Reaction Process: Plant Reactome:R-PTA-1119314
Cellulose biosynthesis related metabolites
find 3 related metabolites which is associated with chemical reaction(pathway) Cellulose biosynthesis
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
Uridine 5'-diphosphate
Uridine 5-diphosphate, also known as 5-UDP, UDP or uridine diphosphoric acid, belongs to the class of organic compounds known as pyrimidine ribonucleoside diphosphates. These are pyrimidine ribonucleotides with diphosphate group linked to the ribose moiety. UDP is also classified as a nucleotide diphosphate. It is an ester of pyrophosphoric acid with the nucleoside uridine. UDP consists of a pyrophosphate group, a pentose sugar ribose, and the nucleobase uracil. UDP exists in all living species, ranging from bacteria to plants to humans. In mammals UDP is an important factor in glycogenesis or the formation of glycogen in the liver. Before glucose can be stored as glycogen in the liver and muscles, the enzyme UDP-glucose pyrophosphorylase forms a UDP-glucose unit by combining glucose 1-phosphate with uridine triphosphate, cleaving a pyrophosphate ion in the process. Then, the enzyme glycogen synthase combines UDP-glucose units to form a glycogen chain. UDP is also an important extracellular pyrimidine signaling molecule that mediates diverse biological effects via P1 and P2 purinergic receptors, such as the uptake of thymidine and proliferation of gliomas. UDP plays a key role in the function of Uridine 5-diphospho-glucuronosyltransferases (UDP-glucuronosyltransferases, UGTs) which catalyze the transfer of the glucuronic acid component of UDP-glucuronic acid to a small hydrophobic molecule. UDP-Glucuronosyltransferases are responsible for the process of glucuronidation, a major part of phase II metabolism. The reaction catalyzed by UGT enzymes involves the addition of a glucuronic acid moiety to xenobiotics and is the most important pathway for the human bodys elimination of the most frequently prescribed drugs. It is also the major pathway for foreign chemical (dietary, environmental, pharmaceutical) removal for most drugs, dietary substances, toxins and endogenous substances. UGT is present in humans, other animals, plants, and bacteria. Famously, UGT enzymes are not present in the genus Felis (PMID: 10862526) and this accounts for a number of unusual toxicities in the cat family. Uridine-5-diphosphate, also known as udp or uridine 5-diphosphoric acid, is a member of the class of compounds known as pyrimidine ribonucleoside diphosphates. Pyrimidine ribonucleoside diphosphates are pyrimidine ribonucleotides with diphosphate group linked to the ribose moiety. Uridine-5-diphosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Uridine-5-diphosphate can be found in a number of food items such as napa cabbage, lichee, tea leaf willow, and parsnip, which makes uridine-5-diphosphate a potential biomarker for the consumption of these food products. Uridine-5-diphosphate can be found primarily in blood, as well as in human placenta, prostate and thyroid gland tissues. Uridine-5-diphosphate exists in all living species, ranging from bacteria to humans. In humans, uridine-5-diphosphate is involved in several metabolic pathways, some of which include morphine action pathway, androgen and estrogen metabolism, estrone metabolism, and amino sugar metabolism. Uridine-5-diphosphate is also involved in several metabolic disorders, some of which include 17-beta hydroxysteroid dehydrogenase III deficiency, acute intermittent porphyria, beta ureidopropionase deficiency, and g(m2)-gangliosidosis: variant B, tay-sachs disease. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
D-Glucose
Glucose is a monosaccharide containing six carbon atoms and an aldehyde group. It is referred to as an aldohexose. The glucose molecule can exist in an open-chain (acyclic) and ring (cyclic) form, the latter being the result of an intramolecular reaction between the aldehyde C atom and the C-5 hydroxyl group to form an intramolecular hemiacetal. In aqueous solution, both forms are in equilibrium and at pH 7 the cyclic one is predominant. Glucose is a primary source of energy for all living organisms. It is a fundamental metabolite found in all organisms, ranging from bacteria to plants to humans. Most of the world’s glucose is made by plants and algae during photosynthesis from water and carbon dioxide, where it is used to make cellulose (and other polymeric forms of glucose called polysaccharides) that stabilize plant cell walls. Glucose is also found in fruits and other parts of plants in its free state. In animals, glucose can be generated from the breakdown of glycogen in a process known as glycogenolysis. Glucose can also be synthesized de novo in animals. In particular it can be synthesized in the liver and kidneys from non-carbohydrate intermediates, such as pyruvate and glycerol, by a process known as gluconeogenesis. Humans also consume large amounts of glucose as part of their regular diet. Ingested glucose initially binds to the receptor for sweet taste on the tongue in humans. This complex of the proteins T1R2 and T1R3 makes it possible to identify glucose-containing food sources. Glucose in the body mainly comes from food - about 300 g per day for the average adult. In humans, the breakdown of glucose-containing polysaccharides happens partly during chewing by means of the enzyme known as amylase, which is contained in saliva, as well as by other enzymes such as maltase, lactase and sucrase on the brush border of the small intestine. The blood sugar content of a healthy person in the short-time fasting state, e.g. after overnight fasting, is about 70 to 100 mg/dL of blood (4 to 5.5 mM). In blood plasma, the measured values are about 10–15\\\\% higher. Dysregulated metabolism of glucose can lead to a number of diseases including diabetes. Diabetes is a metabolic disorder where the body is unable to regulate levels of glucose in the blood either because of a lack of insulin in the body or the failure, by cells in the body, to respond properly to insulin. Each of these situations can be caused by persistently high elevations of blood glucose levels, through pancreatic burnout and insulin resistance. A glucoside is a glycoside that is derived from glucose. Glucosides are common in plants, but rare in animals. Glucose is produced when a glucoside is hydrolysed by purely chemical means, or decomposed by fermentation or enzymes. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.