5-Deoxystrigol (BioDeep_00000012039)

   

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


5-Deoxystrigol

化学式: C19H22O5 (330.1467)
中文名称: 5-脱氧独脚金醇
谱图信息: 最多检出来源 Viridiplantae(plant) 9.87%

分子结构信息

SMILES: CC1=CC(OC1=O)OC=C2C3CC4=C(C3OC2=O)C(CCC4)(C)C
InChI: InChI=1S/C19H22O5/c1-10-7-14(23-17(10)20)22-9-13-12-8-11-5-4-6-19(2,3)15(11)16(12)24-18(13)21/h7,9,12,14,16H,4-6,8H2,1-3H3/b13-9+/t12-,14-,16+/m1/s1

描述信息

同义名列表

1 个代谢物同义名

5-Deoxystrigol



数据库引用编号

14 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

130 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(2)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(127)

COVID-19 Disease Map(0)

PathBank(1)

PharmGKB(0)

17 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Takatoshi Wakabayashi, Shunsuke Ishiwa, Kasumi Shida, Noriko Motonami, Hideyuki Suzuki, Hirosato Takikawa, Masaharu Mizutani, Yukihiro Sugimoto. Identification and characterization of sorgomol synthase in sorghum strigolactone biosynthesis. Plant physiology. 2021 04; 185(3):902-913. doi: 10.1093/plphys/kiaa113. [PMID: 33793911]
  • Takatoshi Wakabayashi, Kasumi Shida, Yurie Kitano, Hirosato Takikawa, Masaharu Mizutani, Yukihiro Sugimoto. CYP722C from Gossypium arboreum catalyzes the conversion of carlactonoic acid to 5-deoxystrigol. Planta. 2020 Apr; 251(5):97. doi: 10.1007/s00425-020-03390-6. [PMID: 32306106]
  • Narumi Mori, Takahito Nomura, Kohki Akiyama. Identification of two oxygenase genes involved in the respective biosynthetic pathways of canonical and non-canonical strigolactones in Lotus japonicus. Planta. 2020 Jan; 251(2):40. doi: 10.1007/s00425-019-03332-x. [PMID: 31907631]
  • Hongwen Wang, Wanxin Chen, Kai Eggert, Tatsiana Charnikhova, Harro Bouwmeester, Patrick Schweizer, Mohammad R Hajirezaei, Christiane Seiler, Nese Sreenivasulu, Nicolaus von Wirén, Markus Kuhlmann. Abscisic acid influences tillering by modulation of strigolactones in barley. Journal of experimental botany. 2018 07; 69(16):3883-3898. doi: 10.1093/jxb/ery200. [PMID: 29982677]
  • Nasreldin Mohemed, Tatsiana Charnikhova, Evert J Bakker, Aad van Ast, Abdelgabar Gt Babiker, Harro J Bouwmeester. Evaluation of field resistance to Striga hermonthica (Del.) Benth. in Sorghum bicolor (L.) Moench. The relationship with strigolactones. Pest management science. 2016 Nov; 72(11):2082-2090. doi: 10.1002/ps.4426. [PMID: 27611187]
  • Angela Boari, Biancamaria Ciasca, Rocío Pineda-Martos, Veronica Mt Lattanzio, Koichi Yoneyama, Maurizio Vurro. Parasitic weed management by using strigolactone-degrading fungi. Pest management science. 2016 Nov; 72(11):2043-2047. doi: 10.1002/ps.4226. [PMID: 26757233]
  • Junwei Liu, Hanzi He, Marco Vitali, Ivan Visentin, Tatsiana Charnikhova, Imran Haider, Andrea Schubert, Carolien Ruyter-Spira, Harro J Bouwmeester, Claudio Lovisolo, Francesca Cardinale. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. Planta. 2015 Jun; 241(6):1435-51. doi: 10.1007/s00425-015-2266-8. [PMID: 25716094]
  • Tamami Tokunaga, Hideo Hayashi, Kohki Akiyama. Medicaol, a strigolactone identified as a putative didehydro-orobanchol isomer, from Medicago truncatula. Phytochemistry. 2015 Mar; 111(?):91-7. doi: 10.1016/j.phytochem.2014.12.024. [PMID: 25593009]
  • Yanxia Zhang, Aalt D J van Dijk, Adrian Scaffidi, Gavin R Flematti, Manuel Hofmann, Tatsiana Charnikhova, Francel Verstappen, Jo Hepworth, Sander van der Krol, Ottoline Leyser, Steven M Smith, Binne Zwanenburg, Salim Al-Babili, Carolien Ruyter-Spira, Harro J Bouwmeester. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nature chemical biology. 2014 Dec; 10(12):1028-33. doi: 10.1038/nchembio.1660. [PMID: 25344813]
  • Beate Hoffmann, Hélène Proust, Katia Belcram, Cécile Labrune, François-Didier Boyer, Catherine Rameau, Sandrine Bonhomme. Strigolactones inhibit caulonema elongation and cell division in the moss Physcomitrella patens. PloS one. 2014; 9(6):e99206. doi: 10.1371/journal.pone.0099206. [PMID: 24911649]
  • Noriko Motonami, Kotomi Ueno, Hitomi Nakashima, Saki Nomura, Masaharu Mizutani, Hirosato Takikawa, Yukihiro Sugimoto. The bioconversion of 5-deoxystrigol to sorgomol by the sorghum, Sorghum bicolor (L.) Moench. Phytochemistry. 2013 Sep; 93(?):41-8. doi: 10.1016/j.phytochem.2013.02.017. [PMID: 23597492]
  • Xiaonan Xie, Kaori Yoneyama, Takaya Kisugi, Kenichi Uchida, Seisuke Ito, Kohki Akiyama, Hideo Hayashi, Takao Yokota, Takahito Nomura, Koichi Yoneyama. Confirming stereochemical structures of strigolactones produced by rice and tobacco. Molecular plant. 2013 Jan; 6(1):153-63. doi: 10.1093/mp/sss139. [PMID: 23204500]
  • Yoshiya Seto, Hiromu Kameoka, Shinjiro Yamaguchi, Junko Kyozuka. Recent advances in strigolactone research: chemical and biological aspects. Plant & cell physiology. 2012 Nov; 53(11):1843-53. doi: 10.1093/pcp/pcs142. [PMID: 23054391]
  • Mitsuru Shoji, Eriko Suzuki, Minoru Ueda. Total synthesis of (+/-)-5-deoxystrigol via reductive carbon-carbon bond formation. The Journal of organic chemistry. 2009 May; 74(10):3966-9. doi: 10.1021/jo9002085. [PMID: 19358528]
  • Yukihiro Sugimoto, Tomoki Ueyama. Production of (+)-5-deoxystrigol by Lotus japonicus root culture. Phytochemistry. 2008 Jan; 69(1):212-7. doi: 10.1016/j.phytochem.2007.06.011. [PMID: 17655890]
  • . . . . doi: . [PMID: 22422982]