccaceae: LTS0144001
- 49990 - Thymus: LTS0144001
- 2019959 - Thymus transcaucasicus: 10.1007/BF00575075
- 2019959 - Thymus transcaucasicus: LTS0144001
- 58023 - Tracheophyta: LTS0144001
- 4741 - Tradescantia: LTS0144001
- 428268 - Tradescantia spathacea: 10.1016/0305-1978(86)90092-X
- 428268 - Tradescantia spathacea: LTS0144001
- 709071 - Treculia: LTS0144001
- 709072 - Treculia africana: 10.1007/BF02666050
- 709072 - Treculia africana: LTS0144001
- 3358 - Tsuga: LTS0144001
- 3359 - Tsuga heterophylla: 10.1016/S0021-9673(01)97854-9
- 3359 - Tsuga heterophylla: LTS0144001
- 19952 - Valeriana: LTS0144001
- 19953 - Valeriana officinalis: 10.1055/S-2006-959538
- 19953 - Valeriana officinalis: LTS0144001
- 19944 - Valerianaceae: LTS0144001
- 44607 - Verpa: LTS0144001
- 44609 - Verpa bohemica: 10.1021/JF60199A047
- 44609 - Verpa bohemica: LTS0144001
- 33090 - Viridiplantae: LTS0144001
- 3298 - Zamiaceae: LTS0144001
- 4642 - Zingiberaceae: LTS0144001
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Debora Latino, Massimo Venditti, Sara Falvo, Giulia Grillo, Alessandra Santillo, Imed Messaoudi, Mariem Ben Rhouma, Sergio Minucci, Gabriella Chieffi Baccari, Maria Maddalena Di Fiore. Steroidogenesis Upregulation through Mitochondria-Associated Endoplasmic Reticulum Membranes and Mitochondrial Dynamics in Rat Testes: The Role of D-Aspartate.
Cells.
2024 Mar; 13(6):. doi:
10.3390/cells13060523
. [PMID: 38534366] - Chenyu Wang, Le Huang, Shunshun Jin, Ruoxin Hou, Mingzhe Chen, Yonghui Liu, Wenjie Tang, Tiejun Li, Yulong Yin, Liuqin He. d-Aspartate in Low-Protein Diets Improves the Pork Quality by Regulating Energy and Lipid Metabolism via the Gut Microbes.
Journal of agricultural and food chemistry.
2023 Aug; 71(33):12417-12430. doi:
10.1021/acs.jafc.3c01974
. [PMID: 37578298] - Dawei Chen, Yating Liang, Jiaojiao Liang, Feifei Shen, Yue Cheng, Hengxian Qu, Yunchao Wa, Congcong Guo, Ruixia Gu, Jianya Qian, Xia Chen, Chenchen Zhang, Chengran Guan. Beneficial effects of Lactobacillus rhamnosus hsryfm 1301 fermented milk on rats with nonalcoholic fatty liver disease.
Journal of dairy science.
2023 Mar; 106(3):1533-1548. doi:
10.3168/jds.2022-22383
. [PMID: 36710180] - Giulia Murtas, Loredano Pollegioni. D-amino Acids as Novel Blood-based Biomarkers.
Current medicinal chemistry.
2022; 29(24):4202-4215. doi:
10.2174/0929867328666211125092438
. [PMID: 34823459] - Tommaso Nuzzo, Masae Sekine, Daniela Punzo, Mattia Miroballo, Masumi Katane, Yasuaki Saitoh, Alberto Galbusera, Massimo Pasqualetti, Francesco Errico, Alessandro Gozzi, Jean-Pierre Mothet, Hiroshi Homma, Alessandro Usiello. Dysfunctional d-aspartate metabolism in BTBR mouse model of idiopathic autism.
Biochimica et biophysica acta. Proteins and proteomics.
2020 12; 1868(12):140531. doi:
10.1016/j.bbapap.2020.140531
. [PMID: 32853769] - Qixia Shen, Wenyu Xiang, Sen Ye, Xin Lei, Lefeng Wang, Sha Jia, Xue Shao, Chunhua Weng, Xiujin Shen, Yucheng Wang, Shi Feng, Lihui Qu, Cuili Wang, Jianghua Chen, Ping Zhang, Hong Jiang. Plasma metabolite biomarkers related to secondary hyperparathyroidism and parathyroid hormone.
Journal of cellular biochemistry.
2019 09; 120(9):15766-15775. doi:
10.1002/jcb.28846
. [PMID: 31069832] - Blair Crewther, Konrad Witek, Paweł Draga, Piotr Zmijewski, Zbigniew Obmiński. Short-Term d-Aspartic Acid Supplementation Does Not Affect Serum Biomarkers Associated With the Hypothalamic-Pituitary-Gonadal Axis in Male Climbers.
International journal of sport nutrition and exercise metabolism.
2019 May; 29(3):259-264. doi:
10.1123/ijsnem.2018-0076
. [PMID: 29893592] - Jumpei Sasabe, Masataka Suzuki. Distinctive Roles of D-Amino Acids in the Homochiral World: Chirality of Amino Acids Modulates Mammalian Physiology and Pathology.
The Keio journal of medicine.
2019 Mar; 68(1):1-16. doi:
10.2302/kjm.2018-0001-ir
. [PMID: 29794368] - Mahdi Goudarzvand, Yaser Panahi, Reza Yazdani, Hosein Miladi, Saeed Tahmasebi, Amin Sherafat, Sanaz Afraei, Kosar Abouhamzeh, Mahnaz Jamee, Kawthar Jasim Mohammad Rida Al-Hussieni, Hamed Mohammadi, Ali Mohebbi, Nikoo Hossein-Khannazer, Majid Zaki-Dizaji, Maria Maddalena Di Fiore, Antimo D'Aniello, Gholamreza Azizi. The Effects of D-aspartate on Neurosteroids, Neurosteroid Receptors, and Inflammatory Mediators in Experimental Autoimmune Encephalomyelitis.
Endocrine, metabolic & immune disorders drug targets.
2019; 19(3):316-325. doi:
10.2174/1871530318666181005093459
. [PMID: 30289086] - Mahdi Ansari, Mahdi Zhandi, Hamid Kohram, Mojtaba Zaghari, Mostafa Sadeghi, Maedeh Gholami, Hamid Deldar, Maria Maddalena Di Fiore, Andrew Parks Benson. D-Aspartate amends reproductive performance of aged roosters by changing gene expression and testicular histology.
Reproduction, fertility, and development.
2018 Jun; 30(7):1038-1048. doi:
10.1071/rd17072
. [PMID: 31039968] - Kazuma Ogawa, Atsushi Ishizaki, Kenichiro Takai, Yoji Kitamura, Akira Makino, Takashi Kozaka, Yasushi Kiyono, Kazuhiro Shiba, Akira Odani. Evaluation of Ga-DOTA-(D-Asp)n as bone imaging agents: D-aspartic acid peptides as carriers to bone.
Scientific reports.
2017 10; 7(1):13971. doi:
10.1038/s41598-017-14149-7
. [PMID: 29070853] - P H Do, P V Tran, M A Bahry, H Yang, G Han, A Tsuchiya, Y Asami, M Furuse, V S Chowdhury. Oral administration of a medium containing both D-aspartate-producing live bacteria and D-aspartate reduces rectal temperature in chicks.
British poultry science.
2017 Oct; 58(5):569-577. doi:
10.1080/00071668.2017.1335858
. [PMID: 28548864] - Sanaz Afraei, Antimo D'Aniello, Reza Sedaghat, Parvin Ekhtiari, Gholamreza Azizi, Nakisa Tabrizian, Laura Magliozzi, Zahra Aghazadeh, Abbas Mirshafiey. Therapeutic effects of D-aspartate in a mouse model of multiple sclerosis.
Journal of food and drug analysis.
2017 Jul; 25(3):699-708. doi:
10.1016/j.jfda.2016.10.025
. [PMID: 28911655] - Filippo Giacone, Rosita A Condorelli, Laura M Mongioì, Valentina Bullara, Sandro La Vignera, Aldo E Calogero. In vitro effects of zinc, D-aspartic acid, and coenzyme-Q10 on sperm function.
Endocrine.
2017 May; 56(2):408-415. doi:
10.1007/s12020-016-1013-7
. [PMID: 27422792] - Vincenza Barbato, Riccardo Talevi, Sabrina Braun, Anna Merolla, Sam Sudhakaran, S Longobardi, Roberto Gualtieri. Supplementation of sperm media with zinc, D-aspartate and co-enzyme Q10 protects bull sperm against exogenous oxidative stress and improves their ability to support embryo development.
Zygote (Cambridge, England).
2017 Apr; 25(2):168-175. doi:
10.1017/s0967199416000459
. [PMID: 28264757] - Mahdi Ansari, Mahdi Zhandi, Hamid Kohram, Mojtaba Zaghari, Mostafa Sadeghi, Mohsen Sharafi. Improvement of post-thawed sperm quality and fertility of Arian rooster by oral administration of d-aspartic acid.
Theriogenology.
2017 Apr; 92(?):69-74. doi:
10.1016/j.theriogenology.2017.01.014
. [PMID: 28237346] - Zhenxia Qin, Jeff X Zhu, Dana W Aswad. The D-isoAsp-25 variant of histone H2B is highly enriched in active chromatin: potential role in the regulation of gene expression?.
Amino acids.
2016 Feb; 48(2):599-603. doi:
10.1007/s00726-015-2140-9
. [PMID: 26666674] - Sachise Karakawa, Kazutaka Shimbo, Naoyuki Yamada, Toshimi Mizukoshi, Hiroshi Miyano, Masashi Mita, Wolfgang Lindner, Kenji Hamase. Simultaneous analysis of D-alanine, D-aspartic acid, and D-serine using chiral high-performance liquid chromatography-tandem mass spectrometry and its application to the rat plasma and tissues.
Journal of pharmaceutical and biomedical analysis.
2015 Nov; 115(?):123-9. doi:
10.1016/j.jpba.2015.05.024
. [PMID: 26186615] - Satsuki Matsuda, Masumi Katane, Kazuhiro Maeda, Yuusuke Kaneko, Yasuaki Saitoh, Tetsuya Miyamoto, Masae Sekine, Hiroshi Homma. Biosynthesis of D-aspartate in mammals: the rat and human homologs of mouse aspartate racemase are not responsible for the biosynthesis of D-aspartate.
Amino acids.
2015 May; 47(5):975-85. doi:
10.1007/s00726-015-1926-0
. [PMID: 25646960] - A Gholizadeh. The possible involvement of D-amino acids or their metabolites in Arabidopsis cysteine proteinase/cystatin N-dependent proteolytic pathway.
TSitologiia i genetika.
2015 Mar; 49(2):3-10. doi:
"
. [PMID: 26030967] - D D P Ferreira, B Stutz, F G de Mello, R A M Reis, R C C Kubrusly. Caffeine potentiates the release of GABA mediated by NMDA receptor activation: Involvement of A1 adenosine receptors.
Neuroscience.
2014 Dec; 281(?):208-15. doi:
10.1016/j.neuroscience.2014.09.060
. [PMID: 25286387] - R Gualtieri, V Barbato, I Fiorentino, S Braun, D Rizos, S Longobardi, R Talevi. Treatment with zinc, d-aspartate, and coenzyme Q10 protects bull sperm against damage and improves their ability to support embryo development.
Theriogenology.
2014 Sep; 82(4):592-8. doi:
10.1016/j.theriogenology.2014.05.028
. [PMID: 24999011] - Edi Erwan, Vishwajit Sur Chowdhury, Mao Nagasawa, Ryosei Goda, Tsuyoshi Otsuka, Shinobu Yasuo, Mitsuhiro Furuse. Oral administration of D-aspartate, but not L-aspartate, depresses rectal temperature and alters plasma metabolites in chicks.
Life sciences.
2014 Jul; 109(1):65-71. doi:
10.1016/j.lfs.2014.05.015
. [PMID: 24881518] - Franca Raucci, Antimo D'Aniello, Maria Maddalena Di Fiore. Stimulation of androgen production by D-aspartate through the enhancement of StAR, P450scc and 3β-HSD mRNA levels in vivo rat testis and in culture of immature rat Leydig cells.
Steroids.
2014 Jun; 84(?):103-10. doi:
10.1016/j.steroids.2014.03.016
. [PMID: 24713504] - Darryn S Willoughby, Brian Leutholtz. D-aspartic acid supplementation combined with 28 days of heavy resistance training has no effect on body composition, muscle strength, and serum hormones associated with the hypothalamo-pituitary-gonadal axis in resistance-trained men.
Nutrition research (New York, N.Y.).
2013 Oct; 33(10):803-10. doi:
10.1016/j.nutres.2013.07.010
. [PMID: 24074738] - Mao Horio, Tamaki Ishima, Yuko Fujita, Ran Inoue, Hisashi Mori, Kenji Hashimoto. Decreased levels of free D-aspartic acid in the forebrain of serine racemase (Srr) knock-out mice.
Neurochemistry international.
2013 May; 62(6):843-7. doi:
10.1016/j.neuint.2013.02.015
. [PMID: 23439386] - Miki Senda, Atsushi Yamamoto, Hiroyuki Tanaka, Tetsuo Ishida, Kihachiro Horiike, Toshiya Senda. Crystallization and preliminary crystallographic analysis of D-aspartate oxidase from porcine kidney.
Acta crystallographica. Section F, Structural biology and crystallization communications.
2012 Jun; 68(Pt 6):644-6. doi:
10.1107/s1744309112013243
. [PMID: 22684060] - Hans Christian Helms, Rasmus Madelung, Helle Sønderby Waagepetersen, Carsten Uhd Nielsen, Birger Brodin. In vitro evidence for the brain glutamate efflux hypothesis: brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate.
Glia.
2012 May; 60(6):882-93. doi:
10.1002/glia.22321
. [PMID: 22392649] - Silvia Holmseth, Yvette Dehnes, Yanhua H Huang, Virginie V Follin-Arbelet, Nina J Grutle, Maria N Mylonakou, Celine Plachez, Yun Zhou, David N Furness, Dwight E Bergles, Knut P Lehre, Niels C Danbolt. The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS.
The Journal of neuroscience : the official journal of the Society for Neuroscience.
2012 Apr; 32(17):6000-13. doi:
10.1523/jneurosci.5347-11.2012
. [PMID: 22539860] - Hai Han, Yurika Miyoshi, Kyoko Ueno, Chieko Okamura, Yosuke Tojo, Masashi Mita, Wolfgang Lindner, Kiyoshi Zaitsu, Kenji Hamase. Simultaneous determination of D-aspartic acid and D-glutamic acid in rat tissues and physiological fluids using a multi-loop two-dimensional HPLC procedure.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2011 Nov; 879(29):3196-202. doi:
10.1016/j.jchromb.2011.01.023
. [PMID: 21371949] - Melissa S Pathmajeyan, Sarjubhai A Patel, James A Carroll, Todd Seib, James F Striebel, Richard J Bridges, Bruce Chesebro. Increased excitatory amino acid transport into murine prion protein knockout astrocytes cultured in vitro.
Glia.
2011 Nov; 59(11):1684-94. doi:
10.1002/glia.21215
. [PMID: 21766339] - Alessandra Santillo, Lavinia Burrone, Rosalba Senese, Federica Cioffi, Antonia Lanni, Gabriella Chieffi Baccari. Effect of D-aspartate uptake on uncoupling protein-3 and α-tubulin expressions in rat Harderian gland.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2011 Nov; 879(29):3344-8. doi:
10.1016/j.jchromb.2011.04.001
. [PMID: 21524945] - Yuhei Mori, Kenzo Aki, Katsunori Kuge, Shingo Tajima, Natsuko Yamanaka, Yuichi Kaji, Naoki Yamamoto, Ryoji Nagai, Hanako Yoshii, Norihiko Fujii, Masami Watanabe, Tadatoshi Kinouchi, Noriko Fujii. UV B-irradiation enhances the racemization and isomerizaiton of aspartyl residues and production of Nε-carboxymethyl lysine (CML) in keratin of skin.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2011 Nov; 879(29):3303-9. doi:
10.1016/j.jchromb.2011.05.010
. [PMID: 21636332] - Wouter F Visser, Nanda M Verhoeven-Duif, Roel Ophoff, Steven Bakker, Leo W Klomp, Ruud Berger, Tom J de Koning. A sensitive and simple ultra-high-performance-liquid chromatography-tandem mass spectrometry based method for the quantification of D-amino acids in body fluids.
Journal of chromatography. A.
2011 Oct; 1218(40):7130-6. doi:
10.1016/j.chroma.2011.07.087
. [PMID: 21890145] - Beena Parikh, Jyotsna Maliwad, Veena R Shah. Preventive analgesia: Effect of small dose of ketamine on morphine requirement after renal surgery.
Journal of anaesthesiology, clinical pharmacology.
2011 Oct; 27(4):485-8. doi:
10.4103/0970-9185.86592
. [PMID: 22096281] - Boby Varkey Maramattom, Anu Jacob. N-methyl D-aspartate receptor encephalitis: A new addition to the spectrum of autoimmune encephalitis.
Annals of Indian Academy of Neurology.
2011 Jul; 14(3):153-7. doi:
10.4103/0972-2327.85872
. [PMID: 22028524] - Atsushi Yamamoto, Hiroyuki Tanaka, Tetsuo Ishida, Kihachiro Horiike. Immunohistochemical localization of D-aspartate oxidase in porcine peripheral tissues.
Amino acids.
2011 Jul; 41(2):529-36. doi:
10.1007/s00726-010-0785-y
. [PMID: 20976510] - Rebecca G Hu, Julie C Lim, Michael Kalloniatis, Paul J Donaldson. Cellular localization of glutamate and glutamine metabolism and transport pathways in the rat ciliary epithelium.
Investigative ophthalmology & visual science.
2011 May; 52(6):3345-53. doi:
10.1167/iovs.10-6422
. [PMID: 21593199] - Runhild Gammelsaeter, Thierry Coppola, Païkan Marcaggi, Jon Storm-Mathisen, Farrukh A Chaudhry, David Attwell, Romano Regazzi, Vidar Gundersen. A role for glutamate transporters in the regulation of insulin secretion.
PloS one.
2011; 6(8):e22960. doi:
10.1371/journal.pone.0022960
. [PMID: 21853059] - Takehiko Yokoyama, Masafumi Amano, Masae Sekine, Hiroshi Homma, Masaharu Tokuda, Minoru Sato. Immunohistochemical localization of endogenous D-Aspartate in the marine brown Alga Sargassum fusiforme.
Bioscience, biotechnology, and biochemistry.
2011; 75(8):1481-4. doi:
10.1271/bbb.110184
. [PMID: 21821953] - Yanfeng Chen, Ying Liu, M Cameron Sullards, Alfred H Merrill. An introduction to sphingolipid metabolism and analysis by new technologies.
Neuromolecular medicine.
2010 Dec; 12(4):306-19. doi:
10.1007/s12017-010-8132-8
. [PMID: 20680704] - Dong Yong Kil, Brittany M Vester Boler, Carolyn J Apanavicius, Lawrence B Schook, Kelly S Swanson. Age and diet affect gene expression profiles in canine liver tissue.
PloS one.
2010 Oct; 5(10):e13319. doi:
10.1371/journal.pone.0013319
. [PMID: 20967283] - L Aravind, Robson F de Souza, Lakshminarayan M Iyer. Predicted class-I aminoacyl tRNA synthetase-like proteins in non-ribosomal peptide synthesis.
Biology direct.
2010 Aug; 5(?):48. doi:
10.1186/1745-6150-5-48
. [PMID: 20678224] - Nathan Knutson, Charles E Wood. Interaction of PGHS-2 and glutamatergic mechanisms controlling the ovine fetal hypothalamus-pituitary-adrenal axis.
American journal of physiology. Regulatory, integrative and comparative physiology.
2010 Jul; 299(1):R365-70. doi:
10.1152/ajpregu.00163.2010
. [PMID: 20445154] - Katsunori Kuge, Keiko Kitamura, Koichi Nakaoji, Kazuhiko Hamada, Norihiko Fujii, Takeshi Saito, Noriko Fujii. Oxidative stress induces the formation of D-aspartyl residues in the elastin mimic peptides.
Chemistry & biodiversity.
2010 Jun; 7(6):1408-12. doi:
10.1002/cbdv.200900348
. [PMID: 20564559] - Lavinia Burrone, Marcello Di Giovanni, M Maddalena Di Fiore, Gabriella Chieffi Baccari, Alessandra Santillo. Effects of D-aspartate treatment on D-aspartate oxidase, superoxide dismutase, and caspase 3 activities in frog (Rana esculenta) tissues.
Chemistry & biodiversity.
2010 Jun; 7(6):1459-66. doi:
10.1002/cbdv.200900331
. [PMID: 20564564] - Enza Topo, George Fisher, Andrea Sorricelli, Francesco Errico, Alessandro Usiello, Antimo D'Aniello. Thyroid hormones and D-aspartic acid, D-aspartate oxidase, D-aspartate racemase, H2O2, and ROS in rats and mice.
Chemistry & biodiversity.
2010 Jun; 7(6):1467-78. doi:
10.1002/cbdv.200900360
. [PMID: 20564565] - G Macchia, E Topo, N Mangano, E D'Aniello, R Boni. DL-Aspartic acid administration improves semen quality in rabbit bucks.
Animal reproduction science.
2010 Apr; 118(2-4):337-43. doi:
10.1016/j.anireprosci.2009.07.009
. [PMID: 19716665] - Daniel J Foster, Anne M Heacock, Stephen K Fisher. Muscarinic receptor stimulation of D-aspartate uptake into human SH-SY5Y neuroblastoma cells is attenuated by hypoosmolarity.
The Journal of pharmacology and experimental therapeutics.
2010 Apr; 333(1):297-309. doi:
10.1124/jpet.109.164277
. [PMID: 20080957] - Marcello Di Giovanni, Lavinia Burrone, Gabriella Chieffi Baccari, Enza Topo, Alessandra Santillo. Distribution of free D-aspartic acid and D-aspartate oxidase in frog Rana esculenta tissues.
Journal of experimental zoology. Part A, Ecological genetics and physiology.
2010 Mar; 313(3):137-43. doi:
10.1002/jez.585
. [PMID: 20108220] - K N Chandrashekar, Muralidhara. D-Aspartic acid induced oxidative stress and mitochondrial dysfunctions in testis of prepubertal rats.
Amino acids.
2010 Mar; 38(3):817-27. doi:
10.1007/s00726-009-0288-x
. [PMID: 19381779] - Luigi Bozzo, Jean-Yves Chatton. Inhibitory effects of (2S, 3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA) on the astrocytic sodium responses to glutamate.
Brain research.
2010 Feb; 1316(?):27-34. doi:
10.1016/j.brainres.2009.12.028
. [PMID: 20026319] - Marcello Di Giovanni, Enza Topo, Alessandra Santillo, Antimo D'Aniello, Gabriella Chieffi Baccari. D-Aspartate binding sites in rat Harderian gland.
Amino acids.
2010 Jan; 38(1):229-35. doi:
10.1007/s00726-008-0231-6
. [PMID: 19153642] - Richard Barrett-Jolley, Rebecca Lewis, Rebecca Fallman, Ali Mobasheri. The emerging chondrocyte channelome.
Frontiers in physiology.
2010; 1(?):135. doi:
10.3389/fphys.2010.00135
. [PMID: 21423376] - Enza Topo, Andrea Soricelli, Antimo D'Aniello, Salvatore Ronsini, Gemma D'Aniello. The role and molecular mechanism of D-aspartic acid in the release and synthesis of LH and testosterone in humans and rats.
Reproductive biology and endocrinology : RB&E.
2009 Oct; 7(?):120. doi:
10.1186/1477-7827-7-120
. [PMID: 19860889] - Khoa T D Nguyen, Jae-Won Shin, Caroline Rae, Ellas K Nanitsos, Gabriela B Acosta, David V Pow, Vlado Buljan, Maxwell R Bennett, Paul L Else, Vladimir J Balcar. Rottlerin inhibits (Na+, K+)-ATPase activity in brain tissue and alters D-aspartate dependent redistribution of glutamate transporter GLAST in cultured astrocytes.
Neurochemical research.
2009 Oct; 34(10):1767-74. doi:
10.1007/s11064-009-9996-6
. [PMID: 19495968] - Rossella Monteforte, Alessandra Santillo, Marcello Di Giovanni, Antimo D'Aniello, Antimo Di Maro, Gabriella Chieffi Baccari. D-Aspartate affects secretory activity in rat Harderian gland: molecular mechanism and functional significance.
Amino acids.
2009 Oct; 37(4):653-64. doi:
10.1007/s00726-008-0185-8
. [PMID: 18820994] - Haijun Zhang, Wenjun Xin, Patrick M Dougherty. Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes.
Molecular pain.
2009 Jul; 5(?):36. doi:
10.1186/1744-8069-5-36
. [PMID: 19570219] - A Gholizadeh, B B Kohnehrouz. Molecular cloning and expression in Escherichia coli of an active fused Zea mays L. D-amino acid oxidase.
Biochemistry. Biokhimiia.
2009 Feb; 74(2):137-44. doi:
10.1134/s0006297909020035
. [PMID: 19267668] - Stefan Branth, Leif Hambraeus, Karin Piehl-Aulin, Birgitta Essén-Gustavsson, Torbjörn Akerfeldt, Roger Olsson, Mats Stridsberg, Gunnar Ronquist. Metabolic stress-like condition can be induced by prolonged strenuous exercise in athletes.
Upsala journal of medical sciences.
2009; 114(1):12-25. doi:
10.1080/03009730802579778
. [PMID: 19242868] - D N Furness, Y Dehnes, A Q Akhtar, D J Rossi, M Hamann, N J Grutle, V Gundersen, S Holmseth, K P Lehre, K Ullensvang, M Wojewodzic, Y Zhou, D Attwell, N C Danbolt. A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2).
Neuroscience.
2008 Nov; 157(1):80-94. doi:
10.1016/j.neuroscience.2008.08.043
. [PMID: 18805467] - Aleksander Talgøy Holten, Holten Aleksander Talgøy, Niels Christian Danbolt, Danbolt Niels Christian, Keiko Shimamoto, Vidar Gundersen, Gundersen Vidar. Low-affinity excitatory amino acid uptake in hippocampal astrocytes: a possible role of Na+/dicarboxylate cotransporters.
Glia.
2008 Jul; 56(9):990-7. doi:
10.1002/glia.20672
. [PMID: 18442087] - K N Chandrashekar, Muralidhara. Oxidative alterations induced by D-aspartic acid in prepubertal rat testis in vitro: a mechanistic study.
Theriogenology.
2008 Jul; 70(1):97-104. doi:
10.1016/j.theriogenology.2008.02.004
. [PMID: 18439665] - Miya Funakoshi, Masae Sekine, Masumi Katane, Takemitsu Furuchi, Masafumi Yohda, Takafumi Yoshikawa, Hiroshi Homma. Cloning and functional characterization of Arabidopsis thaliana D-amino acid aminotransferase--D-aspartate behavior during germination.
The FEBS journal.
2008 Mar; 275(6):1188-200. doi:
10.1111/j.1742-4658.2008.06279.x
. [PMID: 18318836] - I N Iezhitsa, A A Spasov. [Potassium magnesium homeostasis: physiology, pathophysiology, clinical consequences of deficiency and pharmacological correction].
Uspekhi fiziologicheskikh nauk.
2008 Jan; 39(1):23-41. doi:
NULL
. [PMID: 18314767] - Tunahan Cakir, Selma Alsan, Hale Saybaşili, Ata Akin, Kutlu O Ulgen. Reconstruction and flux analysis of coupling between metabolic pathways of astrocytes and neurons: application to cerebral hypoxia.
Theoretical biology & medical modelling.
2007 Dec; 4(?):48. doi:
10.1186/1742-4682-4-48
. [PMID: 18070347] - Luca Raiteri, Simona Zappettini, Marco Milanese, Ernesto Fedele, Maurizio Raiteri, Giambattista Bonanno. Mechanisms of glutamate release elicited in rat cerebrocortical nerve endings by 'pathologically' elevated extraterminal K+ concentrations.
Journal of neurochemistry.
2007 Nov; 103(3):952-61. doi:
10.1111/j.1471-4159.2007.04784.x
. [PMID: 17662048] - Susan M Sullivan, Aven Lee, S Tracey Björkman, Stephanie M Miller, Robert K P Sullivan, Philip Poronnik, Paul B Colditz, David V Pow. Cytoskeletal anchoring of GLAST determines susceptibility to brain damage: an identified role for GFAP.
The Journal of biological chemistry.
2007 Oct; 282(40):29414-23. doi:
10.1074/jbc.m704152200
. [PMID: 17684014] - Patrizia Galletti, Maria Luigia De Bonis, Alvara Sorrentino, Marianna Raimo, Stefania D'Angelo, Iris Scala, Generoso Andria, Antimo D'Aniello, Diego Ingrosso, Vincenzo Zappia. Accumulation of altered aspartyl residues in erythrocyte proteins from patients with Down's syndrome.
The FEBS journal.
2007 Oct; 274(20):5263-77. doi:
10.1111/j.1742-4658.2007.06048.x
. [PMID: 17892495] - Chengyong Liao, Russell A Nicholson. Ethanolamine and related amino alcohols increase basal and evoked release of [3H]-D-aspartic acid from synaptosomes by enhancing the filling of synaptic vesicles.
European journal of pharmacology.
2007 Jul; 566(1-3):103-12. doi:
10.1016/j.ejphar.2007.03.020
. [PMID: 17448462] - Atsushi Yamamoto, Hiroyuki Tanaka, Tetsuo Ishida, Kihachiro Horiike. Functional and structural characterization of D-aspartate oxidase from porcine kidney: non-Michaelis kinetics due to substrate activation.
Journal of biochemistry.
2007 Mar; 141(3):363-76. doi:
10.1093/jb/mvm041
. [PMID: 17234685] - Olga Boudker, Renae M Ryan, Dinesh Yernool, Keiko Shimamoto, Eric Gouaux. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter.
Nature.
2007 Jan; 445(7126):387-93. doi:
10.1038/nature05455
. [PMID: 17230192] - C Cortés-Rojo, M Clemente-Guerrero, A Saavedra-Molina. Effects of D-amino acids on lipoperoxidation in rat liver and kidney mitochondria.
Amino acids.
2007 Jan; 32(1):31-7. doi:
10.1007/s00726-005-0356-9
. [PMID: 16868653] - E R Brown, S Piscopo, J-T Chun, M Francone, I Mirabile, A D'Aniello. Modulation of an AMPA-like glutamate receptor (SqGluR) gating by L- and D-aspartic acids.
Amino acids.
2007 Jan; 32(1):53-7. doi:
10.1007/s00726-006-0349-3
. [PMID: 17469226] - M Katane, T Furuchi, M Sekine, H Homma. Molecular cloning of a cDNA encoding mouse D-aspartate oxidase and functional characterization of its recombinant proteins by site-directed mutagenesis.
Amino acids.
2007 Jan; 32(1):69-78. doi:
10.1007/s00726-006-0350-x
. [PMID: 17469229] - Ahmed S Abdel-Moneim, Magdy F El-Kady, Brian S Ladman, Jack Gelb. S1 gene sequence analysis of a nephropathogenic strain of avian infectious bronchitis virus in Egypt.
Virology journal.
2006 Sep; 3(?):78. doi:
10.1186/1743-422x-3-78
. [PMID: 16987422] - Marina Gegelashvili, Anna Rodriguez-Kern, Iryna Pirozhkova, Jian Zhang, Luther Sung, Georgi Gegelashvili. High-affinity glutamate transporter GLAST/EAAT1 regulates cell surface expression of glutamine/neutral amino acid transporter ASCT2 in human fetal astrocytes.
Neurochemistry international.
2006 May; 48(6-7):611-5. doi:
10.1016/j.neuint.2005.12.033
. [PMID: 16516348] - Chiaki Setoyama, Yasuzo Nishina, Hisashi Mizutani, Ikuko Miyahara, Ken Hirotsu, Nobuo Kamiya, Kiyoshi Shiga, Retsu Miura. Engineering the substrate specificity of porcine kidney D-amino acid oxidase by mutagenesis of the 'active-site lid'.
Journal of biochemistry.
2006 May; 139(5):873-9. doi:
10.1093/jb/mvj094
. [PMID: 16751595] - R Boni, R Santillo, G Macchia, P Spinelli, G Ferrandino, A D'Aniello. D-aspartate and reproductive activity in sheep.
Theriogenology.
2006 Apr; 65(7):1265-78. doi:
10.1016/j.theriogenology.2005.07.019
. [PMID: 16203031] - Renty B Franklin, Jing Zou, Ziqiang Yu, Les C Costello. EAAC1 is expressed in rat and human prostate epithelial cells; functions as a high-affinity L-aspartate transporter; and is regulated by prolactin and testosterone.
BMC biochemistry.
2006 Mar; 7(?):10. doi:
10.1186/1471-2091-7-10
. [PMID: 16566829] - Yoko Nagata, Masatoshi Higashi, Yutaka Ishii, Hiroaki Sano, Minoru Tanigawa, Kumiko Nagata, Kazuma Noguchi, Masahiro Urade. The presence of high concentrations of free D-amino acids in human saliva.
Life sciences.
2006 Mar; 78(15):1677-81. doi:
10.1016/j.lfs.2005.08.009
. [PMID: 16480744] - Lysette Mutkus, Judy L Aschner, Tore Syversen, Gouri Shanker, Ursula Sonnewald, Michael Aschner. Mercuric chloride inhibits the in vitro uptake of glutamate in GLAST- and GLT-1-transfected mutant CHO-K1 cells.
Biological trace element research.
2006 Mar; 109(3):267-80. doi:
10.1385/bter:109:3:267
. [PMID: 16632895] - F Raucci, S D'Aniello, M M Di Fiore. Endocrine roles of D-aspartic acid in the testis of lizard Podarcis s. sicula.
The Journal of endocrinology.
2005 Dec; 187(3):347-59. doi:
10.1677/joe.1.06115
. [PMID: 16423814] - Luca Raiteri, Simona Zappettini, Sara Stigliani, Silvio Paluzzi, Maurizio Raiteri, Giambattista Bonanno. Glutamate release induced by activation of glycine and GABA transporters in spinal cord is enhanced in a mouse model of amyotrophic lateral sclerosis.
Neurotoxicology.
2005 Oct; 26(5):883-92. doi:
10.1016/j.neuro.2005.01.015
. [PMID: 15885796] - Hiroki Abe, Naoko Yoshikawa, Mohammed Golam Sarower, Shigeru Okada. Physiological function and metabolism of free D-alanine in aquatic animals.
Biological & pharmaceutical bulletin.
2005 Sep; 28(9):1571-7. doi:
10.1248/bpb.28.1571
. [PMID: 16141518] - Barbara Begni, Lucio Tremolizzo, Cristina D'Orlando, Maria Serena Bono, Rosanna Garofolo, Marco Longoni, Carlo Ferrarese. Substrate-induced modulation of glutamate uptake in human platelets.
British journal of pharmacology.
2005 Jul; 145(6):792-9. doi:
10.1038/sj.bjp.0706242
. [PMID: 15880141] - Luca Raiteri, Sara Stigliani, Laura Patti, Cesare Usai, Giovanna Bucci, Alberto Diaspro, Maurizio Raiteri, Giambattista Bonanno. Activation of gamma-aminobutyric acid GAT-1 transporters on glutamatergic terminals of mouse spinal cord mediates glutamate release through anion channels and by transporter reversal.
Journal of neuroscience research.
2005 May; 80(3):424-33. doi:
10.1002/jnr.20437
. [PMID: 15789377] - Salvatore D'Aniello, Patrizia Spinelli, Gabriele Ferrandino, Kevin Peterson, Mara Tsesarskia, George Fisher, Antimo D'Aniello. Cephalopod vision involves dicarboxylic amino acids: D-aspartate, L-aspartate and L-glutamate.
The Biochemical journal.
2005 Mar; 386(Pt 2):331-40. doi:
10.1042/bj20041070
. [PMID: 15491279] - Tatyana V Waseem, Anatoly A Rakovich, Tatyana V Lavrukevich, Sergei V Konev, Sergei V Fedorovich. Calcium regulates the mode of exocytosis induced by hypotonic shock in isolated neuronal presynaptic endings.
Neurochemistry international.
2005 Feb; 46(3):235-42. doi:
10.1016/j.neuint.2004.09.002
. [PMID: 15670640] - Vijay P Sarthy, Leonardo Pignataro, Thomas Pannicke, Michael Weick, Andreas Reichenbach, Takayuki Harada, Kohichi Tanaka, Robert Marc. Glutamate transport by retinal Muller cells in glutamate/aspartate transporter-knockout mice.
Glia.
2005 Jan; 49(2):184-96. doi:
10.1002/glia.20097
. [PMID: 15390100] - Luca Raiteri, Sara Stigliani, Antonella Siri, Mario Passalacqua, Edon Melloni, Maurizio Raiteri, Giambattista Bonanno. Glycine taken up through GLYT1 and GLYT2 heterotransporters into glutamatergic axon terminals of mouse spinal cord elicits release of glutamate by homotransporter reversal and through anion channels.
Biochemical pharmacology.
2005 Jan; 69(1):159-68. doi:
10.1016/j.bcp.2004.08.029
. [PMID: 15588724] - Nicolas Vanhoutte, Isabelle de Hemptinne, Céline Vermeiren, Jean-Marie Maloteaux, Emmanuel Hermans. In vitro differentiated neural stem cells express functional glial glutamate transporters.
Neuroscience letters.
2004 Nov; 370(2-3):230-5. doi:
10.1016/j.neulet.2004.08.039
. [PMID: 15488328] - Ethan G Hughes, Jamie L Maguire, Melanie T McMinn, Rachael E Scholz, Margaret L Sutherland. Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking.
Brain research. Molecular brain research.
2004 May; 124(2):114-23. doi:
10.1016/j.molbrainres.2004.02.021
. [PMID: 15135219] - Ana Gadea, Edith López, Ana María López-Colomé. Glutamate-induced inhibition of D-aspartate uptake in Müller glia from the retina.
Neurochemical research.
2004 Jan; 29(1):295-304. doi:
10.1023/b:nere.0000010458.45085.e8
. [PMID: 14992289] - Mohammed Golam Sarower, Shigeru Okada, Hiroki Abe. Molecular characterization of D-amino acid oxidase from common carp Cyprinus carpio and its induction with exogenous free D-alanine.
Archives of biochemistry and biophysics.
2003 Dec; 420(1):121-9. doi:
10.1016/j.abb.2003.09.035
. [PMID: 14622982] - Helen Chan, Claudia Zwingmann, Marc Pannunzio, Roger F Butterworth. Effects of ammonia on high affinity glutamate uptake and glutamate transporter EAAT3 expression in cultured rat cerebellar granule cells.
Neurochemistry international.
2003 Jul; 43(2):137-46. doi:
10.1016/s0197-0186(02)00215-2
. [PMID: 12620282] - M N Lipovac, T Holland, A Poleksic, C Killian, A Lajtha. The possible role of glutamate uptake in metaphit-induced seizures.
Neurochemical research.
2003 May; 28(5):723-31. doi:
10.1023/a:1022861700905
. [PMID: 12716023] - Luca Raiteri, Egle Paolucci, Simona Prisco, Maurizio Raiteri, Giambattista Bonanno. Activation of a glycine transporter on spinal cord neurons causes enhanced glutamate release in a mouse model of amyotrophic lateral sclerosis.
British journal of pharmacology.
2003 Mar; 138(6):1021-5. doi:
10.1038/sj.bjp.0705142
. [PMID: 12684256] - Sachin K Suchak, Nicoletta V Baloyianni, Michael S Perkinton, Robert J Williams, Brian S Meldrum, Marcus Rattray. The 'glial' glutamate transporter, EAAT2 (Glt-1) accounts for high affinity glutamate uptake into adult rodent nerve endings.
Journal of neurochemistry.
2003 Feb; 84(3):522-32. doi:
10.1046/j.1471-4159.2003.01553.x
. [PMID: 12558972]