Reaction Process: WikiPathways:WP4008

NO/cGMP/PKG mediated neuroprotection related metabolites

find 6 related metabolites which is associated with chemical reaction(pathway) NO/cGMP/PKG mediated neuroprotection

cAMP ⟶ AMP

Adenosine monophosphate

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C10H14N5O7P (347.0631)


Adenosine monophosphate, also known as adenylic acid or amp, is a member of the class of compounds known as purine ribonucleoside monophosphates. Purine ribonucleoside monophosphates are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Adenosine monophosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Adenosine monophosphate can be found in a number of food items such as kiwi, taro, alaska wild rhubarb, and skunk currant, which makes adenosine monophosphate a potential biomarker for the consumption of these food products. Adenosine monophosphate can be found primarily in most biofluids, including blood, feces, cerebrospinal fluid (CSF), and urine, as well as throughout all human tissues. Adenosine monophosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine monophosphate is involved in several metabolic pathways, some of which include josamycin action pathway, methacycline action pathway, nevirapine action pathway, and aspartate metabolism. Adenosine monophosphate is also involved in several metabolic disorders, some of which include hyperornithinemia-hyperammonemia-homocitrullinuria [hhh-syndrome], molybdenum cofactor deficiency, xanthinuria type I, and mitochondrial DNA depletion syndrome. Adenosine monophosphate is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Adenosine monophosphate, also known as 5-adenylic acid and abbreviated AMP, is a nucleotide that is found in RNA. It is an ester of phosphoric acid with the nucleoside adenosine. AMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase adenine. AMP can be produced during ATP synthesis by the enzyme adenylate kinase. AMP has recently been approved as a Bitter Blocker additive to foodstuffs. When AMP is added to bitter foods or foods with a bitter aftertaste it makes them seem sweeter. This potentially makes lower calorie food products more palatable. [Spectral] AMP (exact mass = 347.06308) and Guanine (exact mass = 151.04941) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and Glutathione disulfide (exact mass = 612.15196) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] AMP (exact mass = 347.06308) and Glutathione disulfide (exact mass = 612.15196) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] AMP (exact mass = 347.06308) and Adenine (exact mass = 135.0545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Adenosine monophosphate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67583-85-1 (retrieved 2024-07-01) (CAS RN: 61-19-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction. Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction. Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction.

   

L-Arginine

(S)-2-Amino-5-[(aminoiminomethyl)amino]-pentanoic acid

C6H14N4O2 (174.1117)


Arginine (Arg), also known as L-argninine, belongs to the class of organic compounds known as L-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-asparagine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Arginine is found in all organisms ranging from bacteria to plants to animals. Arginine is an essential amino acid that is physiologically active in the L-form. It is classified as a charged, basic, aliphatic amino acid. Arginine is considered to be a basic amino acid as it has a strongly basic guanidinium group. With a pKa of 12.48, the guanidinium group is positively charged in neutral, acidic, and even most basic environments. Because of the conjugation between the double bond and the nitrogen lone pairs, the positive charge is delocalized. This group is able to form multiple H-bonds. In mammals, arginine is formally classified as a semi-essential or conditionally essential amino acid, depending on the developmental stage and health status of the individual. Infants are unable to effectively synthesize arginine, making it nutritionally essential for infants. Adults, however, are able to synthesize arginine in the urea cycle. L-Arginine is an amino acid that has numerous functions in the body. It helps dispose of ammonia, is used to make compounds such as nitric oxide, creatine, L-glutamate, and L-proline, and it can be converted into glucose and glycogen if needed. Arginine also plays an important role in cell division, immunity and wound healing. Arginine is the immediate precursor of nitric oxide (NO), an important signaling molecule which can act as a second messenger, as well as an intercellular messenger which regulates vasodilation, and also has functions in the immune systems reaction to infection. Nitric oxide is made via the enzyme nitric oxide synthase (PMID 10690324). Arginine is also a precursor for several important nitrogen-containing compounds including urea, ornithine, and agmatine. Arginine is necessary for the synthesis of creatine and can be used for the synthesis of polyamines (mainly through ornithine and to a lesser degree through agmatine, citrulline, and glutamate.) The presence of asymmetric dimethylarginine (ADMA) in serum or plasma, a close relative of argninine, inhibits the nitric oxide synthase reaction. ADMA is considered a marker for vascular disease, just as L-arginine is considered a sign of a healthy endothelium. In large doses, L-arginine also stimulates the release of the hormones growth hormone and prolactin. Arginine is a known inducer of mTOR (mammalian target of rapamycin) and is responsible for inducing protein synthesis through the mTOR pathway. mTOR inhibition by rapamycin partially reduces arginine-induced protein synthesis (PMID: 20841502). Catabolic disease states such as sepsis, injury, and cancer cause an increase in arginine utilization, which can exceed normal body production, leading to arginine depletion. Arginine also activates AMP kinase (AMPK) which then stimulates skeletal muscle fatty acid oxidation and muscle glucose uptake, thereby increasing insulin secretion by pancreatic beta-cells (PMID: 21311355). Arginine is found in plant and animal proteins, such as dairy products, meat, poultry, fish, and nuts. The ratio of L-arginine to lysine is also important: soy and other plant proteins have more L-arginine than animal sources of protein. [Spectral] L-Arginine (exact mass = 174.11168) and L-Histidine (exact mass = 155.06948) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. L-Arginine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=74-79-3 (retrieved 2024-06-29) (CAS RN: 74-79-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Arginine ((S)-(+)-Arginine) is the substrate for the endothelial nitric oxide synthase (eNOS) to generate NO. L-Arginine is transported into vascular smooth muscle cells by the cationic amino acid transporter family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline[1][2]. L-Arginine ((S)-(+)-Arginine) is the substrate for the endothelial nitric oxide synthase (eNOS) to generate NO. L-Arginine is transported into vascular smooth muscle cells by the cationic amino acid transporter family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline[1][2].

   

Cyclic AMP

(4aR,6R,7R,7aS)-6-(6-aminopurin-9-yl)-2,7-dihydroxy-tetrahydro-4H-2lambda5-furo[3,2-d][1,3,2]dioxaphosphinin-2-one

C10H12N5O6P (329.0525)


Cyclic amp, also known as camp or adenosine 3,5-cyclic monophosphate, is a member of the class of compounds known as 3,5-cyclic purine nucleotides. 3,5-cyclic purine nucleotides are purine nucleotides in which the oxygen atoms linked to the C3 and C5 carbon atoms of the ribose moiety are both bonded the same phosphorus atom of the phosphate group. Cyclic amp is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Cyclic amp can be found in a number of food items such as green vegetables, java plum, borage, and wakame, which makes cyclic amp a potential biomarker for the consumption of these food products. Cyclic amp can be found primarily in blood, cerebrospinal fluid (CSF), feces, and urine, as well as throughout all human tissues. Cyclic amp exists in all living species, ranging from bacteria to humans. In humans, cyclic amp is involved in several metabolic pathways, some of which include dopamine activation of neurological reward system, excitatory neural signalling through 5-HTR 4 and serotonin, intracellular signalling through PGD2 receptor and prostaglandin D2, and thioguanine action pathway. Cyclic amp is also involved in several metabolic disorders, some of which include adenosine deaminase deficiency, gout or kelley-seegmiller syndrome, purine nucleoside phosphorylase deficiency, and adenine phosphoribosyltransferase deficiency (APRT). Moreover, cyclic amp is found to be associated with chronic renal failure, headache, meningitis, and hypoxic-ischemic encephalopathy. Cyclic adenosine monophosphate (cAMP, cyclic AMP, or 3,5-cyclic adenosine monophosphate) is a second messenger important in many biological processes. cAMP is a derivative of adenosine triphosphate (ATP) and used for intracellular signal transduction in many different organisms, conveying the cAMP-dependent pathway. It should not be confused with 5-AMP-activated protein kinase (AMP-activated protein kinase) . Cyclic AMP (cAMP) or cyclic adenosine monophosphate is an adenine nucleotide containing one phosphate group which is esterified to both the 3- and 5-positions of the sugar moiety. cAMP is found in all organisms ranging from bacteria to plants to animals. In humans and other mammals it is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon and ACTH. cAMP is synthesized from ATP by adenylate cyclase. Adenylate cyclase is located at the inner side of cell membranes. Adenylate cyclase is activated by the hormones glucagon and adrenaline and by G protein. Liver adenylate cyclase responds more strongly to glucagon, and muscle adenylate cyclase responds more strongly to adrenaline. cAMP decomposition into AMP is catalyzed by the enzyme phosphodiesterase. cAMP is primarily used for intracellular signal transduction, such as transferring into cells the effects of hormones like glucagon and adrenaline, which cannot pass through the plasma membrane. cAMP is also involved in the activation of protein kinases. In addition, cAMP binds to and regulates the function of ion channels such as the HCN channels. Hyperpolarization-activated cyclic nucleotide–gated (HCN) channels are integral membrane proteins that serve as nonselective voltage-gated cation channels in the plasma membranes of heart and brain cells. HCN channels are sometimes referred to as pacemaker channels because they help to generate rhythmic activity within groups of heart and brain cells. [Spectral] 3,5-Cyclic AMP (exact mass = 329.05252) and Guanosine (exact mass = 283.09167) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cyclic AMP (Cyclic adenosine monophosphate), adenosine triphosphate derivative, is an intracellular signaling molecule responsible for directing cellular responses to extracellular signals. Cyclic AMP is an important second messenger in many biological processes[1][2][3]. Cyclic AMP (Cyclic adenosine monophosphate), adenosine triphosphate derivative, is an intracellular signaling molecule responsible for directing cellular responses to extracellular signals. Cyclic AMP is an important second messenger in many biological processes[1][2][3]. Cyclic AMP (Cyclic adenosine monophosphate), adenosine triphosphate derivative, is an intracellular signaling molecule responsible for directing cellular responses to extracellular signals. Cyclic AMP is an important second messenger in many biological processes[1][2][3].

   

Citrulline

(S)-2-Amino-5-(aminocarbonyl)aminopentanoic acid

C6H13N3O3 (175.0957)


Citrulline, also known as Cit or δ-ureidonorvaline, belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. Citrulline has the formula H2NC(O)NH(CH2)3CH(NH2)CO2H. Citrulline exists in all living species, ranging from bacteria to humans. Within humans, citrulline participates in a number of enzymatic reactions. In particular, citrulline can be biosynthesized from carbamoyl phosphate and ornithine which is catalyzed by the enzyme ornithine carbamoyltransferase. In addition, citrulline and L-aspartic acid can be converted into argininosuccinic acid through the action of the enzyme argininosuccinate synthase. In humans, citrulline is involved in the metabolic disorder called argininemia. Citrulline has also been found to be associated with several diseases such as ulcerative colitis, rheumatoid arthritis, and citrullinemia type II. Citrulline has also been linked to several inborn metabolic disorders including argininosuccinic aciduria and fumarase deficiency. Outside of the human body, citrulline is found, on average, in the highest concentration in a few different foods such as wheats, oats, and cucumbers and in a lower concentration in swiss chards, yellow wax beans, and potato. Citrulline has also been detected, but not quantified in several different foods, such as epazotes, lotus, common buckwheats, strawberry guava, and italian sweet red peppers. Citrulline is a potentially toxic compound. Proteins that normally contain citrulline residues include myelin basic protein (MBP), filaggrin, and several histone proteins, whereas other proteins, such as fibrin and vimentin are susceptible to citrullination during cell death and tissue inflammation. Citrulline is also produced as a byproduct of the enzymatic production of nitric oxide from the amino acid arginine, catalyzed by nitric oxide synthase. It is also produced from arginine as a byproduct of the reaction catalyzed by NOS family (NOS; EC1.14.13.39). [Spectral] L-Citrulline (exact mass = 175.09569) and L-Glutamate (exact mass = 147.05316) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Occurs in the juice of watermelon (Citrullus vulgaris) IPB_RECORD: 257; CONFIDENCE confident structure KEIO_ID C013 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2-Amino-5-ureidopentanoic acid is an endogenous metabolite. 2-Amino-5-ureidopentanoic acid is an endogenous metabolite. L-Citrulline is an amino acid derived from ornithine in the catabolism of proline or glutamine and glutamate, or from l-arginine via arginine-citrulline pathway. L-Citrulline is an amino acid derived from ornithine in the catabolism of proline or glutamine and glutamate, or from l-arginine via arginine-citrulline pathway.

   

Cyclic GMP

9-[(4aR,6R,7R,7aS)-2,7-dihydroxy-2-oxo-hexahydro-2λ⁵-furo[3,2-d][1,3,2]dioxaphosphinin-6-yl]-2-amino-6,9-dihydro-1H-purin-6-one

C10H12N5O7P (345.0474)


Cyclic-gmp, also known as cgmp or guanosine 3,5-cyclic monophosphate, is a member of the class of compounds known as 3,5-cyclic purine nucleotides. 3,5-cyclic purine nucleotides are purine nucleotides in which the oxygen atoms linked to the C3 and C5 carbon atoms of the ribose moiety are both bonded the same phosphorus atom of the phosphate group. Cyclic-gmp is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Cyclic-gmp can be found in a number of food items such as common sage, jews ear, java plum, and pepper (c. chinense), which makes cyclic-gmp a potential biomarker for the consumption of these food products. Cyclic-gmp can be found primarily in blood and cerebrospinal fluid (CSF), as well as throughout most human tissues. Cyclic-gmp exists in all living species, ranging from bacteria to humans. Moreover, cyclic-gmp is found to be associated with headache. Guanosine cyclic 3,5-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3- and 5-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed). Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS