4-Methylthio-2-oxobutanoate (BioDeep_00000897756)
代谢物信息卡片
化学式: C5H7O3S- (147.0115892)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(blood) 14.49%
分子结构信息
SMILES: CSCCC(=O)C(=O)[O-]
InChI: InChI=1S/C5H8O3S/c1-9-3-2-4(6)5(7)8/h2-3H2,1H3,(H,7,8)/p-1
描述信息
The 2-oxo monocarboxylic acid anion derived from 4-methylthio-2-oxobutanoic acid. The major microspecies at pH 7.3, it is formed from L-methionine via the action of methionine transaminase.
同义名列表
1 个代谢物同义名
数据库引用编号
分类词条
相关代谢途径
BioCyc(6)
PlantCyc(3)
代谢反应
372 个相关的代谢反应过程信息。
Reactome(15)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Methionine salvage pathway:
Acireductone + Oxygen ⟶ 4MTOBUTA + HCOOH
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Methionine salvage pathway:
Acireductone + Oxygen ⟶ 4MTOBUTA + HCOOH
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Methionine salvage pathway:
MTAD + Pi ⟶ Ade + MTRIBP
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
BioCyc(8)
- ethylene biosynthesis III (microbes):
4-(methylsulfanyl)-2-oxobutanoate + hydroxyl radical ⟶ CO2 + ethene + methanethiol
- ethylene biosynthesis:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- L-methionine degradation III:
NAD+ + methionol ⟶ 3-(methylsulfanyl)propanal + H+ + NADH
- L-methionine degradation III:
4-(methylsulfanyl)-2-oxobutanoate + H+ ⟶ 3-methylthiopropanal + CO2
- methionine degradation III:
met + phenylpyruvate ⟶ 2-oxo-4-methylthiobutanoate + phe
- methionine degradation III:
keto-phenylpyruvate + met ⟶ 2-oxo-4-methylthiobutanoate + phe
- methionine salvage pathway:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-methylthioribose-1-phosphate + adenine
- L-homomethionine biosynthesis:
4-(methylsulfanyl)-2-oxobutanoate + H2O + acetyl-CoA ⟶ 2-[(2'-methylsulfanyl)ethyl]malate + H+ + coenzyme A
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(349)
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
2-oxoglutaramate + H2O ⟶ 2-oxoglutarate + ammonium
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- L-methionine salvage cycle I (bacteria and plants):
dAdoMet + putrescine ⟶ S-methyl-5'-thioadenosine + H+ + spermidine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 4-(methylsulfanyl)-2-oxobutanoate + H+ + formate
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
4-(methylsulfanyl)-2-oxobutanoate + gln ⟶ 2-oxoglutaramate + met
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
4-(methylsulfanyl)-2-oxobutanoate + gln ⟶ 2-oxoglutaramate + met
- L-methionine salvage cycle I (bacteria and plants):
4-(methylsulfanyl)-2-oxobutanoate + gln ⟶ 2-oxoglutaramate + met
- L-methionine salvage cycle II (plants):
4-(methylsulfanyl)-2-oxobutanoate + gln ⟶ 2-oxoglutaramate + met
- L-methionine salvage cycle I (bacteria and plants):
4-(methylsulfanyl)-2-oxobutanoate + gln ⟶ 2-oxoglutaramate + met
- L-methionine salvage cycle II (plants):
4-(methylsulfanyl)-2-oxobutanoate + gln ⟶ 2-oxoglutaramate + met
- L-methionine salvage cycle I (bacteria and plants):
4-(methylsulfanyl)-2-oxobutanoate + gln ⟶ 2-oxoglutaramate + met
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation I:
4-(methylsulfanyl)-2-oxobutanoate + gln ⟶ 2-oxoglutaramate + met
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Axel de Zélicourt, Lukas Synek, Maged M Saad, Hanin Alzubaidy, Rewaa Jalal, Yakun Xie, Cristina Andrés-Barrao, Eleonora Rolli, Florence Guerard, Kiruthiga G Mariappan, Ihsanullah Daur, Jean Colcombet, Moussa Benhamed, Thomas Depaepe, Dominique Van Der Straeten, Heribert Hirt. Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2-keto-4-methylthiobutyric acid production.
PLoS genetics.
2018 03; 14(3):e1007273. doi:
10.1371/journal.pgen.1007273
. [PMID: 29554117] - Sun Ju Kim, Do Young Kwon, Yeong Shik Kim, Young Chul Kim. Peroxyl radical scavenging capacity of extracts and isolated components from selected medicinal plants.
Archives of pharmacal research.
2010 Jun; 33(6):867-73. doi:
10.1007/s12272-010-0609-3
. [PMID: 20607491] - A Khalid, M H Akhtar, M H Makhmood, M Arshad. [Effect of substrate-dependent microbialy produced ethylene on plant growth].
Mikrobiologiia.
2006 Mar; 75(2):277-83. doi:
. [PMID: 16758878]
- H Schempp, D Weiser, O Kelber, E F Elstner. Radical scavenging and anti-inflammatory properties of STW 5 (Iberogast) and its components.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2006; 13 Suppl 5(?):36-44. doi:
10.1016/j.phymed.2006.03.017
. [PMID: 16777393] - Manas K Chattopadhyay, Celia White Tabor, Herbert Tabor. Studies on the regulation of ornithine decarboxylase in yeast: effect of deletion in the MEU1 gene.
Proceedings of the National Academy of Sciences of the United States of America.
2005 Nov; 102(45):16158-63. doi:
10.1073/pnas.0507299102
. [PMID: 16260735] - Joachim Schuster, Stefan Binder. The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana.
Plant molecular biology.
2005 Jan; 57(2):241-54. doi:
10.1007/s11103-004-7533-1
. [PMID: 15821880] - Kimberly L Falk, Christine Vogel, Susanne Textor, Stefan Bartram, Alastair Hick, John A Pickett, Jonathan Gershenzon. Glucosinolate biosynthesis: demonstration and characterization of the condensing enzyme of the chain elongation cycle in Eruca sativa.
Phytochemistry.
2004 Apr; 65(8):1073-84. doi:
10.1016/j.phytochem.2004.02.021
. [PMID: 15110687] - M Arshad, Z-H Nazli, A Khalid, Z A Zahir. Kinetics and effects of trace elements and electron complexes on 2-keto-4-methylthiobutyric acid-dependent biosynthesis of ethylene in soil.
Letters in applied microbiology.
2004; 39(3):306-9. doi:
10.1111/j.1472-765x.2004.01590.x
. [PMID: 15287880] - J Grassmann, S Hippeli, K Dornisch, U Rohnert, N Beuscher, E F Elstner. Antioxidant properties of essential oils. Possible explanations for their anti-inflammatory effects.
Arzneimittel-Forschung.
2000 Feb; 50(2):135-9. doi:
"
. [PMID: 10719616] - A A Elfarra, I Y Hwang. Targeting of 6-mercaptopurine to the kidneys. Metabolism and kidney-selectivity of S-(6-purinyl)-L-cysteine analogs in rats.
Drug metabolism and disposition: the biological fate of chemicals.
1993 Sep; 21(5):841-5. doi:
. [PMID: 7902246]
- C Coudray, S Rachidi, A Favier. Effect of zinc on superoxide-dependent hydroxyl radical production in vitro.
Biological trace element research.
1993 Sep; 38(3):273-87. doi:
10.1007/bf02785311
. [PMID: 7504944] - B Blaurock, S Hippeli, N Metz, E F Elstner. Oxidative destruction of biomolecules by gasoline engine exhaust products and detoxifying effects of the three-way catalytic converter.
Archives of toxicology.
1992; 66(10):681-7. doi:
10.1007/bf01972618
. [PMID: 1283938] - D G Abraham, A J Cooper. Glutamine transaminase K and cysteine S-conjugate beta-lyase activity stains.
Analytical biochemistry.
1991 Sep; 197(2):421-7. doi:
10.1016/0003-2697(91)90414-o
. [PMID: 1723851] - E Dicker, A I Cederbaum. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents.
Biochemical pharmacology.
1991 Jul; 42(3):529-35. doi:
10.1016/0006-2952(91)90315-v
. [PMID: 1650215] - H J Blom, P Ferenci, G Grimm, S H Yap, A Tangerman. The role of methanethiol in the pathogenesis of hepatic encephalopathy.
Hepatology (Baltimore, Md.).
1991 Mar; 13(3):445-54. doi:
. [PMID: 1999315]
- E Kukiełka, A I Cederbaum. NADPH- and NADH-dependent oxygen radical generation by rat liver nuclei in the presence of redox cycling agents and iron.
Archives of biochemistry and biophysics.
1990 Dec; 283(2):326-33. doi:
10.1016/0003-9861(90)90650-n
. [PMID: 2275546] - L Dupuis, C L Saunderson, A Puigserver, P Brachet. Oxidation of methionine and 2-hydroxy 4-methylthiobutanoic acid stereoisomers in chicken tissues.
The British journal of nutrition.
1989 Jul; 62(1):63-75. doi:
10.1079/bjn19890008
. [PMID: 2789990] - H J Blom, G H Boers, J P van den Elzen, W A Gahl, A Tangerman. Transamination of methionine in humans.
Clinical science (London, England : 1979).
1989 Jan; 76(1):43-9. doi:
10.1042/cs0760043
. [PMID: 2920533] - H J Blom, G H Boers, J P van den Elzen, J J van Roessel, J M Trijbels, A Tangerman. Differences between premenopausal women and young men in the transamination pathway of methionine catabolism, and the protection against vascular disease.
European journal of clinical investigation.
1988 Dec; 18(6):633-8. doi:
10.1111/j.1365-2362.1988.tb01279.x
. [PMID: 3147189] - H Tomisawa, Y Takanohashi, S Ichihara, H Fukazawa, M Tateishi. Transamination of LTE4 by cysteine conjugate aminotransferase.
Biochemical and biophysical research communications.
1988 Sep; 155(3):1119-25. doi:
10.1016/s0006-291x(88)81256-7
. [PMID: 2845964] - J L Stevens, N Ayoubi, J D Robbins. The role of mitochondrial matrix enzymes in the metabolism and toxicity of cysteine conjugates.
The Journal of biological chemistry.
1988 Mar; 263(7):3395-401. doi:
. [PMID: 3343250]
- S Harel, J Kanner. The generation of ferryl or hydroxyl radicals during interaction of haemproteins with hydrogen peroxide.
Free radical research communications.
1988; 5(1):21-33. doi:
10.3109/10715768809068555
. [PMID: 2853114] - P W Scislowski, B M Hokland, W I Davis-van Thienen, J Bremer, E J Davis. Methionine metabolism by rat muscle and other tissues. Occurrence of a new carnitine intermediate.
The Biochemical journal.
1987 Oct; 247(1):35-40. doi:
10.1042/bj2470035
. [PMID: 3689352] - J L Stevens, J D Robbins, R A Byrd. A purified cysteine conjugate beta-lyase from rat kidney cytosol. Requirement for an alpha-keto acid or an amino acid oxidase for activity and identity with soluble glutamine transaminase K.
The Journal of biological chemistry.
1986 Nov; 261(33):15529-37. doi:
. [PMID: 3782077]
- J Mårtensson. The occurrence of 4-methylthio-2-hydroxybutyrate in human urine.
Analytical biochemistry.
1986 Apr; 154(1):43-9. doi:
10.1016/0003-2697(86)90493-8
. [PMID: 3706736] - L Eklöw-Låstbom, L Rossi, H Thor, S Orrenius. Effects of oxidative stress caused by hyperoxia and diquat. A study in isolated hepatocytes.
Free radical research communications.
1986; 2(1-2):57-68. doi:
10.3109/10715768609088055
. [PMID: 3505239] - G D Lawrence, G Cohen. In vivo production of ethylene from 2-keto-4-methylthiobutyrate in mice.
Biochemical pharmacology.
1985 Sep; 34(18):3231-6. doi:
10.1016/0006-2952(85)90339-9
. [PMID: 4038334] - J L Dixon, A E Harper. Effects on plasma amino acid concentrations and hepatic branched-chain alpha-keto acid dehydrogenase activity of feeding rats diets containing 9 or 50\% casein.
The Journal of nutrition.
1984 Jun; 114(6):1025-34. doi:
10.1093/jn/114.6.1025
. [PMID: 6726468] - H Kaji, N Saito, M Murao, M Ishimoto, H Kondo, S Gasa, K Saito. Gas chromatographic and gas chromatographic--mass spectrometric studies on alpha-keto-gamma-methylthiobutyric acid in urine following ingestion of optical isomers of methionine.
Journal of chromatography.
1980 Nov; 221(1):145-8. doi:
10.1016/s0378-4347(00)81016-6
. [PMID: 7451616] - A J Cooper. Purification of soluble and mitochondrial glutamine transaminase K from rat kidney. Use of a sensitive assay involving transamination between L-phenylalanine and alpha-keto-gamma-methiolbutyrate.
Analytical biochemistry.
1978 Sep; 89(2):451-60. doi:
10.1016/0003-2697(78)90374-3
. [PMID: 727444] - A D Mitchell, N J Benevenga. The role of transamination in methionine oxidation in the rat.
The Journal of nutrition.
1978 Jan; 108(1):67-78. doi:
10.1093/jn/108.1.67
. [PMID: 619045]