Reaction Process: PlantCyc:OEUROPAEA_SYLVESTRIS_PWY-6475
trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria) related metabolites
find 12 related metabolites which is associated with chemical reaction(pathway) trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria)
prolycopene ⟶ all-trans-lycopene
Lycopene
Lycopene is an acyclic carotene commonly obtained from tomatoes and other red fruits. It has a role as an antioxidant and a plant metabolite. It contains a carotenoid psi-end derivative. Lycopene is a naturally occuring red carotenoid pigment that is responsible in red to pink colors seen in tomatoes, pink grapefruit, and other foods. Having a chemical formula of C40H56, lycopene is a tetraterpene assembled from eight isoprene units that are solely composed of carbon and hydrogen. Lycophene may undergo extensive isomerization that allows 1056 theoretical cis-trans configurations; however the all-trans configuration of lycopene is the most predominant isomer found in foods that gives the red hue. Lycopene is a non-essential human nutrient that is classified as a non-provitamin A carotenoid pigment since it lacks a terminal beta ionone ring and does not mediate vitamin A activity. However lycophene is a potent antioxidant molecule that scavenges reactive oxygen species (ROS) singlet oxygen. Tomato lycopene extract is used as a color additive in food products. Lycopene is a natural product found in Rhodobacter capsulatus, Afifella marina, and other organisms with data available. Lycopene is a linear, unsaturated hydrocarbon carotenoid, the major red pigment in fruits such as tomatoes, pink grapefruit, apricots, red oranges, watermelon, rosehips, and guava. As a class, carotenoids are pigment compounds found in photosynthetic organisms (plants, algae, and some types of fungus), and are chemically characterized by a large polyene chain containing 35-40 carbon atoms; some carotenoid polyene chains are terminated by two 6-carbon rings. In animals, carotenoids such as lycopene may possess antioxidant properties which may retard aging and many degenerative diseases. As an essential nutrient, lycopene is required in the animal diet. (NCI04) A carotenoid and red pigment produced by tomatoes, other red fruits and vegetables, and photosynthetic algae. It is a key intermediate in the biosynthesis of other carotenoids, and has antioxidant, anti-carcinogenic, radioprotective, and anti-inflammatory properties. Lycopene (molecular formula: C40H56) is a bright red carotenoid pigment. It is a phytochemical found in tomatoes and other red fruits. Lycopene is the most common carotenoid in the human body and is one of the most potent carotenoid antioxidants. Its name is derived from the tomatos species classification, Solanum lycopersicum. Lycopene is a terpene assembled from 8 isoprene units. Lycopene is the most powerful carotenoid quencher of singlet oxygen. Singlet oxygen from ultraviolet light is a primary cause of skin aging (Wikipedia). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids An acyclic carotene commonly obtained from tomatoes and other red fruits. D020011 - Protective Agents > D011837 - Radiation-Protective Agents D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents It is used as food colouring
Pyrophosphate
The anion, the salts, and the esters of pyrophosphoric acid are called pyrophosphates. The pyrophosphate anion is abbreviated PPi and is formed by the hydrolysis of ATP into AMP in cells. This hydrolysis is called pyrophosphorolysis. The pyrophosphate anion has the structure P2O74-, and is an acid anhydride of phosphate. It is unstable in aqueous solution and rapidly hydrolyzes into inorganic phosphate. Pyrophosphate is an osteotoxin (arrests bone development) and an arthritogen (promotes arthritis). It is also a metabotoxin (an endogenously produced metabolite that causes adverse health affects at chronically high levels). Chronically high levels of pyrophosphate are associated with hypophosphatasia. Hypophosphatasia (also called deficiency of alkaline phosphatase or phosphoethanolaminuria) is a rare, and sometimes fatal, metabolic bone disease. Hypophosphatasia is associated with a molecular defect in the gene encoding tissue non-specific alkaline phosphatase (TNSALP). TNSALP is an enzyme that is tethered to the outer surface of osteoblasts and chondrocytes. TNSALP hydrolyzes several substances, including inorganic pyrophosphate (PPi) and pyridoxal 5-phosphate (PLP), a major form of vitamin B6. When TSNALP is low, inorganic pyrophosphate (PPi) accumulates outside of cells and inhibits the formation of hydroxyapatite, one of the main components of bone, causing rickets in infants and children and osteomalacia (soft bones) in adults. Vitamin B6 must be dephosphorylated by TNSALP before it can cross the cell membrane. Vitamin B6 deficiency in the brain impairs synthesis of neurotransmitters which can cause seizures. In some cases, a build-up of calcium pyrophosphate dihydrate crystals in the joints can cause pseudogout. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Menaquinone-9
A menaquinone whose side-chain contains 9 isoprene units in an all-trans-configuration.
(9-cis,9'-cis)-7,7',8,8'-Tetrahydro-psi,psi-carotene
(9-cis,9-cis)-7,7,8,8-Tetrahydro-psi,psi-carotene is a carotenoid found in human fluids. Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds, and crustacea. Animals are unable to synthesize carotenoids de novo, and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer-preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important (PMID: 1416048, 15003396). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Prolycopene
Constituent of tomatoes (Lycopersicon esculentum)and is) also in other fruits. Prolycopene is found in many foods, some of which are date, oriental wheat, grapefruit/pummelo hybrid, and banana. Prolycopene is found in garden tomato. Prolycopene is a constituent of tomatoes (Lycopersicon esculentum). Also in other fruits D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D020011 - Protective Agents > D011837 - Radiation-Protective Agents D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents
Proneurosporene
Proneurosporene is found in garden tomato and Lycopersicon esculentum var. Tangella.
15-cis-Phytoene
15-cis-Phytoene is found in cauliflower. 15-cis-Phytoene is isolated from tomato (Lycopersicon esculentum var. `Tangella). 7,7,8,8,11,11,12,12-Octahydrocarotene, is a carotenoid found in human fluids. Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds, and crustacea. Animals are unable to synthesize carotenoids de novo, and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer-preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important (PMID: 1416048, 15003396). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
15,9'-di-cis-phytofluene
15,9-di-cis-phytofluene is a member of the class of compounds known as carotenes. Carotenes are a type of unsaturated hydrocarbons containing eight consecutive isoprene units. They are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. 15,9-di-cis-phytofluene can be found in a number of food items such as prickly pear, giant butterbur, broccoli, and chanterelle, which makes 15,9-di-cis-phytofluene a potential biomarker for the consumption of these food products.