Reaction Process: BioCyc:YEAST_PWY-5082
L-methionine degradation III related metabolites
find 7 related metabolites which is associated with chemical reaction(pathway) L-methionine degradation III
4-(methylsulfanyl)-2-oxobutanoate + H+ ⟶ 3-methylthiopropanal + CO2
Carbon dioxide
Carbon dioxide is a colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbon dioxide is produced during respiration by all animals, fungi and microorganisms that depend on living and decaying plants for food, either directly or indirectly. It is, therefore, a major component of the carbon cycle. Additionally, carbon dioxide is used by plants during photosynthesis to make sugars which may either be consumed again in respiration or used as the raw material to produce polysaccharides such as starch and cellulose, proteins and the wide variety of other organic compounds required for plant growth and development. When inhaled at concentrations much higher than usual atmospheric levels, it can produce a sour taste in the mouth and a stinging sensation in the nose and throat. These effects result from the gas dissolving in the mucous membranes and saliva, forming a weak solution of carbonic acid. Carbon dioxide is used by the food industry, the oil industry, and the chemical industry. Carbon dioxide is used to produce carbonated soft drinks and soda water. Traditionally, the carbonation in beer and sparkling wine comes about through natural fermentation, but some manufacturers carbonate these drinks artificially. Leavening agent, propellant, aerating agent, preservative. Solvent for supercritical extraction e.g. of caffeine in manufacture of caffeine-free instant coffee. It is used in carbonation of beverages, in the frozen food industry and as a component of controlled atmosphere packaging (CAD) to inhibit bacterial growth. Especies effective against Gram-negative spoilage bacteria, e.g. Pseudomonas V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases
Hydrogen Ion
Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])
3-(Methylthio)propanal
3-(Methylthio)propanal, also known as 3-methylsulfanylpropanal or 4-thiapentanal, belongs to the class of organic compounds known as alpha-hydrogen aldehydes. These are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. 3-(Methylthio)propanal is a beef, cooked potato, and creamy tasting compound. 3-(Methylthio)propanal has been detected, but not quantified, in several different foods, such as anises, sparkleberries, oats, passion fruits, and hard wheats. 3-(Methylthio)propanal is a flavouring ingredient. It is found in many foods, some of which are cucumber, jujube, mugwort, and chicory leaves. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D011448 - Prostaglandin Antagonists
3-(Methylthio)-1-propanol
3-(Methylthio)-1-propanol, also known as methionol or 3-(methylsulfanyl)-1-propanol, belongs to the class of organic compounds known as dialkylthioethers. These are organosulfur compounds containing a thioether group that is substituted by two alkyl groups. An alkyl sulfide that is propan-1-ol substituted by a methylsulfanyl group at position 3. 3-(Methylthio)-1-propanol is a sweet, onion, and potato tasting compound. 3-(Methylthio)-1-propanol has been detected, but not quantified, in several different foods, such as beans, lemon grass, mollusks, limes, and orange bell peppers. This could make 3-(methylthio)-1-propanol a potential biomarker for the consumption of these foods. Widely distributed aroma constituent of foods and beverages e.g. wines, beers, stored apples, melon, pineapple, cheddar cheese, asparagus, tomato, shoyu, ham, roasted coffee, cooked clams, cooked shrimps, soy sauce etc. 3-(Methylthio)-1-propanol is found in many foods, some of which are common persimmon, shallot, oval-leaf huckleberry, and root vegetables.
Nicotinamide adenine dinucleotide
C21H26N7O14P2- (662.1012936000001)
COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
beta-NADH
C21H27N7O14P2-2 (663.1091182000001)
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
4-Methylthio-2-oxobutanoate
The 2-oxo monocarboxylic acid anion derived from 4-methylthio-2-oxobutanoic acid. The major microspecies at pH 7.3, it is formed from L-methionine via the action of methionine transaminase.